JPH0522087B2 - - Google Patents

Info

Publication number
JPH0522087B2
JPH0522087B2 JP59152723A JP15272384A JPH0522087B2 JP H0522087 B2 JPH0522087 B2 JP H0522087B2 JP 59152723 A JP59152723 A JP 59152723A JP 15272384 A JP15272384 A JP 15272384A JP H0522087 B2 JPH0522087 B2 JP H0522087B2
Authority
JP
Japan
Prior art keywords
spindle
bearing
housing
temperature difference
axial clearance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59152723A
Other languages
Japanese (ja)
Other versions
JPS6170219A (en
Inventor
Hiroshi Hirono
Ayao Kuwabara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP15272384A priority Critical patent/JPS6170219A/en
Publication of JPS6170219A publication Critical patent/JPS6170219A/en
Publication of JPH0522087B2 publication Critical patent/JPH0522087B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/525Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to temperature and heat, e.g. insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C25/00Bearings for exclusively rotary movement adjustable for wear or play
    • F16C25/06Ball or roller bearings
    • F16C25/08Ball or roller bearings self-adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/061Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing mounting a plurality of bearings side by side
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/70Diameters; Radii
    • F16C2240/76Osculation, i.e. relation between radii of balls and raceway groove

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Support Of The Bearing (AREA)
  • Rolling Contact Bearings (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はスピンドル用軸受装置、とくにスピン
ドルとハウジングとの温度差の大きい使用条件に
おける軸受装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a bearing device for a spindle, and particularly to a bearing device for use under conditions where there is a large temperature difference between the spindle and the housing.

従来の技術 一般に、玉軸受は、周知の通り内輪の外周およ
び外輪の内周に形成された円弧状の軌道溝間に等
間隔に複数の玉を位置し、内輪および外輪を非摩
擦的に回転させるものである。そして通常、上記
した軌道溝の円弧半径は玉直径の50.5〜53%に設
定され、非摩擦回転に必要なラジアルすきまおよ
びアキシアルすきまを有すている。しかしながら
かかる標準的な玉軸受をスピンドルとハウジング
との温度差の大きい機器は例えば第5図に示すよ
うに、スピンドル1をその両端部に配置した複数
の玉軸受2,3によりハウジング4内に支承する
とともに、スピンドル1の中央部にステータ5を
配置した高周波スピンドル軸受装置(実開昭55−
90816号公報)において知られている。前記玉軸
受2,3の内外輪2a,2bおよび3a,3bは
スピンドル1およびハウジング4にそれぞれ固定
されている。スピンドル1の回転時、ステータ5
の熱によるスピンドル1の軸方向への膨張が生じ
る。またハウジング4とスピンドル1間に大きな
温度差が生じるので、この温度差により前記スピ
ンドルの軸方向膨張量が玉軸受2,3のアキシア
ルすきまおよびラジアルすきまを上回るとスピン
ドルの回転は不円滑となる。このため軸受装置を
オイルミストで冷却したりしているが、これでも
上記温度差による玉軸受のすきま減少を解消し得
ず、スピンドル回転の円滑を維持するのに十分で
ない場合がある。
BACKGROUND TECHNOLOGY In general, as is well known, ball bearings have a plurality of balls positioned at equal intervals between arc-shaped raceway grooves formed on the outer periphery of an inner ring and the inner periphery of an outer ring, and the inner ring and outer ring are rotated non-frictionally. It is something that makes you Usually, the arc radius of the raceway groove described above is set to 50.5 to 53% of the ball diameter, and has the radial clearance and axial clearance necessary for friction-free rotation. However, in the case of equipment in which such standard ball bearings have a large temperature difference between the spindle and the housing, for example, as shown in FIG. At the same time, a high-frequency spindle bearing device (1986--
90816). Inner and outer rings 2a, 2b and 3a, 3b of the ball bearings 2, 3 are fixed to the spindle 1 and housing 4, respectively. When spindle 1 rotates, stator 5
The spindle 1 expands in the axial direction due to the heat. Further, since a large temperature difference occurs between the housing 4 and the spindle 1, if the amount of axial expansion of the spindle exceeds the axial clearance and radial clearance between the ball bearings 2 and 3 due to this temperature difference, the rotation of the spindle will become uneven. For this reason, the bearing device is cooled with oil mist, but even this cannot eliminate the reduction in the ball bearing clearance due to the temperature difference, and may not be sufficient to maintain smooth spindle rotation.

従つて、この種のスピンドル装置においては、
ステータ5によるスピンドル1の熱膨張を逃がす
ために、ハウジング4の内部に軸受スリーブ6を
設け、この軸受スリーブ6にスピンドル1を支承
する一方の玉軸受3の外輪3aを固定するととも
に、前記軸受スリーブ6をハウジング4の内周で
スピンドル1の熱膨張方向に可動とする一方該ス
ピンドル1の軸方向の収縮に応じて前記軸受スリ
ーブ6を復動させるための加圧ばね7を働かせる
ことにより玉軸受3がハウジング4内で軸方向に
移動させることを可能とし、スピンドルの正常か
つ正確な回転を維持することが行われている。
Therefore, in this type of spindle device,
In order to release the thermal expansion of the spindle 1 caused by the stator 5, a bearing sleeve 6 is provided inside the housing 4, and the outer ring 3a of one of the ball bearings 3 that supports the spindle 1 is fixed to this bearing sleeve 6. 6 is movable on the inner periphery of the housing 4 in the direction of thermal expansion of the spindle 1, and a pressure spring 7 is activated to move the bearing sleeve 6 back in response to contraction of the spindle 1 in the axial direction. 3 can be moved axially within the housing 4 to maintain normal and accurate rotation of the spindle.

発明が解決しようとする問題点 前述の従来装置の構成では、軸受装置としての
構造が複雑となると共に部品点数が多くなり、ま
た軸受スリーブが円滑に軸方向に移動しない場合
も考えられ、この場合は軸受の正常な回転を期待
することができない。
Problems to be Solved by the Invention In the configuration of the conventional device described above, the structure of the bearing device becomes complicated and the number of parts increases, and there are also cases where the bearing sleeve does not move smoothly in the axial direction. bearings cannot be expected to rotate normally.

さらに軸受スリーブとハウジング間にスライド
軸受を介在させて軸受スリーブが円滑に軸方向に
移動するようにすることも考えられているが、こ
のようにするとスライド軸受の介在のため、軸受
装置全体の剛性が低下する。
Furthermore, it has been considered to interpose a slide bearing between the bearing sleeve and the housing to allow the bearing sleeve to move smoothly in the axial direction. decreases.

問題点を解決するための手段 本発明はスピンドルとハウジングとの間に大き
な温度差が生じる軸受装置における上記欠点を解
消することを目的としてなされたものであつて、
スピンドルとハウジングとの間の温度差がない状
態においても、また両者の間に温度差が生じてい
る状態においても、ラジアルすきまおよびアキシ
アルすきまが最適の状態で回転することができる
軸受装置を提供するものである。
Means for Solving the Problems The present invention was made for the purpose of solving the above-mentioned drawbacks in bearing devices in which a large temperature difference occurs between the spindle and the housing.
To provide a bearing device that can rotate with optimal radial clearance and axial clearance even when there is no temperature difference between a spindle and a housing, and even when there is a temperature difference between them. It is something.

本発明は、デイスタンスピース20によりそれ
ぞれ軸方向に離間配置されて2個の玉軸受23,
23によりスピンドル21をハウジング22内に
支承し、かつスピンドル21とハウジング22と
の間に大きな温度差が生じるスピンドル用軸受装
置において上記各玉軸受23,23の着力点P1
P2が、それぞれ他の軸受側すなわち両軸受間あ
るいは軸受とは反対側すなわち両軸受の外側に位
置するように配置し、スピンドルとハウジングと
の温度差が生じたときの前記2個の玉軸受の合計
アキシアルすきまから、スピンドルとハウジング
が同温時のアキシアルすきまを差引いた、スピン
ドルとハウジングとの温度差に起因するアキシア
ルすきま増加量を△a、内外輪が同温の時の各軸
受のアキシアルすきまから内外輪に温度差が生じ
た時の各軸受のアキシアルすきまを差引いた、各
軸受の内輪と外輪の温度差に起因する各軸受のア
キシアルすきま減少量をそれぞれ△a1,△a2とし
たとき、 △a=△a1+△a2 の関係が成立するように内外輪の軌道溝曲率半径
を設定したものである。
The present invention provides two ball bearings 23, which are spaced apart in the axial direction by a distance piece 20, respectively.
23 supports the spindle 21 in the housing 22, and in a spindle bearing device in which a large temperature difference occurs between the spindle 21 and the housing 22, the force application points P 1 of each of the ball bearings 23, 23,
P 2 is located on the other bearing side, that is, between both bearings, or on the opposite side of the bearing, that is, on the outside of both bearings, and when there is a temperature difference between the spindle and the housing, the two ball bearings The axial clearance increase due to the temperature difference between the spindle and housing is calculated by subtracting the axial clearance when the spindle and housing are at the same temperature from the total axial clearance of Δa, which is the axial clearance of each bearing when the inner and outer rings are at the same temperature. Subtracting the axial clearance of each bearing when a temperature difference occurs between the inner and outer rings from the clearance, the reduction in the axial clearance of each bearing due to the temperature difference between the inner and outer rings of each bearing is expressed as △a 1 and △a 2 , respectively. The radii of curvature of the raceway grooves of the inner and outer rings are set so that the relationship △a=△a 1 +△a 2 holds.

また本発明は、上記のスピンドル用軸受装置に
おいて、上記内外輪の軌道溝曲率半径が、内輪が
玉直径の50.5〜58%であり、外輪が玉直径の60%
以上であることを特徴とするものである。
Further, in the spindle bearing device, the radius of curvature of the raceway groove of the inner and outer rings is 50.5 to 58% of the ball diameter for the inner ring and 60% of the ball diameter for the outer ring.
It is characterized by the above.

さらに本発明では、デイスタンスピース20に
より両軸受を固定しているが、スナツプリング、
あるいは圧入等他の適宣手段により固定してもよ
い。
Furthermore, in the present invention, both bearings are fixed by the distance piece 20, but the snap spring,
Alternatively, it may be fixed by other suitable means such as press fitting.

作 用 スピンドルとそのハウジング間の軸受装置とし
て軸方向に離間した二つの玉軸受を用いる軸受装
置において、スピンドルとハウジングに温度差が
生じて上記二つの軸受アキシアルすきまが増加し
ても、これを吸収して、各玉軸受のころがり回転
に必要なラジアルすきまを維持する。
Function In a bearing device that uses two ball bearings spaced apart in the axial direction as a bearing device between the spindle and its housing, even if a temperature difference occurs between the spindle and the housing and the axial clearance between the two bearings increases, this is absorbed. to maintain the radial clearance required for rolling rotation of each ball bearing.

上記温度差がなくなつた状態においても、軸受
組立初期のすきまは予圧の状態に維持されるの
で、初期の回転の円滑を維持することができる。
Even when the temperature difference disappears, the clearance at the initial stage of bearing assembly is maintained in a preloaded state, so that initial smooth rotation can be maintained.

実施例 以下本発明の実施例を示した図面について具体
的に説明すると、第1図に示したように、デイス
タンスピース20によりそれぞれ軸方向に離間配
置されて、スピンドル21を2個の玉軸受23,
23によりハウジング22内に支承し、かつスピ
ンドル21とハウジング22との間に大きな温度
差を生じる軸受装置において、第2図に示すよう
に、上記玉軸受23,23の着力点P1,P2がそ
れぞれ他の軸受側すなわち両軸受間にあるように
配置し、かつ、スピンドル21とハウジング22
との温度差が生じたときの前記2個の玉軸受2
3,23の合計アキシアルすきまから、スピンド
ルとハウジングが同温時にアキシアルすきまを差
引いた、スピンドルとハウジングとの温度差に起
因するアキシアルすきま増加量△a、内外輪2
4,25が同温の時の各軸受のアキシアルすきま
から内外輪に温度差が生じた時の各軸受のアキシ
アルすきまを差引いた各軸受の内輪24と外輪2
5の温度差に起因する各軸受のアキシアルすきま
減少量をそれぞれ△a1,△a2としたとき、 △a=△a1+△a2 の関係が成立するように内外輪の軌道溝曲率半径
を設定する。上記の着力点とは、軸受の接触角を
形成する作用Lと軸受の中心線とが交わる点をい
う。
Embodiment Hereinafter, the drawings showing the embodiment of the present invention will be specifically explained. As shown in FIG. 23,
In a bearing device that is supported in a housing 22 by a ball bearing 23 and that produces a large temperature difference between the spindle 21 and the housing 22, as shown in FIG . are located on the other bearing side, that is, between both bearings, and the spindle 21 and the housing 22
The two ball bearings 2 when there is a temperature difference between
Increase in axial clearance due to temperature difference between the spindle and housing △a, which is obtained by subtracting the axial clearance when the spindle and housing are at the same temperature from the total axial clearance of 3 and 23, inner and outer rings 2
The inner ring 24 and outer ring 2 of each bearing are calculated by subtracting the axial clearance of each bearing when there is a temperature difference between the inner and outer rings from the axial clearance of each bearing when 4 and 25 are at the same temperature.
The raceway groove curvature of the inner and outer rings should be adjusted so that the relationship △a = △a 1 + △a 2 holds, where the reduction in axial clearance of each bearing due to the temperature difference in 5 is respectively △a 1 and △a 2 . Set radius. The above-mentioned force application point refers to the point where the action L that forms the contact angle of the bearing intersects with the center line of the bearing.

また、上記内外輪24,25の軌道溝の曲率半
径は、内輪24のそれr1が玉直径の50.5〜58%で
あり、外輪のそれr2を玉直径の60%以上とするも
のである。
Furthermore, the radius of curvature of the raceway grooves of the inner and outer rings 24 and 25 is such that r 1 of the inner ring 24 is 50.5 to 58% of the ball diameter, and r 2 of the outer ring is 60% or more of the ball diameter. .

実施例は、スピンドルがハウジングよりも高温
の場合を示したが、逆にハウジング32がスピン
ドル31よりも高温となる場合は、第3図に示す
ように前記両玉軸受33の着力点P3,P4は、両
玉軸受のスパンの内側とすればよい。また内外輪
の軌道溝の曲率半径の条件は、既述の通りでよ
い。
In the embodiment, the spindle is at a higher temperature than the housing, but if the housing 32 is at a higher temperature than the spindle 31, as shown in FIG . P 4 may be located inside the span of both ball bearings. Further, the conditions for the radius of curvature of the raceway grooves of the inner and outer rings may be as described above.

第4図は軸受のラジアルすきま減少量△Rsを
基準とし、外輪25の軌道溝28の半径r2を玉2
6の直径dの52.5%、60%、70%とした場合のア
キシアルすきま減少量の増加割合を示しているも
のであつて、この図から明らかなように軌道溝2
8の半径r2を大きくするにともなつてアキシアル
すきま減少量が△As1<△As2<△As3となる。本
発明は、軌道溝28の半径r2を従来よりも大きく
することによつて、かつ予めスピンドル21の熱
膨張量を計算しておくことによつて上記した△a
=△a1+△a2の関係となるように軌道溝28の半
径を設定している。またこのアキシアルすきま減
少量△Asおよびラジアルすきま減少量△Rsは、
スピンドル21とハウジング22との温度差や材
質の熱膨張率などの要素により決定されるもので
あるが、外輪25の軌道半径r2を玉の直径60%以
上、内輪24の軌道半径r1を50.5〜58%であるこ
とが好ましい。すなわち、玉軸受は内輪24の軌
道溝27と玉26とは凸と凸との接触であり、外
輪25の軌道溝28と玉26とは凹と凸の接触で
ある。したがつて軌道溝と玉との接触圧は内輪2
4の方が大であることから、内輪24の軌道溝2
7の半径r1よりも外輪25側の軌道溝28の半径
r2を大きくし、前記したアキシアルすきまの大部
分を外輪25側に設けることが望ましい。
Figure 4 shows the radius r 2 of the raceway groove 28 of the outer ring 25 based on the bearing's radial clearance reduction amount △Rs.
This figure shows the rate of increase in the amount of axial clearance reduction when the diameter d of raceway groove 2 is set to 52.5%, 60%, and 70%.
As the radius r 2 of 8 is increased, the amount of decrease in the axial clearance becomes △As 1 <△As 2 <△As 3 . The present invention achieves the above-mentioned Δa by making the radius r 2 of the raceway groove 28 larger than the conventional one and by calculating the amount of thermal expansion of the spindle 21 in advance.
The radius of the raceway groove 28 is set so as to satisfy the relationship: =Δa 1 +Δa 2 . The axial clearance reduction amount △As and the radial clearance reduction amount △Rs are
This is determined by factors such as the temperature difference between the spindle 21 and the housing 22 and the coefficient of thermal expansion of the material, but the orbit radius r 2 of the outer ring 25 should be at least 60% of the ball diameter, and the orbit radius r 1 of the inner ring 24 should be set to 60% or more of the ball diameter. Preferably it is 50.5-58%. That is, in the ball bearing, the raceway groove 27 of the inner ring 24 and the balls 26 are in convex-to-convex contact, and the raceway groove 28 of the outer ring 25 and the balls 26 are in concave-to-convex contact. Therefore, the contact pressure between the raceway groove and the balls is
4 is larger, raceway groove 2 of inner ring 24
Radius of raceway groove 28 on the outer ring 25 side than radius r 1 of 7
It is desirable to increase r 2 and provide most of the above-mentioned axial clearance on the outer ring 25 side.

発明の効果 本発明によれば、スピンドルとハウジングとの
温度差のない場合は第2図に示した状態を保持し
ているため、回転時における玉の遊動は殆どな
く、異常な振動や騒音が発生することなく円滑に
回転する。そしてスピンドルが昇温し、スピンド
ルとハウジング間に温度差が生じる状態に移行し
てスピンドルの熱による膨張によつて内輪間のス
パンが広がり、また内輪の外径が大きくなつた場
合においても、上記したアキシアルすきまおよび
ラジアルすきまが膨張による寸法変化量を適切に
吸収し、玉に無理を与えることのない円滑な回転
を遂行することができる。
Effects of the Invention According to the present invention, when there is no temperature difference between the spindle and the housing, the state shown in FIG. Rotates smoothly without any occurrence. Even if the temperature of the spindle increases and a temperature difference occurs between the spindle and the housing, the span between the inner rings widens due to the spindle's thermal expansion, and the outer diameter of the inner ring increases. The axial and radial clearances can appropriately absorb the amount of dimensional change due to expansion, allowing smooth rotation without stressing the ball.

すなわち、2個の玉軸受の着力点が、それぞれ
他の軸受側あるいは他の軸受とは反対側に位置す
るように配置され、スピンドルとハウジングとの
温度差が生じたときの前記2個の玉軸受の合計ア
キシアルすきまから、スピンドルとハウジングが
同温時のアキシアルすきまを差引いた、スピンド
ルとハウジングとの温度差に起因するアキシアル
すきま増加量を△aとするとともに、内外輪が同
温の時の各軸受のアキシアルすきまから内外輪に
温度差が生じた時の各軸受のアキシアルすきまを
差引いた、各軸受の内輪と外輪の温度差に起因す
る各軸受のアキシアルすきま減少量をそれぞれ△
a1,△a2としたとき、 △a=△a1+△a2 の関係が成立するように内外輪の軌道溝曲率半径
を設定したので、スピンドルとハウジングとの間
に温度差が生じた状態になつても、スピンドルと
ハウジングとの温度差に起因するアキシアルすき
ま増加量が、各軸受の内輪と外輪との温度差に起
因するアキシアルすきま減少量と相殺され、実際
上のアキシアルすきまに変動がなく、異常騒音や
振動が発生しない。
In other words, the two ball bearings are arranged so that the force application points are located on the side of the other bearing or on the opposite side of the other bearing, and when a temperature difference occurs between the spindle and the housing, the two ball bearings The axial clearance when the spindle and housing are at the same temperature is subtracted from the total axial clearance of the bearing, and △a is the increase in axial clearance due to the temperature difference between the spindle and housing, and when the inner and outer rings are at the same temperature. The amount of decrease in the axial clearance of each bearing due to the temperature difference between the inner and outer rings of each bearing is calculated by subtracting the axial clearance of each bearing when there is a temperature difference between the inner and outer rings from the axial clearance of each bearing.
When a 1 and △a 2 are set, the radius of curvature of the raceway groove of the inner and outer rings is set so that the relationship △a = △a 1 + △a 2 holds, so a temperature difference occurs between the spindle and the housing. Even if the axial clearance increases due to the temperature difference between the spindle and the housing, the axial clearance decreases due to the temperature difference between the inner and outer rings of each bearing, and the actual axial clearance decreases. There is no fluctuation, and no abnormal noise or vibration occurs.

したがつて本発明の装置によれば、スピンドル
とハウジング間の温度差、両者の熱膨張率などを
考慮して予めアキシアルすきまおよびラジアルす
きまの最適に設定しておくことにより、スピンド
ルとハウジングとの間の温度差のない状態におい
ても、両者間に温度差が生じた状態においても軸
受の内部すきま、即ち玉の転動面と内外輪とのす
きまを常に一定に保つことができ、軸受回転時の
振動や騒音が可及的に小さく維持でき、しかも潤
滑膜の破損も少なくなつて玉軸受の長命化に極め
て有利となる。
Therefore, according to the device of the present invention, the axial clearance and radial clearance are optimally set in advance by taking into consideration the temperature difference between the spindle and the housing, the coefficient of thermal expansion between the two, and so on. The internal clearance of the bearing, that is, the clearance between the ball rolling surface and the inner and outer rings, can always be kept constant even when there is no temperature difference between the two, and even when there is a temperature difference between the two. Vibration and noise can be kept as low as possible, and damage to the lubricating film is also reduced, which is extremely advantageous for extending the life of the ball bearing.

また従来構造よりも部品点数が少なく、軸受装
置の剛性の低下がない。
Furthermore, the number of parts is smaller than that of the conventional structure, and there is no decrease in the rigidity of the bearing device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のスピンドル用軸受装置の断面
図、第2図は本発明の構造の主要部を拡大した断
面図、第3図は変形実施例の同様断面図、第4図
は外輪の軌道溝の円弧半径とアキシアルすきまの
関係を示した線図である。第5図は従来例を示し
たスピンドル用軸受装置の断面図である。 20………デイスタンスピース、21……スピ
ンドル、22……ハウジング、23……玉軸受、
24……内輪、25……外輪、26……玉、2
7,28……内外輪の軌道溝、L……内外輪と玉
の接触点と玉中心を結ぶ直線、P1,P2……着力
点。
Fig. 1 is a cross-sectional view of the spindle bearing device of the present invention, Fig. 2 is an enlarged cross-sectional view of the main part of the structure of the present invention, Fig. 3 is a similar cross-sectional view of a modified embodiment, and Fig. 4 is a cross-sectional view of the outer ring. FIG. 3 is a diagram showing the relationship between the arc radius of the raceway groove and the axial clearance. FIG. 5 is a sectional view of a conventional spindle bearing device. 20...Distance piece, 21...Spindle, 22...Housing, 23...Ball bearing,
24...Inner ring, 25...Outer ring, 26...Ball, 2
7, 28... Raceway grooves of the inner and outer rings, L... Straight line connecting the contact point between the inner and outer rings and the ball and the center of the ball, P 1 , P 2 ... Point of force application.

Claims (1)

【特許請求の範囲】 1 軸方向に離間配置され、かつ、ハウジング内
周に外輪が、スピンドル上に内輪が、それぞれ適
宣手段により固定された2個の玉軸受によりスピ
ンドルをハウジング内に支承し、かつスピンドル
とハウジングとの間に大きな温度差が生じるスピ
ンドル用軸受装置において、 各玉軸受の着力点が、それぞれ他の軸受側ある
いは他の軸受とは反対側に位置するように配置
し、 スピンドルとハウジングとの温度差が生じたと
きの前記2個の玉軸受の合計アキシアルすきまか
ら、スピンドルとハウジングが同温時のアキシア
ルすきまを差引いた、スピンドルとハウジングと
の温度差に起因するアキシアルすきま増加量を△
a、 内外輪が同温の時の各軸受のアキシアルすきま
から内外輪に温度差が生じた時の各軸受のアキシ
アルすきまを差引いた、各軸受の内輪と外輪の温
度差に起因する各軸受のアキシアルすきま減少量
を△a1,△a2としたとき、 △a=△a1+△a2 の関係が成立するように内外輪の軌道溝曲率半径
を設定したスピンドル用軸受装置 2 上記玉軸受における内輪の軌道溝の曲率半径
を玉直径の50.5〜56%とし、外輪の軌道溝の曲率
半径を玉直径の60%とした特許請求の範囲第1項
記載のスピンドル用軸受装置。
[Scope of Claims] 1. The spindle is supported within the housing by two ball bearings which are spaced apart in the axial direction and have an outer ring fixed to the inner periphery of the housing and an inner ring fixed to the spindle by suitable means. , and in which there is a large temperature difference between the spindle and the housing, the bearing device for the spindle is arranged so that the force application point of each ball bearing is located on the other bearing side or on the opposite side from the other bearings, and the spindle The axial clearance increase due to the temperature difference between the spindle and the housing is calculated by subtracting the axial clearance when the spindle and housing are at the same temperature from the total axial clearance of the two ball bearings when there is a temperature difference between the spindle and the housing. △ amount
a. The axial clearance of each bearing when there is a temperature difference between the inner and outer rings is subtracted from the axial clearance of each bearing when the inner and outer rings are at the same temperature, resulting in the difference in temperature between the inner and outer rings of each bearing. Bearing device 2 for a spindle in which the radius of curvature of the raceway groove of the inner and outer rings is set so that the relationship △a = △ a 1 + △a 2 holds when the amount of axial clearance reduction is △a 1 and △a 2. The bearing device for a spindle according to claim 1, wherein the radius of curvature of the raceway groove of the inner ring in the bearing is 50.5 to 56% of the ball diameter, and the radius of curvature of the raceway groove of the outer ring is 60% of the ball diameter.
JP15272384A 1984-07-23 1984-07-23 Bearing device for spindle Granted JPS6170219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15272384A JPS6170219A (en) 1984-07-23 1984-07-23 Bearing device for spindle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15272384A JPS6170219A (en) 1984-07-23 1984-07-23 Bearing device for spindle

Publications (2)

Publication Number Publication Date
JPS6170219A JPS6170219A (en) 1986-04-11
JPH0522087B2 true JPH0522087B2 (en) 1993-03-26

Family

ID=15546741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15272384A Granted JPS6170219A (en) 1984-07-23 1984-07-23 Bearing device for spindle

Country Status (1)

Country Link
JP (1) JPS6170219A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001090736A (en) * 1999-07-19 2001-04-03 Nsk Ltd Ball bearing
JP2007170680A (en) * 1999-07-19 2007-07-05 Nsk Ltd Ball bearing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55115621A (en) * 1979-01-15 1980-09-05 Philips Nv Bearing device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58194805U (en) * 1982-06-18 1983-12-24 株式会社神戸製鋼所 Bearing device for rolling rolls

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55115621A (en) * 1979-01-15 1980-09-05 Philips Nv Bearing device

Also Published As

Publication number Publication date
JPS6170219A (en) 1986-04-11

Similar Documents

Publication Publication Date Title
US8356944B2 (en) Tapered roller bearing with displaceable rib
US3516717A (en) Bearing
US20120144939A1 (en) Double Bearing Assembly for Rotating Shaft
US4729252A (en) Bearing for the shaft of a machine element
EP0746698B1 (en) Thrust bearing assembly
JPH11210766A (en) Three point contact ball bearing
JP2000170774A (en) Conical roller bearing and gear shaft support device for vehicle
JPH0522087B2 (en)
JP3480000B2 (en) Rolling bearing
US2983560A (en) Antifriction bearing
JPH08326751A (en) Magnetic bearing
JPS60201111A (en) Oscillative bearing mechanism
JP3877895B2 (en) Rotating anode X-ray tube
JP2826640B2 (en) How to fix ceramic bearings
JP2003184873A (en) Bearing equipment for automatic transmission
JPS6114747Y2 (en)
JPH0725849Y2 (en) Spindle head spindle support device
JPS6330817Y2 (en)
JP3490074B2 (en) Magnetic bearing device
JPS6030491Y2 (en) Thrust bearing device
JP2578844Y2 (en) Tapered roller bearing
JP2574487Y2 (en) Bearing device for hot-dip plating tank
JPS6073117A (en) Spherical sliding bearing
JPS6230609Y2 (en)
JPH01172620A (en) Floating bearing

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term