JPH05221773A - Method and device for producing silicon single crystal - Google Patents

Method and device for producing silicon single crystal

Info

Publication number
JPH05221773A
JPH05221773A JP1974992A JP1974992A JPH05221773A JP H05221773 A JPH05221773 A JP H05221773A JP 1974992 A JP1974992 A JP 1974992A JP 1974992 A JP1974992 A JP 1974992A JP H05221773 A JPH05221773 A JP H05221773A
Authority
JP
Japan
Prior art keywords
single crystal
silicon single
inches
oxygen
cooling rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1974992A
Other languages
Japanese (ja)
Other versions
JP3218312B2 (en
Inventor
Takeshi Yamauchi
剛 山内
Yoshinori Takahashi
義則 高橋
Masamichi Okubo
正道 大久保
Kiyoshi Kojima
清 小島
隆一 ▲は▼生
Riyuuichi Habu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Siltronic Japan Corp
Original Assignee
Nippon Steel Corp
NSC Electron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, NSC Electron Corp filed Critical Nippon Steel Corp
Priority to JP01974992A priority Critical patent/JP3218312B2/en
Publication of JPH05221773A publication Critical patent/JPH05221773A/en
Application granted granted Critical
Publication of JP3218312B2 publication Critical patent/JP3218312B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To control the oxygen depositing behavior in a silicon single crystal and to prevent the generation of crystal defects (OSF, etc.) at the time of producing a silicon single crystal by the Czochralski method. CONSTITUTION:A silicon single crystal is produced by a device for pulling up a silicon single crystal. In this case, the silicon single crystal pulled up from the melt is cooled from 600 to 350 deg.C at the rate of 1.5 to 200 deg.C/min. A cooler 10 is provided in the pull chamber 9 of the device to control the cooling rate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、チョクラルスキー法
(CZ法)による大口径のシリコン単結晶の製造に際し
て、シリコン単結晶中の酸素誘起積層欠陥(OSF)の
発生を防止するかつ酸素析出量を制御するためのシリコ
ン単結晶の製造方法およびその装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention prevents generation of oxygen-induced stacking faults (OSF) in a silicon single crystal and oxygen precipitation in the production of a large-diameter silicon single crystal by the Czochralski method (CZ method). The present invention relates to a method for producing a silicon single crystal and a device therefor for controlling the amount.

【0002】[0002]

【従来の技術】単結晶の製造法として、坩堝内の融液か
ら結晶を成長させつつ引き上げるCZ法が広く行なわれ
ている。このCZ法において、結晶育成時のインゴット
熱履歴によって酸素析出濃度が変化する。この析出量は
Siウエハの反りの大小を決定し、またintrins
ic gettering(IG)効果を決定してい
た。350〜650℃の低温熱処理によってSiウエハ
内に酸素ドナーと呼ばれる酸素析出物が形成される。こ
の酸素ドナーがウエハの高温熱処理時の酸素析出量を決
定する。従来の方法は特公昭58−120591号公報
及び特開平1−82841号公報に開示されているよう
にSiウエハに加工してから450℃〜650℃の低温
熱処理によって酸素析出量を制御していた。しかしなが
ら、シリコン結晶の直径が8インチ、12インチ(以下
単に8、12インチと記す)大型化によって従来の5、
6インチの結晶とは熱履歴が異なってきた。
2. Description of the Related Art As a method for producing a single crystal, a CZ method has been widely used in which a crystal is pulled from a melt in a crucible while growing the crystal. In this CZ method, the oxygen precipitation concentration changes depending on the heat history of the ingot during crystal growth. This amount of precipitation determines the size of the warp of the Si wafer, and
The ic gettering (IG) effect was determined. Oxygen precipitates called oxygen donors are formed in the Si wafer by the low temperature heat treatment at 350 to 650 ° C. This oxygen donor determines the amount of oxygen precipitation during high temperature heat treatment of the wafer. In the conventional method, as disclosed in Japanese Patent Publication No. 58-120591 and Japanese Patent Application Laid-Open No. 1-82841, the amount of oxygen precipitation is controlled by low temperature heat treatment at 450 ° C. to 650 ° C. after processing into a Si wafer. .. However, as the diameter of the silicon crystal is increased to 8 inches and 12 inches (hereinafter simply referred to as 8 and 12 inches), the conventional 5
It has a different thermal history than the 6-inch crystal.

【0003】図1に示すように熱電対を用いてインゴッ
トの熱履歴を測定したところ、8、12インチのシリコ
ン単結晶の冷却速度は、6インチと比べて600℃以下
で徐冷になっていることが判明した。さらに図4に示す
ように、600℃以下の冷却速度は、6インチが8、1
2インチと比較して高速である。このような状態のシリ
コン単結晶における結晶品質を評価した。また、図2に
示すように、8、12インチの結晶の酸素析出量が6イ
ンチの場合よりも著しく増加した。なお、酸素析出は窒
素中で800℃・4時間の熱処理し、更に乾式酸素ガス
中で1000℃・16時間の熱処理の前後でFTIR測
定によって酸素濃度を測定して求めた。
When the thermal history of the ingot was measured using a thermocouple as shown in FIG. 1, the cooling rate of silicon single crystals of 8 and 12 inches was gradually cooled below 600 ° C. as compared with 6 inches. It turned out that Further, as shown in FIG. 4, the cooling rate of 600 ° C. or lower is 8: 1 for 6 inches.
It is faster than 2 inches. The crystal quality of the silicon single crystal in such a state was evaluated. In addition, as shown in FIG. 2, the oxygen precipitation amount of the crystals of 8 and 12 inches was significantly increased as compared with the case of 6 inches. The oxygen precipitation was determined by performing a heat treatment in nitrogen at 800 ° C. for 4 hours and further measuring the oxygen concentration by FTIR measurement before and after the heat treatment at 1000 ° C. for 16 hours in dry oxygen gas.

【0004】また、このCZ法において、上記で述べた
温度領域でのインゴット冷却によってOSFの発生も変
化する。650℃以下の低温度領域で、酸素や金属不純
物が析出することにより、OSFの発生核が大きく成長
すると考えられている。そのために、冷却速度によって
OSFが変化する。その結果を図3に示すように、8、
12インチ結晶のOSF密度は6インチの場合より増加
した。なお、OSFはシリコン単結晶を湿潤酸素ガス中
で1100℃・80分加熱した後、ライトエッチングで
1.5μmエッチング後に顕微鏡観察により測定したも
のである。従来法の炉内での冷却は、水冷されたステン
レス製チャンバーの中でアルゴンガスによる冷却であ
る。冷却速度を制御するためには炉内の圧力及び、アル
ゴンの流量を増加させる以外に方法がなかった。
Further, in the CZ method, the generation of OSF also changes due to the ingot cooling in the temperature range described above. It is considered that in the low temperature region of 650 ° C. or lower, oxygen and metal impurities are precipitated, and the OSF generation nucleus grows largely. Therefore, the OSF changes depending on the cooling rate. The result is shown in FIG.
The OSF density of the 12 inch crystal increased more than that of the 6 inch. The OSF is measured by observing with a microscope after heating a silicon single crystal in wet oxygen gas at 1100 ° C. for 80 minutes and then performing a light etching of 1.5 μm. The conventional cooling in the furnace is cooling with argon gas in a water-cooled stainless steel chamber. There was no other way to control the cooling rate than increasing the pressure in the furnace and the flow rate of argon.

【0005】[0005]

【発明が解決しようとする課題】本発明はチョクラルス
キー法(CZ法)によるシリコン単結晶の製造に際し
て、シリコン単結晶中の酸素析出量を制御し、かつOS
Fの発生を防止することを目的とする。
SUMMARY OF THE INVENTION The present invention controls the amount of oxygen precipitation in a silicon single crystal in the production of a silicon single crystal by the Czochralski method (CZ method), and the OS
The purpose is to prevent the generation of F.

【0006】[0006]

【課題を解決するための手段】本発明のシリコン単結晶
の引上げ方法及び装置は、坩堝中の融液からシリコン単
結晶を引上げる装置であって、融液から引き上げたシリ
コン単結晶の冷却速度を調整するために、冷媒をシリコ
ン単結晶に対して吹き付けて、600℃〜350℃の温
度域を1.5℃/分以上、200℃/分以下の冷却速度
で冷却することを特徴とする。
A method and an apparatus for pulling a silicon single crystal of the present invention is an apparatus for pulling a silicon single crystal from a melt in a crucible, and a cooling rate of the silicon single crystal pulled from the melt. In order to adjust the temperature, a coolant is sprayed on the silicon single crystal to cool the temperature range of 600 ° C. to 350 ° C. at a cooling rate of 1.5 ° C./min or more and 200 ° C./min or less. ..

【0007】次に、本発明の装置を実施例の図面に基づ
き詳細に説明する。図6は、本発明のシリコン単結晶引
上げ装置の一実施態様の構成ならびにインゴットの引上
げ時の状況を示す図であり、図7は同様、本発明のシリ
コン単結晶引上げ装置とインゴットの急冷時の情況を示
す図である。また、図8は図7の急冷装置のA−A断面
図である。この実施態様のシリコン単結晶引上げ装置に
おいては、石英坩堝1中の融液3からシリコン単結晶4
が引上げられる。図6において、融液3は管状のヒータ
ー5で加熱され、管状のアウターシールド6で覆われて
いる。育成されたシリコン単結晶4は、プルチャンバー
9に移動する。その後、ゲートバルブ11が引上げ炉チ
ャンバー8とプルチャンバー9を隔離する。シリコン単
結晶4は図7に示すようにプルチャンバー9内の急冷装
置10で急冷熱処理を施される。冷却用冷媒にはアルゴ
ンガス、ヘリウム、窒素ガス、窒素、乾式空気、気液ミ
スト(水と空気)、水などを用いることが可能である。
急冷装置10はこれら冷媒をシリコン単結晶4に対して
照射することができる。急冷装置10は、冷却用冷媒の
吹き付けによりシリコン単結晶インゴットの冷却速度を
制御することができる。更に急冷装置の冷却部の詳細図
を図8に示す。さらに、この急冷装置10は、プルチャ
ンバー9内に装着する必要はなく、引上げ炉外に設置す
ることも可能である。前記シリコン単結晶インゴットの
適正冷却速度条件は以下のことから決定される。図5に
示すように、シリコン単結晶の温度が600〜350℃
の間の冷却速度が、1.5℃/分以下の場合にはSiウ
エハにOSFが多く発生したり、ウエハ中の酸素が高温
熱処理時に多く析出する場合がある。一方、冷却速度が
100℃/分以上の場合にはシリコン単結晶4に亀裂が
生じる。従って、シリコン単結晶の温度が600〜35
0℃の間の冷却速度は1.5℃/分以上、200℃/分
以下とした。
Next, the apparatus of the present invention will be described in detail with reference to the drawings of the embodiments. FIG. 6 is a diagram showing a configuration of an embodiment of a silicon single crystal pulling apparatus of the present invention and a situation at the time of pulling an ingot, and FIG. 7 similarly shows a silicon single crystal pulling apparatus of the present invention and a rapid cooling of the ingot. It is a figure showing a situation. Further, FIG. 8 is a cross-sectional view taken along the line AA of the quenching device of FIG. 7. In the silicon single crystal pulling apparatus of this embodiment, the silicon single crystal 4 is melted from the melt 3 in the quartz crucible 1.
Is raised. In FIG. 6, the melt 3 is heated by a tubular heater 5 and covered with a tubular outer shield 6. The grown silicon single crystal 4 moves to the pull chamber 9. Thereafter, the gate valve 11 separates the pulling furnace chamber 8 and the pull chamber 9. As shown in FIG. 7, the silicon single crystal 4 is subjected to a quenching heat treatment in a quenching device 10 in a pull chamber 9. Argon gas, helium, nitrogen gas, nitrogen, dry air, gas-liquid mist (water and air), water, or the like can be used as the cooling refrigerant.
The quenching device 10 can irradiate the silicon single crystal 4 with these refrigerants. The quenching device 10 can control the cooling rate of the silicon single crystal ingot by spraying the cooling medium. Further, a detailed view of the cooling part of the quenching device is shown in FIG. Further, the quenching device 10 does not need to be mounted inside the pull chamber 9 and can be installed outside the pulling furnace. The appropriate cooling rate condition for the silicon single crystal ingot is determined from the following. As shown in FIG. 5, the temperature of the silicon single crystal is 600 to 350 ° C.
If the cooling rate during this period is 1.5 ° C./minute or less, a large amount of OSF may be generated on the Si wafer, and a large amount of oxygen in the wafer may be precipitated during the high temperature heat treatment. On the other hand, when the cooling rate is 100 ° C./min or more, the silicon single crystal 4 is cracked. Therefore, the temperature of the silicon single crystal is 600-35.
The cooling rate between 0 ° C was set to 1.5 ° C / min or more and 200 ° C / min or less.

【0008】[0008]

【作用】本発明のシリコン単結晶の引上げ装置では、引
上げたシリコン単結晶に冷媒を吹き付けて、600℃〜
350℃の温度域を1.5℃/分以上、200℃/分以
下の冷却速度で冷却することが可能である。このために
結晶内に発生する酸素ドナーやOSFの発生核を低減す
ることができる。この装置によって、大口径のシリコン
単結晶の酸素析出量が一定に制御でき、さらに、シリコ
ン単結晶中の酸化誘起積層欠陥(OSF)発生を防止す
ることができる。
In the apparatus for pulling a silicon single crystal according to the present invention, a coolant is blown onto the pulled silicon single crystal to obtain a temperature of 600.degree.
It is possible to cool the temperature range of 350 ° C. at a cooling rate of 1.5 ° C./min or more and 200 ° C./min or less. Therefore, oxygen donors and nuclei of OSFs generated in the crystal can be reduced. With this apparatus, the amount of oxygen precipitated in a large-diameter silicon single crystal can be controlled to be constant, and further, the occurrence of oxidation-induced stacking fault (OSF) in the silicon single crystal can be prevented.

【0009】[0009]

【実施例】実施例の表1及び表2に基づいて、本発明の
実施例を具体的に説明する。図6及び図7に示す装置に
おいて、外側から黒鉛坩堝2で補強された内側直径18
インチの石英坩堝1aに、原料として6インチの場合に
は40kg,8インチの場合には60kg,12インチ
の場合には100kgの多結晶シリコンを装入して溶解
した。シリコン単結晶4の引上げ速度は1.0mm/m
inで引き上げた。シリコン単結晶4の直胴長さは、6
インチで600mm,8インチで500mm,12イン
チで400mmであった。引き上げ後のシリコン単結晶
4をプルチャンバー9に移動して、急冷装置10で冷却
した。冷媒としてアルゴン、ヘリウム、窒素、乾式空
気、気液ミスト(水と空気)、水を用いた。冷却ノズル
形状は2×20mm2 のスリット状で間隔30mm、1
2個にした。この場合の8、12インチシリコン単結晶
4の600℃以下の冷却条件は6インチの冷却条件と同
じに制御した。これらの8、12インチのシリコン単結
晶の酸素析出量とOSF密度は6インチとの差は検出さ
れなかった。酸素析出は窒素中で800℃・4時間更に
乾式酸素ガス中で1000℃・16時間の熱処理の前後
でFTIR測定によって酸素濃度を測定して求めた。O
SFはシリコン単結晶を湿潤酸素ガス中で1100℃・
80分加熱した後、ライトエッチングで1.5μmエッ
チング後に顕微鏡観察により測定したものである。ま
た、冷媒として液化窒素を用いたり、気液ミスト(水と
空気)でも水分量を多くして冷却速度を200℃/分よ
り大にするとインゴットに割れが生じた。
EXAMPLES Examples of the present invention will be specifically described based on Tables 1 and 2 of Examples. In the apparatus shown in FIGS. 6 and 7, an inner diameter 18 reinforced with a graphite crucible 2 from the outside
Into an inch quartz crucible 1a, 40 kg of 6 inch, 60 kg of 8 inch, and 100 kg of 12 inch of polycrystalline silicon were charged and melted as a raw material. The pulling speed of the silicon single crystal 4 is 1.0 mm / m.
pulled up in. The straight body length of the silicon single crystal 4 is 6
It was 600 mm in inches, 500 mm in 8 inches, and 400 mm in 12 inches. The pulled silicon single crystal 4 was moved to the pull chamber 9 and cooled by the rapid cooling device 10. Argon, helium, nitrogen, dry air, gas-liquid mist (water and air), and water were used as the refrigerant. The cooling nozzle has a slit shape of 2 × 20 mm 2 and a space of 30 mm, 1
I made two. In this case, the cooling conditions of the 8- and 12-inch silicon single crystals 4 at 600 ° C. or lower were controlled to be the same as the 6-inch cooling conditions. No difference was detected between the oxygen precipitation amount and the OSF density of 6 inches in these 8 and 12 inch silicon single crystals. The oxygen precipitation was determined by measuring the oxygen concentration by FTIR measurement before and after heat treatment in nitrogen at 800 ° C. for 4 hours and further in dry oxygen gas at 1000 ° C. for 16 hours. O
SF is a silicon single crystal in wet oxygen gas at 1100 ° C.
After heating for 80 minutes, light etching was performed to obtain a thickness of 1.5 μm, which was then measured by microscopic observation. Further, when liquefied nitrogen was used as the refrigerant, or when the cooling rate was higher than 200 ° C./min by increasing the amount of water in gas-liquid mist (water and air), cracks were generated in the ingot.

【0010】[0010]

【従来例】本発明と同様にシリコン単結晶4を図6及び
図7に示す装置において、外側から黒鉛坩堝2で補強さ
れた内側直径18インチの石英坩堝1aに、原料として
6インチの場合には40kg、8インチの場合には60
kg,12インチの場合には100kgの多結晶シリコ
ンを装入して溶解した。シリコン単結晶4を引上げ速度
1.0mm/minで引き上げた。引上げ後のシリコン
単結晶4をプルチャンバー9に移動してプルチャンバー
9内で冷却熱処理を行った。プルチャンバー9内は、ア
ルゴン流量10l/分、炉圧10mbarのアルゴン雰
囲気減圧化であった。この場合、図1、図2に示すよう
に8〜12インチのシリコン単結晶の冷却速度は、6イ
ンチと比べて500℃以下で徐冷になっていた。このよ
うな状態のシリコン単結晶における結晶品質を評価し
た。図2に示すように、8と12インチの結晶の酸素析
出量が6インチの場合よりも著しく増加した。なお、酸
素析出は窒素中で800℃4時間更に乾式酸素ガス中で
1000℃16時間の熱処理の前後でFTIR測定によ
って酸素濃度を測定して求めた。又、図3に示すように
8と12インチ結晶のOSF密度は6インチの場合より
増加した。なお、OSFはシリコン単結晶を湿潤酸素ガ
ス中で1100℃80分加熱した後、ライトエッチング
で1.5μmエッチング後に顕微鏡観察により測定した
ものである。
2. Description of the Related Art As in the case of the present invention, in the apparatus shown in FIGS. 6 and 7, a silicon single crystal 4 was placed in a quartz crucible 1a having an inner diameter of 18 inches and reinforced with a graphite crucible 2 from the outside and 6 inches as a raw material. 40 kg, 60 for 8 inches
In the case of kg and 12 inches, 100 kg of polycrystalline silicon was charged and melted. The silicon single crystal 4 was pulled at a pulling rate of 1.0 mm / min. The pulled silicon single crystal 4 was moved to the pull chamber 9 and subjected to cooling heat treatment in the pull chamber 9. The inside of the pull chamber 9 was decompressed in an argon atmosphere with an argon flow rate of 10 l / min and a furnace pressure of 10 mbar. In this case, as shown in FIGS. 1 and 2, the cooling rate of the silicon single crystal of 8 to 12 inches was gradually cooled at 500 ° C. or less as compared with 6 inches. The crystal quality of the silicon single crystal in such a state was evaluated. As shown in FIG. 2, the oxygen precipitation amount of the crystals of 8 and 12 inches was significantly increased as compared with the case of 6 inches. The oxygen precipitation was determined by measuring the oxygen concentration by FTIR measurement before and after heat treatment in nitrogen at 800 ° C. for 4 hours and in dry oxygen gas at 1000 ° C. for 16 hours. Further, as shown in FIG. 3, the OSF densities of the 8 and 12 inch crystals increased more than those of the 6 inch case. The OSF is measured by microscopic observation after heating a silicon single crystal in wet oxygen gas at 1100 ° C. for 80 minutes and then performing a light etching of 1.5 μm.

【0011】[0011]

【表1】 [Table 1]

【0012】[0012]

【表2】 [Table 2]

【0013】[0013]

【発明の効果】本発明により、チョクラルスキー法(C
Z法)によるシリコン単結晶の製造に際して、大口径シ
リコン単結晶の酸素析出量が一定に制御でき、さらに、
シリコン単結晶中の酸化誘起積層欠陥(OSF)発生が
防止される。
According to the present invention, the Czochralski method (C
In the production of a silicon single crystal by the Z method), the oxygen precipitation amount of the large diameter silicon single crystal can be controlled to be constant, and further,
Oxidation-induced stacking fault (OSF) generation in a silicon single crystal is prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】6、8、12インチ結晶の600℃以下の熱履
歴を示す図。
FIG. 1 is a diagram showing a thermal history of a crystal of 6, 8 or 12 inches below 600 ° C.

【図2】6、8、12インチ結晶の酸素析出挙動を示す
図。
FIG. 2 is a diagram showing oxygen precipitation behavior of 6, 8 and 12 inch crystals.

【図3】6、8、12インチ結晶のOSF発生挙動を示
す図。
FIG. 3 is a diagram showing OSF generation behavior of 6, 8 and 12 inch crystals.

【図4】6、8、12インチ結晶の600℃以下の冷却
速度を示す図。
FIG. 4 is a diagram showing cooling rates of 600 ° C. or lower for 6, 8 and 12 inch crystals.

【図5】冷却速度とOSF発生の関係を示す図。FIG. 5 is a diagram showing a relationship between cooling rate and OSF generation.

【図6】本発明の実施例を示す装置図。FIG. 6 is a device diagram showing an embodiment of the present invention.

【図7】本発明の同、実施例を示す装置図。FIG. 7 is a device diagram showing the same embodiment of the present invention.

【図8】図7の冷却装置のA−A断面図である。8 is a cross-sectional view taken along the line AA of the cooling device of FIG.

【符号の説明】[Explanation of symbols]

1 石英坩堝 2 黒鉛坩堝 3 融液 4 シリコン単結晶 5 ヒーター 6 アウターシールド 7 支持台 8 引上げ炉チャンバー 9 プルチャンバー 10 急冷装置 11 ゲートバルブ 12 スリット 1 Quartz Crucible 2 Graphite Crucible 3 Melt 4 Silicon Single Crystal 5 Heater 6 Outer Shield 7 Support Stand 8 Pulling Furnace Chamber 9 Pull Chamber 10 Quenching Device 11 Gate Valve 12 Slit

フロントページの続き (72)発明者 大久保 正道 山口県光市大字島田3434番地 ニッテツ電 子株式会社光工場内 (72)発明者 小島 清 山口県光市大字島田3434番地 ニッテツ電 子株式会社光工場内 (72)発明者 ▲は▼生 隆一 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社先端技術研究所内Front page continued (72) Masamichi Okubo 3434 Shimada, Hitsu-shi, Yamaguchi Prefecture, Nittatsu Electric Co., Ltd., Hikari Plant (72) Inventor Kiyoshi Kojima, 3434 Shimada, Hikari-shi, Yamaguchi Prefecture, Nittetsu Electric Co., Ltd., Hikari Plant (72) Inventor ▲ ha ▼ Ryuichi Iku 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Inside Nippon Steel Corporation Advanced Technology Research Laboratories

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 シリコン単結晶引上げ装置でシリコン単
結晶を製造する際に、融液から引き上げたシリコン単結
晶の600〜350℃の温度領域の冷却速度を1.5℃
/分以上200℃/分以下とすることを特徴とするシリ
コン単結晶の製造方法。
1. When manufacturing a silicon single crystal with a silicon single crystal pulling apparatus, the cooling rate of the silicon single crystal pulled from the melt in the temperature range of 600 to 350 ° C. is 1.5 ° C.
/ Min or more and 200 ° C / min or less, The manufacturing method of the silicon single crystal characterized by the above-mentioned.
【請求項2】 シリコン単結晶引上げ装置でシリコン単
結晶を製造する際に、融液からシリコンを引き上げたシ
リコン単結晶の600℃までの温度域は前記のシリコン
単結晶引き上げ装置内で冷却し、600℃〜350℃の
温度域は前記シリコン単結晶引き上げ装置から取り出し
て1.5℃/分以上、200℃/分以下の冷却速度で冷
却することを特徴とするシリコン単結晶の製造方法。
2. When manufacturing a silicon single crystal with a silicon single crystal pulling apparatus, the temperature range up to 600 ° C. of the silicon single crystal obtained by pulling silicon from a melt is cooled in the silicon single crystal pulling apparatus, A temperature range of 600 ° C. to 350 ° C. is taken out from the silicon single crystal pulling apparatus and cooled at a cooling rate of 1.5 ° C./min or more and 200 ° C./min or less.
【請求項3】 シリコン単結晶の引き上げ装置におい
て、プルチャンバー内にシリコン単結晶の冷却速度を調
整する冷却装置を設けたことを特徴とするシリコン単結
晶製造装置。
3. An apparatus for producing a silicon single crystal, wherein a pulling apparatus for the silicon single crystal is provided with a cooling device for adjusting a cooling rate of the silicon single crystal in the pull chamber.
JP01974992A 1992-02-05 1992-02-05 Method and apparatus for producing silicon single crystal Expired - Fee Related JP3218312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01974992A JP3218312B2 (en) 1992-02-05 1992-02-05 Method and apparatus for producing silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01974992A JP3218312B2 (en) 1992-02-05 1992-02-05 Method and apparatus for producing silicon single crystal

Publications (2)

Publication Number Publication Date
JPH05221773A true JPH05221773A (en) 1993-08-31
JP3218312B2 JP3218312B2 (en) 2001-10-15

Family

ID=12007995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01974992A Expired - Fee Related JP3218312B2 (en) 1992-02-05 1992-02-05 Method and apparatus for producing silicon single crystal

Country Status (1)

Country Link
JP (1) JP3218312B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018035028A (en) * 2016-08-30 2018-03-08 株式会社Sumco Silicon single crystal, and method and apparatus for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018035028A (en) * 2016-08-30 2018-03-08 株式会社Sumco Silicon single crystal, and method and apparatus for manufacturing the same

Also Published As

Publication number Publication date
JP3218312B2 (en) 2001-10-15

Similar Documents

Publication Publication Date Title
US7141113B1 (en) Production method for silicon single crystal and production device for single crystal ingot, and heat treating method for silicon crystal wafer
US8721787B2 (en) Method for manufacturing silicon single crystal
JP2008508187A (en) Method for growing a single crystal from a melt
JP2686223B2 (en) Single crystal manufacturing equipment
JPH0393700A (en) Heat treating method and device of silicon single crystal and production device thereof
JP2003002780A (en) Apparatus for producing silicon single crystal and method for producing silicon single crystal using the same
TWI568897B (en) Cultivation method of silicon single crystal
JP4650520B2 (en) Silicon single crystal manufacturing apparatus and manufacturing method
US5840120A (en) Apparatus for controlling nucleation of oxygen precipitates in silicon crystals
JP3218312B2 (en) Method and apparatus for producing silicon single crystal
JPH0543382A (en) Production of silicon single crystal
JP4080657B2 (en) Method for producing silicon single crystal ingot
KR19990077913A (en) A method for producing a silicon single crystal and the silicon single crystal produced thereby
JPH09309787A (en) Eater-cooling tower for single crystal-pulling up apparatus
JPH09278581A (en) Apparatus for producing single crystal and production of single crystal
JP2710433B2 (en) Single crystal pulling device
JPH0367994B2 (en)
JP2735740B2 (en) Method for producing silicon single crystal
JPH05238874A (en) Production apparatus for silicon single crystal
JP2735741B2 (en) Method for producing silicon single crystal
JPH10139600A (en) Silicon single crystal and pulling-up device and method therefor
JP2011020882A (en) Growing method of silicon single crystal
JPS6344720B2 (en)
JPH06144987A (en) Device for growing single crystal
JP2001026494A (en) Quartz crucible

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010703

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees