JPH0521966B2 - - Google Patents

Info

Publication number
JPH0521966B2
JPH0521966B2 JP60055534A JP5553485A JPH0521966B2 JP H0521966 B2 JPH0521966 B2 JP H0521966B2 JP 60055534 A JP60055534 A JP 60055534A JP 5553485 A JP5553485 A JP 5553485A JP H0521966 B2 JPH0521966 B2 JP H0521966B2
Authority
JP
Japan
Prior art keywords
weight
magnesia
brick
bricks
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60055534A
Other languages
Japanese (ja)
Other versions
JPS61213317A (en
Inventor
Hideo Adachi
Toshihiro Isobe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harima Ceramic Co Ltd
Original Assignee
Harima Ceramic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harima Ceramic Co Ltd filed Critical Harima Ceramic Co Ltd
Priority to JP60055534A priority Critical patent/JPS61213317A/en
Publication of JPS61213317A publication Critical patent/JPS61213317A/en
Publication of JPH0521966B2 publication Critical patent/JPH0521966B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

【発明の詳細な説明】 産業上の利用分野: 本発明は、溶融金属の脱ガス処理に使用する容
器にあつて、Cr2O3含有量が格段に高いダイレク
トボンド マグネシアクロム質煉瓦を内張り耐火
材として用いることにより耐用性を著しく向上さ
せた真空脱ガス処理容器に係るものである。
[Detailed Description of the Invention] Industrial Field of Application: The present invention relates to a container used for degassing molten metal, which is lined with direct bond magnesia chromium bricks with a significantly high Cr 2 O 3 content and is fireproof. This relates to a vacuum degassing treatment container whose durability has been significantly improved by using it as a material.

発明の背景: 真空脱ガス処理はRH法又はDH法が採用され、
何れの場合も初期には溶鋼を真空下で処理するこ
とにより、水素等の溶鋼に有害な夾雑成分を除去
し、すぐれた品質の高級鋼を製造することを目的
として行われてきたが、最近ではその効果を利用
するための応用範囲が拡大し、特に炭素量の調
整、溶鋼の温度若しくは成分の均一性を向上させ
ることに重点がおかれ、これらにより連続鋳造作
業の安定・効率化に利用されている。
Background of the invention: The RH method or the DH method is adopted for vacuum degassing treatment.
In both cases, the initial purpose was to process molten steel under vacuum to remove harmful impurities such as hydrogen and produce high-grade steel of excellent quality. Now, the range of applications for making use of this effect has expanded, with particular emphasis on adjusting the amount of carbon and improving the uniformity of the temperature or composition of molten steel, which can be used to stabilize and improve the efficiency of continuous casting operations. has been done.

そして、これらの活用性を増大すべく容器の耐
用性を高めるための有効な材質として、たとえ
ば、RH真空脱ガス容器の内張材としてはダイレ
クトボンド マグネシアクロム質煉瓦が最も多く
用いられている。
As an effective material for enhancing the durability of containers to increase their utility, for example, direct bond magnesia chromium bricks are most often used as lining materials for RH vacuum degassing containers.

ダイレクトボンドマグネシアクロム質煉瓦は高
純度のマグネシアクリンカー、クロム鉄鉱、酸化
クロム、電融マグネシアクリンカー等の混合物を
成形し、1700℃以上の高温焼成した煉瓦である。
Direct bond magnesia chromium bricks are bricks made from a mixture of high-purity magnesia clinker, chromite, chromium oxide, electrofused magnesia clinker, etc., and fired at a high temperature of 1700℃ or higher.

この煉瓦の特色は高純度組成の配合物を高温焼
成することによつて得られるダイレクトボンド
(直接結合)といわれる堅固な組織を有している。
一般の結合はシリケートボンド(珪酸塩結合)と
いわれ、粒子間にシリケートが連続的に存在して
いるのに対し、ダイレクトボンドではシリケート
が存在しないかあるいは孤立的に存在する。この
ように結合組織が異なるため、ダイレクトボンド
マグネシアクロム質煉瓦は優れた熱間特性を有す
る。ダイレクトボンドは高温下でクロム鉄鉱や酸
化クロムに由来するFe,Cr,Al成分がマグネシ
ア粒子内へ移動(固相拡散)し、冷却にともなつ
て二次スピネルとして析出する際、粒子間を充填
するため生成する。従来のダイレクトボンドマグ
ネシアクロム質煉瓦のCr2O3含有量をみると9〜
20重量%のものが使用されていた。
This brick is characterized by a strong structure called direct bond, which is obtained by firing a high-purity compound at high temperatures.
A general bond is called a silicate bond, and silicate exists continuously between particles, whereas in a direct bond, silicate does not exist or exists isolated. Because of these different connective structures, direct bonded magnesia chromium bricks have excellent hot properties. In direct bonding, Fe, Cr, and Al components derived from chromite and chromium oxide move into magnesia particles (solid phase diffusion) under high temperatures, and when they precipitate as secondary spinel as they cool, they fill the spaces between the particles. Generate to do. The Cr2O3 content of conventional direct bonded magnesia chromium bricks is 9~9.
20% by weight was used.

従来技術: この種の煉瓦の物性は、マグネシアクリンカー
とクロム鉄鉱とは熱間での膨張・収縮率に差があ
るために粒界において微亀裂を生じ、これが熱応
力を吸収するため耐スポール性は良好である。ま
た、焼結温度が高いため強度特性にすぐれてい
る。さらに高融点のマグネシアとスラグ浸透を防
止するCr2O3組成原料との組合せであるため耐食
性にもすぐれている。
Conventional technology: The physical properties of this type of brick are that magnesia clinker and chromite have different thermal expansion and contraction rates, which causes microcracks at the grain boundaries, which absorb thermal stress, resulting in poor spalling resistance. is in good condition. Also, because the sintering temperature is high, it has excellent strength properties. Furthermore, it has excellent corrosion resistance because it is a combination of magnesia with a high melting point and Cr 2 O 3 composition raw material that prevents slag penetration.

ところで、真空脱ガス容器の内張り耐火材の損
傷は、激しく流動する溶鋼に起因する摩耗損傷、
熱スポールにより生じた背面亀裂からの剥ぎ取り
損傷及び鉄酸化物を主体とした容器内スラグによ
る化学的溶損が複合した形で進行するが、このよ
うな損傷に対しダイレクトボンド マグネシアク
ロム質煉瓦は、上記のごとく強度、耐スポール性
及び耐食性がすぐれているため、良好な耐用性を
示し、その結果、真空脱ガス容器の内張り耐火材
としてはほぼ全部位にわたり適用されている。
By the way, damage to the refractory lining of a vacuum degassing container is caused by abrasion damage caused by violently flowing molten steel,
Direct-bond magnesia chromium bricks are effective against such damage, which progresses as a combination of peeling damage from cracks on the back surface caused by thermal spalls and chemical erosion caused by slag inside the container, which is mainly composed of iron oxides. As mentioned above, it has excellent strength, spalling resistance, and corrosion resistance, so it shows good durability, and as a result, it is used as a refractory lining material for vacuum degassing containers in almost all parts.

さらに、最近の傾向として鋼の高級化が進み、
脱ガス処理容器内への各種添加物(たとえば脱硫
剤又は合金成分等)の増大、長時間にわたる処
理、従来法よりも高温域での操業等、使用条件が
ますます苛酷となり且つ多様化している。又一方
では脱ガス処理を行なう鋼種の比率が増加しつつ
あり、脱ガス処理容器の安定及び長時間連続使用
の実績が強く求められ、その対応として内張り耐
火煉瓦の耐用性を向上させる要望が高まつてき
た。
Furthermore, as a recent trend, the quality of steel has progressed,
The usage conditions are becoming increasingly harsh and diversified, such as increasing the amount of various additives (for example, desulfurization agents or alloy components) in the degassing treatment container, long processing times, and operation at higher temperatures than conventional methods. . On the other hand, the proportion of steel types that undergo degassing treatment is increasing, and there is a strong demand for stable degassing treatment containers and a track record of long-term continuous use.As a response to this, there is a strong demand for improving the durability of lining refractory bricks. I've been praying.

発明の目的: 本発明は斯かる現況に鑑み、真空脱ガス処理容
器の使用実績を、先決となる内張り耐火煉瓦の耐
久性の向上により解決せんとしてなされたもの
で、試験及び実機テストを重ねた結果得られた知
見に基づき、煉瓦中のCr2O3含有量を従来例を遥
かに上まわる30〜45重量%、見掛気孔率を17%以
下とするダイレクトボンド マグネシアクロム質
煉瓦を得て、それにより内張りした耐用性にすぐ
れた真空脱ガス処理容器の提供を目的としてい
る。
Purpose of the invention: In view of the current situation, the present invention has been made to solve the problem of the use of vacuum degassing processing containers by first improving the durability of the lining refractory bricks, and has undergone repeated tests and actual machine tests. Based on the knowledge obtained, we obtained a direct bond magnesia chromium brick with a Cr 2 O 3 content of 30 to 45% by weight, which is far higher than conventional bricks, and an apparent porosity of 17% or less. The purpose of the present invention is to provide a vacuum degassing treatment container lined with a vacuum degassing treatment container having excellent durability.

発明の構成・作用: 前記のごとく、従来の脱ガス処理容器用内張り
煉瓦のCr2O3含有量は9〜20重量%の範囲にある
ものが多く比較的低いCr2O3組成に設定されてい
る。この理由は、Cr2O3成分は真空下で蒸発する
ために、煉瓦組成にあつて組織不安定をもたらす
のを抑止するためであり、脱ガス処理容器の内張
り煉瓦として最も大量に使用されてきたCr2O3
有量10重量%、見掛け気孔率16.5%のダイレクト
ボンド煉瓦の容器使用前後の化学組成変化をみて
も、煉瓦成分中Cr2O3成分のみが選択的に減少す
ることが知られている。また、煉瓦中のCr2O3
MgO比が変化した時の熱間強度、耐食性及び耐
スポール性の変化を追跡し、Cr2O3/MgO比が
0.1〜0.15のとき、すなわち高MgO、低Cr2O3組成
であるときが脱ガス処理容器によいとされていた
のである。
Structure and operation of the invention: As mentioned above, the Cr 2 O 3 content of conventional lining bricks for degassing treatment vessels is often in the range of 9 to 20% by weight, and the Cr 2 O 3 composition is set to be relatively low. ing. The reason for this is to prevent the Cr2O3 component from causing structural instability in the brick composition since it evaporates under vacuum, and is used in the largest amount as a lining brick for degassing processing vessels. Looking at the changes in the chemical composition of direct bonded bricks with a Cr 2 O 3 content of 10% by weight and an apparent porosity of 16.5% before and after container use, it was found that only the Cr 2 O 3 component in the brick components was selectively reduced. It is being In addition, Cr 2 O 3 /
We tracked the changes in hot strength, corrosion resistance, and spalling resistance as the MgO ratio changed, and determined that the Cr 2 O 3 /MgO ratio
It was thought that a value of 0.1 to 0.15, that is, a high MgO and low Cr 2 O 3 composition, was good for a degassing treatment vessel.

しかし、脱ガス処理容器が現在のごとき苛酷な
使用条件におかれてみると、従来の常識的な低
Cr2O3組成の内張り煉瓦では耐用性が追随でき
ず、逆にCr2O3の含有量が30〜45重量%の高
Cr2O3組成の内張り煉瓦が充分な耐用性をもたら
すことを、本発明者らは数次の試験を通じて確認
したのである。
However, when degassing containers are placed under the harsh conditions of use that they are currently in, it becomes clear that the conventional
Lining bricks with a Cr 2 O 3 composition cannot match the durability, and conversely, lining bricks with a Cr 2 O 3 content of 30 to 45% by weight cannot match the durability.
Through several tests, the present inventors confirmed that the lining brick having the Cr 2 O 3 composition provides sufficient durability.

すなわち、耐食性(比)のテーブルテストを、
回転侵食性で鋼60%、スラグ(CaO:SiO2=3)
40%の溶鋼を用い1700℃×5時間の条件で行な
い、同時に実機による耐用性(比)と対応させた
結果、RH脱ガス処理容器の耐用性は耐食性との
相関性が高く、耐用性のすぐれた容器を得るため
には特に内張り煉瓦の耐食性向上に注意しなけれ
ばならないことを知つた。そして耐食性について
重点的に種種検討の結果、内張り煉瓦として最適
なダイレクトボンド マグネシアクロム質煉瓦で
はCr2O3含有量が30〜45重量%の範囲で耐食性が
最も改善されることを現認した。第1図はCr2O3
含有量と耐用性(回転侵食溶損比)との関連を示
すグラフで、耐用性の最善状態が得られるCr2O3
含有量の好適範囲(A)を示している。第1図のグラ
フにみる傾向が把握された適用煉瓦はマグネシア
クリンカー、クロム鉄鉱の混合物に酸化クロム及
び/又は電融マグネシアクロムクリンカーを添加
した配合物を成形し、1700℃以上で焼成した煉瓦
であつて、該煉瓦のCr2O3含有量が30〜45重量%
の組成を有している。この電融マグネシアクロム
は50重量%を超して配合されると、煉瓦の耐スポ
ール性が大巾に低下し、耐用上逆効果となる。ま
た、焼成温度が1700℃よりも低い場合には見掛け
気孔率が17%を上回り、粗密度の影響が大きくな
るためCr2O3含有量により耐食性を支配すること
が困難となるので、1700℃以上の高温焼成により
気孔率17%以下を確保できる煉瓦であることが要
件となる。
In other words, the table test of corrosion resistance (ratio)
Rotary erosion, 60% steel, slag (CaO:SiO 2 = 3)
The test was carried out using 40% molten steel at 1700℃ for 5 hours, and at the same time, the durability (ratio) of the RH degassing treatment container was compared with that of an actual machine. We learned that in order to obtain superior containers, we must pay particular attention to improving the corrosion resistance of the lining bricks. As a result of focusing on various types of corrosion resistance, it was found that direct bond magnesia chromium bricks, which are most suitable for lining bricks, have the highest corrosion resistance when the Cr 2 O 3 content is in the range of 30 to 45% by weight. Figure 1 shows Cr 2 O 3
This is a graph showing the relationship between content and durability (rotational erosion erosion ratio). Cr 2 O 3 provides the best durability.
The preferred range (A) of content is shown. The applicable bricks for which the trends shown in the graph in Figure 1 have been grasped are those made by molding a mixture of magnesia clinker and chromite with chromium oxide and/or fused magnesia chromium clinker added, and firing at a temperature of 1700°C or higher. The Cr 2 O 3 content of the brick is 30 to 45% by weight.
It has a composition of If this electrofused magnesia chromium is blended in an amount exceeding 50% by weight, the spalling resistance of the brick will be greatly reduced, which will have an adverse effect on the durability. In addition, if the firing temperature is lower than 1700℃, the apparent porosity will exceed 17% and the influence of coarse density will become large, making it difficult to control corrosion resistance by the Cr2O3 content. The brick must be able to maintain a porosity of 17% or less through the above-mentioned high-temperature firing process.

発明の実施例: 以下、本発明の実施の幾例かを、従来品と対比
しつつ説明する。
Embodiments of the Invention: Hereinafter, some embodiments of the present invention will be described in comparison with conventional products.

〔実施例 1〕 容量80tのRH真空脱ガス処理容器の側壁部位
に、 (1) マグネシアクリンカー70重量%、クロム鉄鉱
30重量%にバインダーを加えて混練成形後1755
℃で焼成したものでCr2O3含有量10重量%、見
掛気孔率17.5%の従来の煉瓦。
[Example 1] On the side wall of a RH vacuum degassing treatment container with a capacity of 80 tons, (1) 70% by weight of magnesia clinker and chromite.
1755 after kneading and molding by adding binder to 30% by weight
Conventional brick fired at ℃, Cr2O3 content 10% by weight, apparent porosity 17.5%.

(2) マグネシアクリンカー50重量%、クロム鉄鉱
50重量%、酸化クロム5重量%(外掛)にバイ
ンダーを加えて混練成形後1800℃で焼成したも
のでCr2O3含有量32.3重量%、見掛気孔率16.6
%の本発明に適用する煉瓦。
(2) Magnesia clinker 50% by weight, chromite
50% by weight, 5% by weight of chromium oxide (outer layer) with a binder added, kneaded and molded, and fired at 1800°C. Cr2O3 content: 32.3% by weight, apparent porosity : 16.6
% of bricks applied to the present invention.

を張り分けて内張りを形成し、溶鋼の脱ガス処理
を行つた。310ch使用後の損傷速度比は、(1)が1.2
mm/ch、(2)が0.5mm/chで、本発明の構成をもつ
真空脱ガス処理容器は、従来例に比べて2倍以上
の耐用性を有していることが判る。
The inner lining was formed by separating the molten steel and degassing the molten steel. The damage rate ratio after using 310ch is (1) 1.2
mm/ch, (2) is 0.5 mm/ch, and it can be seen that the vacuum degassing treatment container having the structure of the present invention has more than twice the durability as compared to the conventional example.

〔実施例 2〕 容量110tのRH真空脱ガス処理容器の側壁部位
に、 (3) マグネシアクリンカー35重量%、クロム鉄鉱
15重量%、酸化クロム3重量%(外掛)、電融
マグネシアクロムクリンカー50重量%にバイン
ダーを加えて混練成形後1800℃で焼成したもの
でCr2O3含有量16.5重量%、見掛気孔率15.0%
の従来の煉瓦。
[Example 2] On the side wall of a RH vacuum degassing treatment container with a capacity of 110 tons, (3) 35% by weight of magnesia clinker and chromite.
15% by weight, 3% by weight of chromium oxide (outer layer), 50% by weight of electrofused magnesia chromium clinker, mixed with a binder, kneaded and molded, and fired at 1800°C. Cr2O3 content: 16.5% by weight , apparent porosity. 15.0%
traditional brick.

(4) マグネシアクリンカー25重量%、クロム鉄鉱
50重量%、酸化クロム5重量%(外掛)、電融
マグネシアクロムクリンカー25重量%にバイン
ダーを加えて混練成形後1800℃で焼成したもの
でCr2O3含有量37.5重量%、見掛気孔率16.5%
の本発明に適用する煉瓦。
(4) Magnesia clinker 25% by weight, chromite
50% by weight, 5% by weight of chromium oxide (outer layer), 25% by weight of electrofused magnesia chromium clinker, kneaded and molded with a binder and fired at 1800°C. Cr2O3 content: 37.5% by weight, apparent porosity. 16.5%
A brick applied to the present invention.

を張り分けて内張りを形成し、溶鋼の脱ガス処理
を行なつた。450ch使用後の損傷速度比は、(3)が
0.9mm/ch、(4)が0.2mm/chで、本発明の構成をも
つ真空脱ガス処理容器は、従来例に比べ4倍以上
の耐用性を有していることが判る。特にこの実施
例は見掛気孔率のみならず、Cr2O3含有量が本発
明の構成要件を満さないと耐用性の向上が望めな
いことを示している。
The molten steel was degassed by dividing the steel to form an inner lining. The damage rate ratio after using 450 channels is (3).
0.9 mm/ch, (4) is 0.2 mm/ch, and it can be seen that the vacuum degassing processing container having the configuration of the present invention has a durability more than four times that of the conventional example. In particular, this example shows that unless not only the apparent porosity but also the Cr 2 O 3 content satisfies the constituent requirements of the present invention, no improvement in durability can be expected.

発明の効果: 以上の基本並びに実機についての試験に基づく
成果としての、Cr2O3含有量30〜45重量%で且つ
気孔率17%以下としたダイレクトボンド マグネ
シアクロム質煉瓦を用いて内張りを形成した真空
脱ガス処理容器は、上記実施例にみるごとく所期
の効果が得られ、耐食性の改善による大巾な耐用
性向上が達成されたのである。
Effects of the invention: The inner lining is formed using direct bond magnesia chromium bricks with a Cr 2 O 3 content of 30 to 45% by weight and a porosity of 17% or less, as a result of the above basics and tests on actual machines. As seen in the above examples, the vacuum degassing treatment container achieved the desired effects and achieved a significant improvement in durability due to improved corrosion resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に適用する1実施例煉瓦におけ
るCr2O3含有量と回転侵食溶損比との関係を示す
グラフである。
FIG. 1 is a graph showing the relationship between the Cr 2 O 3 content and the rotary erosion loss ratio in a brick according to an embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 マグネシアクリンカー、クロム鉄鉱の混合物
に酸化クロム及び/又は電融マグネシアクロムク
リンカーを添加した混合物を成形し、1700℃以上
で焼成した煉瓦であつて、該煉瓦のCr2O3含有量
が30〜45重量%、見掛気孔率が17%以下のダイレ
クトボンドマグネシアクロム質煉瓦を用いて内張
りしたことを特徴とする真空脱ガス処理容器。
1 A brick made by molding a mixture of magnesia clinker and chromite to which chromium oxide and/or fused magnesia chromium clinker is added and firing at 1700°C or higher, where the Cr 2 O 3 content of the brick is 30 to 30. A vacuum degassing treatment container characterized by being lined with a direct bonded magnesia chromium brick having an apparent porosity of 45% by weight and 17% or less.
JP60055534A 1985-03-18 1985-03-18 Vessel for vacuum degassing treatment Granted JPS61213317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60055534A JPS61213317A (en) 1985-03-18 1985-03-18 Vessel for vacuum degassing treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60055534A JPS61213317A (en) 1985-03-18 1985-03-18 Vessel for vacuum degassing treatment

Publications (2)

Publication Number Publication Date
JPS61213317A JPS61213317A (en) 1986-09-22
JPH0521966B2 true JPH0521966B2 (en) 1993-03-26

Family

ID=13001390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60055534A Granted JPS61213317A (en) 1985-03-18 1985-03-18 Vessel for vacuum degassing treatment

Country Status (1)

Country Link
JP (1) JPS61213317A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5335713A (en) * 1976-09-14 1978-04-03 Kurosaki Refractories Co Magnesiaachromium direct bond brick
JPS53104613A (en) * 1976-09-17 1978-09-12 Kurosaki Refractories Co Thermal shockkresistant magnesite chrome rebonded bricks
JPS59190257A (en) * 1983-04-12 1984-10-29 ハリマセラミック株式会社 Magnesia chrome baked refractory brick

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5335713A (en) * 1976-09-14 1978-04-03 Kurosaki Refractories Co Magnesiaachromium direct bond brick
JPS53104613A (en) * 1976-09-17 1978-09-12 Kurosaki Refractories Co Thermal shockkresistant magnesite chrome rebonded bricks
JPS59190257A (en) * 1983-04-12 1984-10-29 ハリマセラミック株式会社 Magnesia chrome baked refractory brick

Also Published As

Publication number Publication date
JPS61213317A (en) 1986-09-22

Similar Documents

Publication Publication Date Title
US5506181A (en) Refractory for use in casting operations
JPH09202667A (en) Castable refractory for slide gate
CN109928770B (en) Preparation method of graphene refractory material for water gap
EP0020022B1 (en) Plastic refractories with fused alumina-chrome grog
JPH0521966B2 (en)
JPS58190868A (en) Non-baked refractories
CN112321284A (en) Aluminum-titanium composite refractory castable for iron-making blast furnace
JP4203157B2 (en) Magnesia refractory
JPS63218586A (en) Monolithic refractories
JP2518559B2 (en) Refractory materials and their preparation method
JPS6323149B2 (en)
JPS58120567A (en) Magnesia-carbonaceous refractory having high durability at high temperature
JPH0437466A (en) Non-calcined plate brick for sliding nozzle
JPS6077162A (en) Sliding nozzle plate
JP3176836B2 (en) Irregular refractories
JPH04342454A (en) Magnesia-containing unburned refractory
JPH06172020A (en) Magnesia component-containing refractory material
JPH0543306A (en) Burnt refractory of magnesia-chromia
JPH07291716A (en) Basic refractory
JPH0483755A (en) Alumina-chromia-zirconia refractory brick
JP3209842B2 (en) Irregular refractories
JPH03205348A (en) Magnesia-carbon brick
JPH03237053A (en) Refractory
JPH07291710A (en) Graphite containing refractory
JPH0375275A (en) Magnesian refractory mortar