JPH05220816A - Manufacture of corrugated pipe made of synthetic resin - Google Patents

Manufacture of corrugated pipe made of synthetic resin

Info

Publication number
JPH05220816A
JPH05220816A JP4059098A JP5909892A JPH05220816A JP H05220816 A JPH05220816 A JP H05220816A JP 4059098 A JP4059098 A JP 4059098A JP 5909892 A JP5909892 A JP 5909892A JP H05220816 A JPH05220816 A JP H05220816A
Authority
JP
Japan
Prior art keywords
parison
corrugated pipe
molding
synthetic resin
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4059098A
Other languages
Japanese (ja)
Inventor
Yasuo Nakajima
康雄 中島
Mitsunori Okada
光範 岡田
Tetsuji Kubota
哲治 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP4059098A priority Critical patent/JPH05220816A/en
Publication of JPH05220816A publication Critical patent/JPH05220816A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/0015Making articles of indefinite length, e.g. corrugated tubes
    • B29C49/0021Making articles of indefinite length, e.g. corrugated tubes using moulds or mould parts movable in a closed path, e.g. mounted on movable endless supports

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To equalize the distribution of wall thickness by forming a parison for satisfying the extrusion speed of the parison, the speed of travel of a mold and the specific conditions of the push of the overall length of the outer peripheries of a recessed section and a projecting section when a corrugated pipe is manufactured by using the molding die, in which the recessed sections and the projecting sections are formed alternately. CONSTITUTION:A parison 26 extruded from an extruder 24 is introduced into a cylindrical molding tunnel 18 parted by continuously connecting half molding dies 16, in which recessed sections 12 and projecting sections 14 are formed alternately, and changing the molding dies into a caterpillar. Compressed air is blown into the parison 26, and the parison 26 is pushed and extended toward the molding surfaces of the molding dies 16, thus continuously forming a corrugated pipe 28. In such manufacture, a synthetic resin having a 100% modulus value at 190 deg.C of 0.5kgf/cm<2> or more is extrusion-molded so as to satisfy the conditions of 0.9>=B/(AXC)>=0.6. A represents the overall length of the outer peripheries of the recessed sections and the projecting sections per unit length, B the extrusion speed of the parison and C the speed of travel of the mold.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、地中線用ケーブル防護
等に用いられる合成樹脂製波付管の製造方法に関する。
更に特定すれば、本発明は、190°Cにおける100
%モジュラス値が0.5kgf/cm2 以上で、溶融時の樹脂
粘度が高く、成形時の引張強度が高い、所謂成形加工性
の劣る合成樹脂、例えば硬質ポリ塩化ビニル樹脂を材料
として波付管を連続的に製造するに際し、管の長手方向
の断面肉厚を均一に成形するように改良された、合成樹
脂製波付管の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a synthetic resin corrugated pipe used for protecting underground cables.
More specifically, the present invention provides 100 at 190 ° C.
A corrugated pipe made of a synthetic resin having a so-called inferior molding processability, such as a resin having a% modulus value of 0.5 kgf / cm 2 or more, a high resin viscosity at the time of melting and a high tensile strength at the time of molding, such as a hard polyvinyl chloride resin The present invention relates to a method for producing a corrugated pipe made of synthetic resin, which is improved so that the cross-section wall thickness in the longitudinal direction of the pipe is uniformly formed when the pipe is continuously produced.

【0002】[0002]

【従来の技術】合成樹脂製波付管は、従来から一般に図
1に示すような成形機と押出機とを使用して連続的に合
成樹脂製波付管を成形する方法、例えば特公昭45ー1
6835号公報等に記載されているような方法により製
造されている。図1に示す成形機10は、凹陥部12と
突出部14とが交互に形成された半割りの筒状の成形面
を内側に備えた図2に示す半円筒状のモールド金型16
を隙間なく連続的に連結して全体として環状に無限軌道
化し、更に一定距離にわたり成形面を互いに向き合わせ
て筒状の成形トンネル18を形成するように構成した2
系列の無限軌道モールド金型20を備え、ローラ22に
より駆動して矢印の方向に移動させている。
2. Description of the Related Art Synthetic resin corrugated pipes have heretofore been generally produced by continuously molding synthetic resin corrugated pipes using a molding machine and an extruder as shown in FIG. -1
It is manufactured by the method as described in Japanese Patent No. 6835. The molding machine 10 shown in FIG. 1 has a semi-cylindrical molding die 16 shown in FIG. 2 having a half-cylindrical molding surface in which concave portions 12 and protrusions 14 are alternately formed inside.
2 are continuously connected to each other without a gap to form an endless track in an annular shape as a whole, and the forming surfaces are opposed to each other over a certain distance to form a cylindrical forming tunnel 18.
It is equipped with a series of endless track mold dies 20 and is driven by rollers 22 to move in the direction of the arrow.

【0003】押出機24から押し出されたパリソン(溶
融樹脂のチューブ)26は前記成形トンネル18内に導
かれるのと同時にパリソン内に圧縮空気が吹き込まれ
て、パリソンの内側と外側との間に差圧が発生し、その
差圧で溶融樹脂のパイプ状物がモールド金型の成形面に
向かって押し拡げられることにより、合成樹脂製波付管
28が連続的に成形される。尚、押出機24から押し出
されるパリソン26の押出速度と連続的に旋回する無限
軌道モールド金型20の速度は同じ速度である。圧縮空
気を吹き込む代わりに別法として、例えば、特公昭55
ー23738号公報等に記載のように真空ポンプと連通
する貫通孔をモールド金型に設けておき、モールド内に
押し出されたパリソンとモールド金型との間を真空吸引
することによりパリソンの内側と外側との間に差圧を発
生させ、その差圧によりパリソンをモールド金型の成形
面に吸引して連続的に合成樹脂製波付管を製造する方法
が知られている。
The parison (a tube of molten resin) 26 extruded from the extruder 24 is introduced into the molding tunnel 18 and at the same time, compressed air is blown into the parison, so that a difference between the inside and outside of the parison is generated. A pressure is generated, and the differential pressure causes the pipe-shaped material of the molten resin to be spread toward the molding surface of the molding die, whereby the synthetic resin corrugated pipe 28 is continuously molded. The extrusion speed of the parison 26 extruded from the extruder 24 is the same as the speed of the endless track molding die 20 that continuously swirls. As an alternative to blowing compressed air, for example, Japanese Patent Publication No. 55
As described in Japanese Patent No. 23738, etc., a through hole communicating with a vacuum pump is provided in a mold, and a vacuum is suctioned between the parison extruded into the mold and the mold, whereby A method is known in which a differential pressure is generated between the outer side and the parison, and the parison is suctioned to the molding surface of the molding die to continuously manufacture the corrugated pipe made of synthetic resin.

【0004】[0004]

【発明が解決しようとする課題】しかし、上述の従来の
合成樹脂製波付管の製造方法は、次のような問題点を有
していた。その問題点とは、従来の方法により製造され
た合成樹脂製波付管28では、その長手方向の断面での
肉厚分布が、図3に示すようにモールド金型の凹陥部1
2により成形された管の山部30で薄くなり、モールド
金型の突出部により成形された管の谷部32で厚くなっ
ており、山部分と谷部分との間で肉厚が不均一になるこ
とであった。更に、肉厚は、図3に示すように谷部32
から山部30へ向かって体積に応じて連続的に変化し、
一般には減少する傾向にある。この肉厚の変化は、波付
管のピッチp(波の一周期分、例えば波付管における谷
から谷への間の距離)が小さいほど、また山の高さhが
高いほど顕著である。
However, the above-mentioned conventional method for manufacturing a corrugated pipe made of synthetic resin has the following problems. The problem is that in the synthetic resin corrugated pipe 28 manufactured by the conventional method, the wall thickness distribution in the longitudinal cross section thereof is as shown in FIG.
2 is thin at the peak portion 30 of the pipe and thick at the valley portion 32 of the pipe formed by the protrusion of the molding die, and the wall thickness is uneven between the peak portion and the valley portion. Was to be. Further, the wall thickness is as shown in FIG.
From the mountain to the mountain portion 30 changes continuously according to the volume,
Generally, it tends to decrease. This change in wall thickness is more remarkable as the pitch p of the corrugated pipe (one cycle of the wave, for example, the distance between valleys in the corrugated pipe) is smaller and the height h of the peak is higher. ..

【0005】山部30の肉厚が薄いと山部分の機械的強
度(引張、圧縮強度等)が低下し、波付管全体としての
機械的強度及び衝撃強度が低下する。従って、波付管
は、例えば敷設時につるはし等により加えられる衝撃に
対して容易に損傷し、実用上問題であった。従来の製造
方法により合成樹脂製波付管を製造する場合、肉厚の薄
い山部分の強度を上げるためには、管全体の肉厚を平均
的に厚くすることによって、肉厚の薄い山部分の肉厚を
厚くすると言う処置を取らざるを得なかった。しかし、
このような解決法では、管の目付け量(管の単位長さ当
たりの材料量)が増加して管の製造コストを上昇させ、
かつ管の重量化を招いて敷設の際の作業性を悪くした。
従って、これは経済的な解決法ではなかった。
If the ridge portion 30 is thin, the mechanical strength (tensile strength, compressive strength, etc.) of the ridge portion decreases, and the mechanical strength and impact strength of the entire corrugated pipe decrease. Therefore, the corrugated pipe is easily damaged by an impact applied by a pickaxe or the like at the time of laying, which is a practical problem. When manufacturing a corrugated pipe made of synthetic resin by the conventional manufacturing method, in order to increase the strength of the thin ridge portion, increase the average wall thickness of the entire pipe to reduce the thin ridge portion. I had no choice but to take measures to increase the wall thickness. But,
In such a solution, the weight of the pipe (the amount of material per unit length of the pipe) is increased to increase the manufacturing cost of the pipe,
In addition, the weight of the pipe was increased and workability during laying was deteriorated.
Therefore, this was not an economical solution.

【0006】一方、合成樹脂製波付管の材料樹脂として
ポリエチレンが従来から一般に用いられているが、ポリ
エチレン製波付管は機械的強度が不足しているため地中
線用ケーブル防護等の用途には機械的強度のより高い、
例えば硬質ポリ塩化ビニル製等の190°C における1
00%モジュラス値が0.5kgf/cm2 以上である合成樹
脂製の波付管を必要とし、それを廉価で提供することが
要望されていた。尚、190°C における100%モジ
ュラス値とは、190°Cにおいて試験片の伸び率が1
00%になったときの荷重を試験片の原断面積で除した
値を言い、大きい値の材料は、剛性が大きいが、それだ
け成形加工性に劣る。因みにポリエチレンは190°C
では溶融状態である。
On the other hand, polyethylene has been generally used as a material resin for synthetic resin corrugated pipes. However, since polyethylene corrugated pipes lack mechanical strength, they are used for protecting underground cables. Has higher mechanical strength,
For example, 1 at 190 ° C made of rigid polyvinyl chloride
A corrugated pipe made of a synthetic resin having a 00% modulus value of 0.5 kgf / cm 2 or more is required, and it has been desired to provide it at a low price. The 100% modulus value at 190 ° C means that the elongation percentage of the test piece is 1 at 190 ° C.
It is a value obtained by dividing the load when it reaches 00% by the original cross-sectional area of the test piece. A material having a large value has high rigidity, but is inferior in moldability. By the way, polyethylene is 190 ° C
Then, it is in a molten state.

【0007】融点が低いので樹脂の融点以上の温度で成
形加工を行うことのできるポリエチレンの場合、成形時
の溶融粘度が低く、かつ引張強度も低い。そのため成形
が比較的容易であるのに対し、硬質ポリ塩化ビニルを従
来の製造方法で製造する場合には、融点が高いので成形
加工を融点以下の温度で行う必要があり、そのため成形
時の樹脂粘度が高く、かつ引張強度も高い。従って、成
形加工が非常に難しく、硬質ポリ塩化ビニル製波付管の
断面肉厚はポリエチレンに比較して一層不均一、偏肉に
なった。硬質ポリ塩化ビニルの成形加工性が劣ること
は、硬質ポリ塩化ビニルが成形加工の温度で(例えば通
常押出機から出て来る約200°Cの樹脂温度で)軟化
しているが溶融状態ではなく明確な形状を保持してお
り、この温度で引張強度を測定することが可能であると
言う事実からも明らかである。
In the case of polyethylene, which has a low melting point and can be molded at a temperature above the melting point of the resin, it has a low melt viscosity during molding and a low tensile strength. Therefore, while molding is relatively easy, when a rigid polyvinyl chloride is manufactured by a conventional manufacturing method, it is necessary to perform the molding process at a temperature below the melting point because the melting point is high. High viscosity and high tensile strength. Therefore, the molding process was very difficult, and the cross-sectional wall thickness of the corrugated pipe made of hard polyvinyl chloride was more uneven and uneven than that of polyethylene. The poor moldability of rigid polyvinyl chloride means that the rigid polyvinyl chloride has softened at the molding temperature (for example, at a resin temperature of about 200 ° C that normally comes out of an extruder), but is not in a molten state. It is also clear from the fact that it retains a clear shape and that it is possible to measure tensile strength at this temperature.

【0008】加工温度を上げて粘度を低下させることに
より良好な成形加工性を確保しようとする試みは、温度
を上げるとポリ塩化ビニル樹脂が熱分解するため成功し
なかった。特に、硬質ポリ塩化ビニルの場合、熱分解温
度が低いので加工温度を上げることは非常に難しい。以
上説明したように従来の合成樹脂製波付可撓管の製造方
法では、硬質ポリ塩化ビニル等の剛性の大きい合成樹脂
製でかつ均一な肉厚分布の波付管を製造することが困難
であった状況に鑑み、本発明の目的は、190°C にお
ける100%モジュラス値が0.5kgf/cm2 以上の合成
樹脂製であって、断面の肉厚分布が均一で強度の高い波
付管を製造する方法を提供することである。
Attempts to ensure good moldability by raising the processing temperature to reduce the viscosity have been unsuccessful because the polyvinyl chloride resin thermally decomposes when the temperature is raised. Particularly, in the case of rigid polyvinyl chloride, it is very difficult to raise the processing temperature because the thermal decomposition temperature is low. As described above, in the conventional method for manufacturing a corrugated flexible tube made of synthetic resin, it is difficult to manufacture a corrugated tube made of synthetic resin having high rigidity such as hard polyvinyl chloride and having a uniform wall thickness distribution. In view of the existing situation, an object of the present invention is to make a corrugated pipe which is made of synthetic resin having a 100% modulus value at 190 ° C of 0.5 kgf / cm 2 or more and has a uniform cross-section wall thickness distribution and high strength. Is to provide a method of manufacturing.

【0009】[0009]

【課題を解決するための手段】本発明の上記目的は、本
発明に係る次の合成樹脂製波付管の製造方法により達成
される。その方法は、凹陥部と突出部とが交互に形成さ
れた筒状の成型面を備えたモールド金型を一定方向に移
動させつつ、前記金型の成形面上へパリソンを押し出し
て接触させ、パリソンの内側と外側間に発生させた差圧
により該パリソンを金型成形面に押し付けて波付管に成
形する工程を有する合成樹脂製波付管の製造方法におい
て、190°Cにおける100%モジュラス値が0.5
kgf/cm2 以上の合成樹脂製の波付管を製造するために、
下記の条件、 で押出成形することを特徴とする合成樹脂製波付管の製
造方法である。尚、Aはモールド金型の長手方向の断面
において長手方向の長さ1m当たりの成形面に形成され
た凹陥部及び突出部の外周縁の総延長(図2で太線の総
延長の長さに相当)をmで表示し、Bはパリソンの押出
速度をm/分で表示し、Cはモールド金型の移動速度を
m/分で表示している。
The above object of the present invention is achieved by the following method for producing a corrugated pipe made of synthetic resin according to the present invention. The method, while moving the mold die having a cylindrical molding surface in which concave portions and protrusions are alternately formed in a certain direction, pushes the parison onto the molding surface of the die to make contact with the mold surface, In a method for producing a corrugated pipe made of synthetic resin, which comprises a step of pressing the parison against a molding surface by a pressure difference generated between the inside and outside of the parison to form a corrugated pipe, a 100% modulus at 190 ° C. Value is 0.5
In order to manufacture corrugated pipes made of synthetic resin of kgf / cm 2 or more,
The following conditions, Is a method for manufacturing a corrugated pipe made of synthetic resin, which is characterized in that extrusion molding is performed. In addition, A is the total extension of the outer peripheral edges of the recesses and protrusions formed on the molding surface per 1 m in the longitudinal direction in the longitudinal section of the molding die (the total length of the thick line in FIG. Is displayed in m, B is the parison extrusion speed in m / min, and C is the mold moving speed in m / min.

【0010】パリソンの押出速度とモールド金型の移動
速度との関係を鋭意検討した結果、本発明者等は次のこ
とを見出した。従来の製造方法により製造された合成樹
脂製波付管の断面の肉厚が不均一となる原因は、成形加
工する際の押出機から押し出されるパリソンの押出速度
と連続的に旋回する無限軌道モールド金型の速度とが同
じであることにあり、更にその結果モールド金型の凹陥
部で成形された波付管の山部分の肉厚は、パリソンが著
しく引き伸ばされて成形されるため(当業界ではブロー
比が大きいという)薄くなり、一方モールド金型の突出
部で成形された波付管の谷部分は引き伸ばされる率が山
部分に較べて小さいため肉厚が厚くなることにある。
尚、本発明においてパリソンとは、樹脂を溶融可塑化さ
せた後、通常の既知の押出機によりパイプ状に押出され
たものである。次いで、押出後パリソンは、成形機の中
に導入されて波付加工が施され、可撓性が付与された波
付管に成形される。
As a result of extensive studies on the relationship between the extrusion speed of the parison and the moving speed of the molding die, the present inventors have found out the following. The reason why the cross-sectional wall thickness of the synthetic resin corrugated pipe manufactured by the conventional manufacturing method is uneven is that the extrusion speed of the parison extruded from the extruder at the time of molding processing and the continuous track mold that continuously swirls Since the speed of the mold is the same, and as a result, the wall thickness of the crest portion of the corrugated pipe formed by the recessed portion of the mold is formed because the parison is significantly stretched and formed (see (The blow ratio is large in this case), but the valley portion of the corrugated pipe formed by the protruding portion of the molding die becomes thicker because the rate of expansion is smaller than that of the crest portion.
In the present invention, the parison is obtained by melting and plasticizing a resin and then extruding the resin into a pipe shape by an ordinary known extruder. Next, the post-extrusion parison is introduced into a molding machine, subjected to corrugation processing, and molded into a corrugated tube having flexibility.

【0011】以上の知見に基づき、、実験を重ねた結
果、本発明等は、高い樹脂粘度で成形せざるを得ない硬
質ポリ塩化ビニル等の190°Cにおける100%モジ
ュラス値が0.5kgf/cm2 以上あるような樹脂を成形す
るに当たっては、前記B/(A×C)の値が0.6〜
0.9の範囲でのみ良好に成形することができると言う
事実を見出した。前記B/(A×C)の値が0.9以上
では成形は容易になるが、必要量以上のパリソンが押し
出されて、成形された波付管に肉余り部を生じさせる。
肉余り部は波付管の可撓性を損ね、更には管を曲げた際
に肉余り部に入っている折れ目のために応力がこの部位
に集中し、波付管を破壊する結果となるので、肉余り部
のある製品は不合格品である。一方、前記B/(A×
C)の値が0.5未満では得られる波付管の一部に成形
不能の箇所が生じる。特にモールド金型の凹陥部の一部
にパリソンの到達できない箇所が生じ、そのため山部分
の一部に成形されない箇所が生じる。この傾向は、成形
時の粘度が高い硬質ポリ塩化ビニル等の樹脂で顕著であ
る。
As a result of repeated experiments based on the above findings, the present invention has a 100% modulus value at 190 ° C. of 0.5 kgf / When molding a resin having a cm 2 or more, the value of B / (A × C) is 0.6 to
We have found the fact that good shaping is possible only in the range of 0.9. When the value of B / (A × C) is 0.9 or more, molding becomes easy, but a parison of a necessary amount or more is extruded, and a surplus portion is formed in the molded corrugated pipe.
The surplus part impairs the flexibility of the corrugated pipe, and when the pipe is bent, the stress is concentrated in this part due to the folds in the surplus part and the corrugated pipe is destroyed. Therefore, the product with excess meat is rejected. On the other hand, the above B / (A ×
If the value of C) is less than 0.5, a part of the obtained corrugated pipe which cannot be molded occurs. In particular, a part where the parison cannot reach is formed in a part of the concave part of the molding die, and therefore a part where the parison is not formed is formed. This tendency is remarkable for resins such as hard polyvinyl chloride, which has a high viscosity during molding.

【0012】好ましいB/(A×C)の値は、0.6〜
0.8の範囲内であって、成形性が非常によくかつ肉余
りが発生しない。また、押出機から出てくるパリソンの
肉厚が厚過ぎると成形するために大きな圧力が必要とな
り、成形不能となる場合があるので、10mm以下の肉厚
のパリソンを用いて成形することが好ましい。尚、本発
明に係る合成樹脂製波付管の製造方法の実施において以
上の説明で特定しなかったところは、前述の従来の合成
樹脂製波付管の製造方法における場合と同じである。以
下に、添付図面を参照して実施例に基づき本発明をより
詳細に説明する。
The preferable value of B / (A × C) is from 0.6 to
Within the range of 0.8, the moldability is very good and there is no excess of meat. Further, if the thickness of the parison coming out of the extruder is too thick, a large pressure is required for molding, and molding may not be possible. Therefore, it is preferable to mold using a parison with a wall thickness of 10 mm or less. .. Incidentally, what is not specified in the above description in the implementation of the method for producing a synthetic resin corrugated pipe according to the present invention is the same as the case in the above-mentioned conventional method for producing a synthetic resin corrugated pipe. Hereinafter, the present invention will be described in more detail based on examples with reference to the accompanying drawings.

【0013】[0013]

【実施例】 実施例1 190°Cにおける100%モジュラス値が4.0kgf/
cm2 の硬質ポリ塩化ビニル樹脂組成物を樹脂材料として
選択し、前記B/(A×C)の値を0.7に設定した市
販の異方向二軸押出機と成形機とを使用して、常法によ
りパリソンを押し出しながらモールド金型の凹陥部と突
出部により波付管の山部と谷部をそれぞれ成形する波付
け加工を施して、実施例品1の硬度ポリ塩化ビニル製波
付管を作製した。得た実施例1の波付管について谷部と
山部との肉厚を測定し、その結果を表1に示した。 実施例2 B/(A×C)の値を0.8に設定したこと以外は実施
例1と同様にして、実施例品2の硬質ポリ塩化ビニル製
波付管を作製し、同様に測定した結果を表1に記載し
た。
Example 1 A 100% modulus value at 190 ° C. of 4.0 kgf /
Using a commercially available different-direction twin-screw extruder and a molding machine in which a hard polyvinyl chloride resin composition of cm 2 is selected as a resin material and the value of B / (A × C) is set to 0.7 , While extruding the parison by the usual method, the corrugation process for molding the ridges and valleys of the corrugated pipe by the concave portion and the projecting portion of the molding die, respectively, is performed. A tube was made. With respect to the corrugated pipe obtained in Example 1, the wall thicknesses of the valley and the peak were measured, and the results are shown in Table 1. Example 2 A hard polyvinyl chloride corrugated pipe of Example product 2 was prepared and measured in the same manner as in Example 1 except that the value of B / (A × C) was set to 0.8. The results obtained are shown in Table 1.

【0014】[0014]

【表1】 [Table 1]

【0015】比較例1〜3 比較例1として前記B/(A×C)の値を1.0、比較
例2としてB/(A×C)の値を0.4に設定し、実施
例1と同様の硬質ポリ塩化ビニル樹脂組成物に波付け加
工を施して比較例品1及び2の波付管を作製し、得た比
較例品1及び2の可撓管について肉厚分布を測定し、表
1に結果を示した。比較例3として、190°Cにおけ
る100%モジュラス値が0.5の合成樹脂を材料とし
て選択し、B/(A×C)の値を0.3に設定して、実
施例1と同様に波付け加工を施し、比較例品3の波付管
を作製し、得た比較例品3の波付管について肉厚分布を
測定し、表1に結果を示した。
Comparative Examples 1 to 3 In Comparative Example 1, the value of B / (A × C) was set to 1.0, and in Comparative Example 2, the value of B / (A × C) was set to 0.4. The same hard polyvinyl chloride resin composition as in 1 was corrugated to produce corrugated pipes of Comparative example products 1 and 2, and the thickness distribution of the obtained flexible pipes of comparative example products 1 and 2 was measured. The results are shown in Table 1. As Comparative Example 3, a synthetic resin having a 100% modulus value at 190 ° C. of 0.5 was selected as a material, and the value of B / (A × C) was set to 0.3, and the same as in Example 1. The corrugated pipe of Comparative Example product 3 was produced by corrugation processing, and the wall thickness distribution of the obtained corrugated pipe of Comparative Example product 3 was measured. The results are shown in Table 1.

【0016】B/(A×C)の値を種々変えて成形した
波付管の断面肉厚分布の測定を行った結果、実施例品1
及び2の波付管は、表1に示したようにその肉厚分布が
非常に均一であった。一方、 比較例1では、B/(A
×C)の値が1.0と本発明で特定した範囲の上限より
大きいため、必要量以上のパリソンが押し出されて肉余
り部を発生させ、得た波付管を欠陥品にした。比較例2
では、B/(A×C)の値が0.4と本発明で特定した
範囲の下限より小さいために得られた波付管の山部分の
一部に成形されていない箇所が生じ、得た比較例品2の
波付管を欠陥品にした。比較例3では、190°Cにお
ける100%モジュラス値が0.5と実施例1に較べて
小さいが、B/(A×C)の値が0.3と本発明で特定
した範囲の下限より小さいために比較例2と同様に得ら
れた波付管の山部分の一部に成形されていない箇所が生
じ、得た比較例品3の波付管を欠陥品にした。
As a result of measuring the cross-sectional wall thickness distribution of corrugated pipes formed by changing the value of B / (A × C) variously, Example product 1
As shown in Table 1, the corrugated tubes of Nos. 2 and 2 had very uniform wall thickness distribution. On the other hand, in Comparative Example 1, B / (A
Since the value of xC) was 1.0, which was larger than the upper limit of the range specified in the present invention, the parison in excess of the required amount was extruded to generate a meat excess portion, and the obtained corrugated pipe was made into a defective product. Comparative example 2
Then, since the value of B / (A × C) is 0.4, which is smaller than the lower limit of the range specified in the present invention, a part of the peak portion of the corrugated pipe obtained is not formed, and The corrugated tube of Comparative Example Product 2 was made defective. In Comparative Example 3, the 100% modulus value at 190 ° C. is 0.5, which is smaller than that in Example 1, but the value of B / (A × C) is 0.3, which is lower than the lower limit of the range specified in the present invention. Because of the small size, a portion of the peak portion of the corrugated pipe obtained in the same manner as in Comparative Example 2 was not molded, and the corrugated pipe of Comparative Example Product 3 obtained was made a defective product.

【0017】[0017]

【発明の効果】本発明は、モールド金型の移動速度とパ
リソンの押出速度との比率を特定の範囲内の値とするこ
とにより、従来の方法では成形困難であった190°C
における100%モジュラス値が0.5kgf/cm2 以上の
剛性の大きい合成樹脂製でかつ管の長手方向の断面肉厚
が均一な、即ち谷部と山部との肉厚がほぼ等しいい波付
管を欠陥品を出すこと無く効率的に製造できる。本発明
に係る方法により製造された合成樹脂製波付管は、機械
的強度、耐衝撃性などの物性がバランス良く付与されて
おり、特に管に可撓性を付与する上で重要な、管の長手
方向の断面肉厚の均一性を有している。従って、既設管
路を容易に回避でき、かつ不等沈下に耐え得るような可
撓性及び伸縮性、軽量で取扱いの容易性、土冠、車両に
よる荷重(繰り返し)に十分耐える強度、並びに工事の
際受けるつるはし等の衝撃荷重によって管が破壊しない
耐衝撃性等を具備し、特に地中線用電力ケーブルを保護
する保護管として最適である。
According to the present invention, by setting the ratio of the moving speed of the molding die to the extrusion speed of the parison within a specific range, it is difficult to carry out the molding at 190 ° C. which was difficult by the conventional method.
Of 100% modulus value of 0.5kgf / cm 2 or more made of high-rigidity synthetic resin and uniform in cross-section wall thickness in the longitudinal direction of the pipe, that is, the wall thickness of valley and peak is almost equal. The attached tube can be efficiently manufactured without producing defective products. The synthetic resin corrugated pipe produced by the method according to the present invention is imparted with good balance of physical properties such as mechanical strength and impact resistance, and is particularly important for imparting flexibility to the pipe. Has a uniform cross-section wall thickness in the longitudinal direction. Therefore, the existing pipelines can be easily avoided and flexible and stretchable to withstand uneven settlement, lightweight and easy to handle, earth canopy, sufficient strength to withstand the load (repetition) by vehicles, and construction work. It has shock resistance and the like that the pipe will not be broken by the impact load of a pickaxe or the like received at the time of, and is most suitable as a protective pipe for protecting the power cable for underground cables.

【図面の簡単な説明】[Brief description of drawings]

【図1】パリソンの押出機と成形機の説明用模式図であ
る。
FIG. 1 is a schematic diagram for explaining a parison extruder and a molding machine.

【図2】半割りモールドの長手方向断面説明図である。FIG. 2 is a longitudinal cross-sectional explanatory view of a half mold.

【図3】合成樹脂製波付管の長手方向の部分的断面説明
図である。
FIG. 3 is a partial cross-sectional explanatory view of a synthetic resin corrugated pipe in a longitudinal direction.

【符号の説明】[Explanation of symbols]

10 成形機 12 凹陥部 14 突出部 16 モールド金型 18 成形トンネル 20 無限軌道モールド 22 ローラ 24 押出機 26 パリソン(溶融樹脂のチューブ) 28 合成樹脂製波付管 30 管の山部 32 管の谷部 10 Molding Machine 12 Recessed Part 14 Projection Part 16 Mold Die 18 Forming Tunnel 20 Endless Track Mold 22 Roller 24 Extruder 26 Parison (Tube of Molten Resin) 28 Synthetic Resin Corrugated Pipe 30 Pipe Crest 32 Pipe Valley

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 凹陥部と突出部とが交互に形成された筒
状の成型面を備えたモールド金型を一定方向に移動させ
つつ、前記金型成形面上へパリソンを押し出して接触さ
せ、前記パリソンの内側と外側間に発生させた差圧によ
り該パリソンを前記金型成形面に押し付けて波付管に成
形する工程を有する合成樹脂製波付管の製造方法におい
て、 190°Cにおける100%モジュラス値が0.5kgf/
cm2 以上の合成樹脂を下記の条件 (ここで、Aは前記モールド金型の長手方向の断面にお
いて長手方向の長さ1m当たりの前記金型成形面に形成
された前記凹陥部及び前記突出部の外周縁の総延長をm
で表示し、Bは前記パリソンの押出速度をm/分で表示
し、Cは前記モールドの移動速度をm/分で表示してい
る。)で押出成形することを特徴とする合成樹脂製波付
管の製造方法。
1. A parison is pushed onto and brought into contact with the mold molding surface while moving in a certain direction a mold mold having a cylindrical molding surface in which concave portions and projecting portions are alternately formed. A method for producing a corrugated pipe made of synthetic resin, comprising the step of pressing the parison against the die molding surface by a pressure difference generated between the inside and the outside of the parison to form a corrugated pipe. % Modulus value is 0.5kgf /
cm 2 or more synthetic resin under the following conditions (Here, A is the total extension of the outer peripheral edges of the recessed portions and the protrusions formed on the mold molding surface per 1 m in the longitudinal direction in the longitudinal section of the molding die.
, B shows the extrusion speed of the parison in m / min, and C shows the moving speed of the mold in m / min. ) Extrusion molding is carried out by a method for producing a corrugated pipe made of a synthetic resin.
JP4059098A 1992-02-14 1992-02-14 Manufacture of corrugated pipe made of synthetic resin Pending JPH05220816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4059098A JPH05220816A (en) 1992-02-14 1992-02-14 Manufacture of corrugated pipe made of synthetic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4059098A JPH05220816A (en) 1992-02-14 1992-02-14 Manufacture of corrugated pipe made of synthetic resin

Publications (1)

Publication Number Publication Date
JPH05220816A true JPH05220816A (en) 1993-08-31

Family

ID=13103522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4059098A Pending JPH05220816A (en) 1992-02-14 1992-02-14 Manufacture of corrugated pipe made of synthetic resin

Country Status (1)

Country Link
JP (1) JPH05220816A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07205329A (en) * 1994-01-13 1995-08-08 Sekisui Chem Co Ltd Synthetic resin pipe and its manufacture
JP2002345950A (en) * 2001-05-25 2002-12-03 Kawasumi Lab Inc Ectosomatic circulation circuit, components for ectosomatic circulation circuit, method and device for producing the same
JP2008311070A (en) * 2007-06-14 2008-12-25 Kojima Press Co Ltd Exhaust gas tube made of resin

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07205329A (en) * 1994-01-13 1995-08-08 Sekisui Chem Co Ltd Synthetic resin pipe and its manufacture
JP2002345950A (en) * 2001-05-25 2002-12-03 Kawasumi Lab Inc Ectosomatic circulation circuit, components for ectosomatic circulation circuit, method and device for producing the same
JP4570281B2 (en) * 2001-05-25 2010-10-27 川澄化学工業株式会社 Device for manufacturing component for extracorporeal circuit and method for manufacturing component for extracorporeal circuit
JP2008311070A (en) * 2007-06-14 2008-12-25 Kojima Press Co Ltd Exhaust gas tube made of resin

Similar Documents

Publication Publication Date Title
CN102305316B (en) Internal rib-reinforced outer corrugated plastic wound structural wall pipe and manufacturing method thereof
CA2223520C (en) Method and apparatus of forming profiled pipe
US6764627B2 (en) Method of making corrugated part
CA2074686A1 (en) Process and apparatus for producing elongated body elastic modulus changing type
CN1316609A (en) Flexible hose
DK0482277T3 (en) Process for producing a pipe section, a pipe section and a connection between two pipe sections
US5429398A (en) Coupling for ribbed pipe
MY116576A (en) Method of producing inflation film, apparatus therefor and molded articles thereof.
JPH05220816A (en) Manufacture of corrugated pipe made of synthetic resin
US7517210B1 (en) Apparatus for the manufacture of compound pipes
CN204477528U (en) A kind of steel plastic compount screw thread bellows
KR940009011B1 (en) Method and apparatus for manufacturing ribed pipe
JPH07171882A (en) Manufacture of flexible hose and flexible hose
JP2631887B2 (en) Apparatus for molding plastic pipes having solid lateral ribs on the outer surface, equipment with such apparatus and method for molding plastic pipes
EP1379377B1 (en) Molding apparatus with reciprocating mold tunnel capable of forming different products shapes
JPS5838119A (en) Apparatus for producing synthetic resin plate
JP3560354B2 (en) Mold in extrusion molding machine
US6877976B2 (en) Molding die for ribbed pipe
JPS59220334A (en) Continuous prepartion of double pipe made of synthetic resin
JP3514747B2 (en) Bellows hose for washing machine
JP2002113772A (en) Method and apparatus for molding resin pipe
JP2001235072A (en) Rib-plane converter joint and method of manufacturing the same
CN1715037A (en) Method for producing thermoplastic polyurethane elastic belt and traction machine special for said method
JPH1170563A (en) Method and device for manufacturing synthetic resin tube
JP2000242100A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050208

A977 Report on retrieval

Effective date: 20070823

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20080415

Free format text: JAPANESE INTERMEDIATE CODE: A131

A601 Written request for extension of time

Effective date: 20080715

Free format text: JAPANESE INTERMEDIATE CODE: A601

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080730

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080814

A602 Written permission of extension of time

Effective date: 20080819

Free format text: JAPANESE INTERMEDIATE CODE: A602

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080916

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20091030

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20121120

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

LAPS Cancellation because of no payment of annual fees