JPH0521843A - Semiconductor material having single heterojunction - Google Patents

Semiconductor material having single heterojunction

Info

Publication number
JPH0521843A
JPH0521843A JP3198850A JP19885091A JPH0521843A JP H0521843 A JPH0521843 A JP H0521843A JP 3198850 A JP3198850 A JP 3198850A JP 19885091 A JP19885091 A JP 19885091A JP H0521843 A JPH0521843 A JP H0521843A
Authority
JP
Japan
Prior art keywords
layer
gaasp
substrate
type
gainp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3198850A
Other languages
Japanese (ja)
Inventor
Kazuyuki Tadatomo
一行 只友
Osamu Toyama
修 遠山
Shinichi Watabe
信一 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP3198850A priority Critical patent/JPH0521843A/en
Publication of JPH0521843A publication Critical patent/JPH0521843A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To provide a material for a semiconductor element such as a high luminance LED, LD, etc., having a high luminous efficiency, an excellent current diffusion. CONSTITUTION:An n-type Te-doped GaAsP active layer 4 and a p-type Zn-doped GaInP clad layer 5 are formed on an n-type GaAsP substrate 3'. The surface of the layer 4 becomes flat, and low dislocation density. Ohmic properties between the layer 5 and an electrode are improved. Since the clad layer of a thick film can be grown by a liquid growth, a thickness from the electrode to a p-n junction can be sufficiently obtained as a current diffused layer. Since Zn dopant has a large diffusion coefficient, the p-n junction is formed at the inside of the substrate having more excellent crystallinity than that of the surface to improve electric characteristics, and high luminance can be expected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、直接遷移型のIII −V
族系半導体結晶材料よりなる発光ダイオード(LED)
や半導体レーザ(LD)などの半導体素子の材料に関す
る。
The present invention relates to a direct transition type III-V
Light-emitting diode (LED) made of group-based semiconductor crystal material
And materials for semiconductor devices such as semiconductor lasers (LD).

【0002】[0002]

【従来の技術】赤色〜緑色の光を放射するLEDとし
て、例えば図5に示すようなホモ接合のものがある。こ
のホモ接合型のLEDでは、n形GaAsまたはGaP基板10
0 上にGaAsP層101 を気相成長させ、ドーパントを拡
散,イオン注入などの方法によりドーピングしてpn接
合を形成している。
2. Description of the Related Art As an LED that emits red to green light, there is, for example, a homojunction LED as shown in FIG. In this homojunction LED, n-type GaAs or GaP substrate 10
A GaAsP layer 101 is vapor-phase-grown on 0, and a pn junction is formed by doping the dopant by a method such as diffusion or ion implantation.

【0003】[0003]

【発明が解決しようとする課題】ところで、ドーピング
により反転したp形GaAsP層102 の厚さ(即ち、電極か
らpn接合界面までの距離)は、電流拡散性の観点から
25〜45μm程度が望ましい。しかしながら、気相拡散,
イオン注入などの方法では3〜5μm程度が限度であ
り、上記のような膜厚を確保するのは困難である。その
ため、電流拡散性が悪くなり、電極近傍でしか発光せず
輝度低下の原因となっていた。また、気相拡散は高温条
件下で行われるため、熱によるV族元素の飛散を防ぐ必
要があるが、V族元素の蒸気圧制御は難しい。一方、イ
オン注入は低温条件下で行えるためV族元素の蒸気圧制
御は比較的容易であるが、コスト高,イオン打ち込みに
よる結晶性の悪化など避けられない問題がある。
By the way, the thickness of the p-type GaAsP layer 102 inverted by doping (that is, the distance from the electrode to the pn junction interface) is determined from the viewpoint of current diffusivity.
It is preferably about 25 to 45 μm. However, vapor diffusion,
With the method such as ion implantation, the limit is about 3 to 5 μm, and it is difficult to secure the above film thickness. Therefore, the current diffusivity deteriorates, and light is emitted only in the vicinity of the electrodes, which causes a decrease in brightness. Further, since vapor phase diffusion is performed under high temperature conditions, it is necessary to prevent the V group element from scattering due to heat, but it is difficult to control the vapor pressure of the V group element. On the other hand, since the ion implantation can be performed under low temperature conditions, it is relatively easy to control the vapor pressure of the group V element, but there are unavoidable problems such as high cost and deterioration of crystallinity due to ion implantation.

【0004】さらに、仮にV族元素の蒸気圧を最適化し
て拡散を行い、良好なpn接合を形成したとしても、p
n接合上部にあるp型GaAsP層102は発光に対して吸収
層となるため、発光(活性)層で得られた光を効率良く
外部に取り出すことができなかった。それと同時に、内
部量子効率もホモ接合である限り、その高効率化には限
度があり高輝度化は望めなかった。以上の実情に鑑み、
本発明の目的は、発光効率が高く、電流拡散の良好な高
輝度LED,LDなどの半導体素子のための材料を提供
することにある。
Further, even if the vapor pressure of the group V element is optimized and diffused to form a good pn junction, p
Since the p-type GaAsP layer 102 on the n-junction serves as an absorption layer for light emission, the light obtained from the light emission (active) layer could not be efficiently extracted to the outside. At the same time, as long as the internal quantum efficiency is homojunction, there is a limit to the improvement in efficiency, and it is not possible to expect high brightness. Considering the above facts,
An object of the present invention is to provide a material for a semiconductor device such as a high-brightness LED or LD which has high luminous efficiency and good current diffusion.

【0005】[0005]

【課題を解決するための手段】上記目的を達成すべく鋭
意研究の結果、本発明者らは下記の半導体材料を開発す
るに到った。即ち、本発明の半導体材料は、GaPまたは
GaAs基板上に、少なくともGaAsP系層およびAlGaPまた
はGaInP系層が順次形成されてなることを特徴とするも
のであり、その中でも好ましい態様は、GaPまたはGa
As基板上に、少なくともGaAsP活性層およびドーパント
含有GaInPクラッド層が順次形成されてなるもの、Ga
P基板上にNまたはOドープGaP活性層およびドーパン
ト含有AlGaPクラッド層が少なくとも順次形成されてな
るもの、クラッド層のドーパントがZnドーパントのも
のである。
As a result of earnest research to achieve the above object, the present inventors have developed the following semiconductor materials. That is, the semiconductor material of the present invention is GaP or
It is characterized in that at least a GaAsP-based layer and an AlGaP or GaInP-based layer are sequentially formed on a GaAs substrate. Among them, a preferred embodiment is GaP or Ga.
At least a GaAsP active layer and a dopant-containing GaInP clad layer are sequentially formed on an As substrate, Ga
An N- or O-doped GaP active layer and a dopant-containing AlGaP clad layer are formed at least sequentially on a P substrate, and the dopant of the clad layer is a Zn dopant.

【0006】GaAsP系層とは、GaAsx 1-x (0x<
1)で表わされる一定組成の混晶を意味し、活性(発
光)層となり得るものである。尚、GaAsP系層が間接遷
移領域の場合には、アイソエレクトロニック・センター
としてN,Oなどのドーパントを含有させて、活性(発
光)層とする。
The GaAsP-based layer means GaAs x P 1-x (0 < x <
It means a mixed crystal having a constant composition represented by 1) and can be an active (light emitting) layer. When the GaAsP-based layer is an indirect transition region, a dopant such as N or O is contained as an isoelectronic center to form an active (light emitting) layer.

【0007】このGaAsP系層と基板との間に、格子不整
合を緩和するためのGaAsP組成傾斜層を介在させてもよ
い。GaAsP組成傾斜層は、例えばGaP基板上に成長させ
る場合には、GaPのモル分率の高い混晶から徐々に低い
混晶へと、また、GaAs基板の場合には、逆にGaPのモル
分率の低い混晶から徐々に高い混晶へと階段的な多層構
造或いは連続的な組成勾配構造の層を成長させることに
より、形成される。尚、GaP基板上にGaAsP組成傾斜層
およびGaAsP系一定組成層を順次成長させたGaAsP基板
が市販されており、このGaAsP基板上にさらにGaAsP活
性層を成長させてもよいが、GaAsP基板表面のGaAsP系
層を活性層とすることもできる。
A GaAsP composition gradient layer for relaxing lattice mismatch may be interposed between the GaAsP-based layer and the substrate. The GaAsP compositionally graded layer, for example, grows on a GaP substrate from a mixed crystal with a high GaP mole fraction to a gradually lower mixed crystal, and in the case of a GaAs substrate, on the contrary, with a GaP mole fraction. It is formed by growing a layer having a stepwise multi-layer structure or a continuous composition gradient structure from a mixed crystal having a low rate to a mixed crystal having a gradually higher rate. A GaAsP substrate in which a GaAsP composition gradient layer and a GaAsP constant composition layer are sequentially grown on a GaP substrate is commercially available, and a GaAsP active layer may be further grown on this GaAsP substrate. The GaAsP-based layer can also be used as the active layer.

【0008】GaAsP組成傾斜層およびGaAsP系層をエピ
タキシャル成長させる方法として、従来既知の気相成長
(クロライド法、ハライド法)、MOVPE(有機金属
気相エピタキシャル成長法)、MBE(分子線エピタキ
シャル成長法)、LPE(液相エピタキシャル成長法)
から選ばれる方法が採用され、他にyo−yo溶質供給
法(特開昭63-81989号公報、特願平2-80330 号明細書参
照)によっても成長させることができる。
As a method for epitaxially growing a GaAsP compositionally graded layer and a GaAsP-based layer, conventionally known vapor phase growth (chloride method, halide method), MOVPE (organic metal vapor phase epitaxial growth method), MBE (molecular beam epitaxial growth method), LPE. (Liquid phase epitaxial growth method)
The method may be selected from among the methods described above, and the yo-yo solute supply method (see JP-A-63-81989 and Japanese Patent Application No. 2-80330) may also be used for growth.

【0009】AlGaP系層とはAly Ga1-y P(0<y<
1)で表わされる一定組成の混晶を、GaInP系層とはGa
zIn1-z P(0<z<1)で表わされる一定組成の混晶
を意味し、各々がクラッド層となり得るものである。Al
GaPおよびGaInP系層の混晶組成は、GaAsP系層に格子
整合するように調整する。具体的な混晶組成は、例えば
GaInP系層の場合、GaPのモル分率で表すと0.50〜1.0
0、好ましくは0.51〜1.00、より好ましくは0.60〜0.95
である。GaPのモル分率は所望の発光波長によって選択
される。
The AlGaP-based layer means Al y Ga 1-y P (0 <y <
The GaInP-based layer is a mixed crystal with a constant composition represented by 1)
It means a mixed crystal having a constant composition represented by z In 1 -z P (0 <z <1), and each can serve as a cladding layer. Al
The mixed crystal composition of the GaP and GaInP-based layers is adjusted so as to be lattice-matched with the GaAsP-based layers. A specific mixed crystal composition is, for example,
In the case of a GaInP-based layer, it is 0.50 to 1.0 when expressed by the mole fraction of GaP.
0, preferably 0.51 to 1.00, more preferably 0.60 to 0.95
Is. The GaP mole fraction is selected according to the desired emission wavelength.

【0010】本発明の半導体材料においては、GaAsP系
層が活性層、AlGaPおよびGaInP系層がクラッド層とな
り、そのヘテロ接合の界面がpn接合の界面となる場合
がある。従って、電極からpn接合界面までの距離(ク
ラッド層の厚さと等しくなることもある。)は、電流拡
散性を向上させる為には25μm以上あればよく、前述の
yo−yo溶質供給法によれば100 μmとすることもで
きる。しかし、通常のLPEの場合、一回の成長では45
μm程度が限度であり、また余りに厚膜であると発光を
吸収する恐れがある為、25〜45μm、好ましくは30〜40
μm程度とするのが適当である。以上の理由から、AlGa
PおよびGaInP系層は比較的厚く成長させる必要がある
為、AlGaPまたはGaInP系層の成長法は厚膜成長が容易
なLPEによることが望ましい。
In the semiconductor material of the present invention, the GaAsP-based layer may be the active layer, the AlGaP and GaInP-based layers may be the cladding layers, and the heterojunction interface thereof may be the pn junction interface. Therefore, the distance from the electrode to the pn junction interface (which may be equal to the thickness of the clad layer) may be 25 μm or more in order to improve the current diffusivity, which depends on the yo-yo solute supply method described above. For example, it can be 100 μm. However, in the case of normal LPE, it is 45 in one growth.
The limit is about 25 μm, and if the film is too thick, it may absorb luminescence, so it is 25 to 45 μm, preferably 30 to 40 μm.
It is suitable to set the thickness to about μm. For the above reasons, AlGa
Since the P and GaInP-based layers need to be grown relatively thick, the growth method of the AlGaP or GaInP-based layer is preferably LPE, which facilitates thick film growth.

【0011】AlGaPまたはGaInP系層をGaAsP系層上に
成長させるに際して、GaAsまたはGaP基板に基因する表
面モホロジーを改善すべく、GaAsP系層と平衡なGaAsP
系成長溶液を用いて液相成長を行なった後に、AlGaPま
たはGaInP系層を成長させるのが望ましい。この処理を
行なうことにより、ヘテロ接合の界面が平坦となり、電
気的特性も向上する。
When an AlGaP or GaInP-based layer is grown on a GaAsP-based layer, a GaAsP that is in equilibrium with the GaAsP-based layer in order to improve the surface morphology due to the GaAs or GaP substrate.
It is desirable to grow the AlGaP or GaInP-based layer after performing liquid phase growth using a system growth solution. By performing this treatment, the interface of the heterojunction becomes flat and the electrical characteristics are improved.

【0012】GaInP系層は、通常Inを溶媒として適当な
ドーパントを混入し、さらにGaとInPあるいはGaPとIn
Pを加えた溶液を作製して、この溶液を既知の手段によ
って基板上に順次成長させることができる。この際、In
溶媒中に加えるInPとGaPまたはGaとGaPの分量は、前
述した如く、これらの溶液から析出するGaInP系成長層
の混晶組成がGaPのモル分率で0.50〜1.00、好ましくは
0.51〜1.00、より好ましくは0.60〜0.95となるようにす
ればよい。
The GaInP-based layer usually contains In as a solvent and is mixed with an appropriate dopant, and further contains Ga and InP or GaP and In.
A solution containing P can be prepared, and this solution can be sequentially grown on the substrate by a known means. At this time, In
As described above, the amount of InP and GaP or Ga and GaP added to the solvent is such that the mixed crystal composition of the GaInP-based growth layer precipitated from these solutions is 0.50 to 1.00 in terms of GaP mole fraction, preferably
It may be 0.51 to 1.00, and more preferably 0.60 to 0.95.

【0013】GaAsP,AlGaPおよびGaInP系層にはドー
パントを混入することが望ましく、GaAsP系層にはSe,
Te,Sなどを5×1016〜5×1019cm-3程度、AlGaPおよ
びGaInP系層にはZn,Beなどを5×1016〜5×1018cm-3
程度ドーピングする。
It is desirable that a dopant is mixed in the GaAsP, AlGaP and GaInP based layers, and Se and
Te, S, etc. are 5 × 10 16 to 5 × 10 19 cm -3 , and AlGaP and GaInP-based layers are Zn, Be etc. 5 × 10 16 to 5 × 10 18 cm -3.
Dope to a degree.

【0014】ところで、GaAsP系層上にAlGaPまたはGa
InP系層を成長させる際に、成長開始迄の昇温や成長溶
液の均一化の際の加熱により、GaAsP系層の界面でAsや
Pの解離が生じる為、この界面(即ち、pn接合界面)
の結晶性の劣化が危惧される。そこで、AlGaPまたはGa
InP系層の成長溶液中にドーパントとしてZnを含有させ
る。Znドーパントは一般に拡散係数が大きいため、成長
中にGaAsP系層の内部にまで拡散し、pn接合がGaAsP
系層の表面から2〜3μm程度基板側に形成されること
となる。pn接合が形成されるGaAsP系層の内部は、表
面よりも結晶性が良好である為、結果的に電気的特性の
向上や高輝度が期待できる。従って、AlGaPおよびGaIn
P系層には、特にZnをドーピングすることが望ましいの
である。
By the way, AlGaP or Ga is formed on the GaAsP-based layer.
When growing an InP-based layer, As or P is dissociated at the interface of the GaAsP-based layer due to the temperature increase until the start of growth and the heating during the homogenization of the growth solution. )
There is concern about deterioration of crystallinity. Therefore, AlGaP or Ga
Zn is contained as a dopant in the growth solution of the InP-based layer. Since the Zn dopant generally has a large diffusion coefficient, it diffuses into the GaAsP-based layer during growth, and the pn junction is formed of GaAsP.
It will be formed on the substrate side by about 2 to 3 μm from the surface of the system layer. The inside of the GaAsP-based layer in which the pn junction is formed has better crystallinity than the surface, so that improvement in electrical characteristics and high brightness can be expected as a result. Therefore, AlGaP and GaIn
It is particularly desirable to dope the P-based layer with Zn.

【0015】[0015]

【実施例】以下、本発明に係る半導体材料を図面に基づ
いて詳細に説明する。図1は、n形GaAsP系基板3′上
にn形GaAsP系活性層4およびp形GaInP系クラッド層
5を成長させた本発明の半導体材料の構造を示し、図2
は、本発明の材料を製造する際に使用される結晶成長装
置の概略断面図を示す。
The semiconductor material according to the present invention will be described in detail below with reference to the drawings. FIG. 1 shows the structure of the semiconductor material of the present invention in which an n-type GaAsP-based active layer 4 and a p-type GaInP-based cladding layer 5 are grown on an n-type GaAsP-based substrate 3 '.
FIG. 3 shows a schematic sectional view of a crystal growth apparatus used when manufacturing the material of the present invention.

【0016】n形GaAsP系基板3′は、(100) または(1
11) の面方位のGaP(またはGaAs)基板1上に、GaPの
モル分率で表すと0.70〜0.05の混晶組成のGaAsP組成傾
斜層2およびGaAsP系一定組成層3を成長させたもので
あり、GaAsP系一定組成層3の混晶比は、設定したGaAs
P系活性層4の組成に格子整合する組成から一意に決ま
る。
The n-type GaAsP-based substrate 3'is (100) or (1
On the GaP (or GaAs) substrate 1 having the plane orientation of 11), a GaAsP composition gradient layer 2 and a GaAsP constant composition layer 3 having a mixed crystal composition of 0.70 to 0.05 in terms of GaP mole fraction are grown. Yes, the mixed crystal ratio of the GaAsP-based constant composition layer 3 is
It is uniquely determined from the composition that lattice-matches the composition of the P-based active layer 4.

【0017】このn形GaAsP基板3′を用いてスライド
ボード法によりn形TeドープGaAsP活性層4(以下単に
「活性層」ともいう。)およびp形ZnドープGaInPクラ
ッド層5(以下単に「クラッド層」ともいう。)を成長
させる。
Using this n-type GaAsP substrate 3 ', an n-type Te-doped GaAsP active layer 4 (hereinafter also referred to simply as "active layer") and a p-type Zn-doped GaInP clad layer 5 (hereinafter simply referred to as "clad" are formed by a slide board method. Also referred to as "layer").

【0018】図2に示す如き結晶成長装置のスライダ13
に、GaAsP基板3′をセットする。そして化学エッチン
グおよび洗浄によって清浄化した所定量のGa,GaAs,Ga
PおよびTeをスライドボート10の溶液溜11aに挿入す
る。同様に溶液溜11bには、所定量のIn,InP,GaPお
よびZnを挿入する。なお、溶液溜11a,11bに挿入する
材料として、それぞれ予め適当な方法を用いて充分に混
合したGa-As-P-Te ,In-Ga-P-Zn 合金を用いても差し
支えない。
The slider 13 of the crystal growth apparatus as shown in FIG.
Then, the GaAsP substrate 3'is set. And a certain amount of Ga, GaAs, Ga cleaned by chemical etching and cleaning
P and Te are inserted into the solution reservoir 11a of the slide boat 10. Similarly, a predetermined amount of In, InP, GaP and Zn is inserted into the solution reservoir 11b. As a material to be inserted into the solution reservoirs 11a and 11b, Ga-As-P-Te and In-Ga-P-Zn alloys which have been sufficiently mixed in advance by an appropriate method may be used.

【0019】具体的な仕込量の例を挙げれば、n形Teド
ープGaAsP活性層4においては、Ga3gに対してGaAs 2
38.8mg,GaP42.8mg,Te 0.01 〜0.1mg 、p形Znドープ
GaInPクラッド層5においては、In3gに対してInP 8
2.8 mg,GaP42.4mg,Zn 0.01 〜0.1 mgを仕込む。各々
の溶液溜11a,11bにこれらの材料を挿入した後、燐な
どの揮発を防止するためにフタ16を各々の溶液溜11a,
11bに取付ける。
To give a concrete example of the charged amount, in the n-type Te-doped GaAsP active layer 4, GaAs 2 is added to Ga 3 g.
38.8mg, GaP42.8mg, Te 0.01-0.1mg, p-type Zn doping
In the GaInP clad layer 5, InP 8 with respect to In 3 g
Charge 2.8 mg, GaP4 2.4 mg, and Zn 0.01-0.1 mg. After inserting these materials into the respective solution reservoirs 11a and 11b, a lid 16 is provided to prevent the volatilization of phosphorus and the like.
Install on 11b.

【0020】スライドボート10は、たとえばパラジウム
膜を透過させるなど適当な方法で精製された高純度水
素、あるいは高純度窒素やアルゴンなどの不活性ガスを
通じた石英管15内に設置されている。石英管15内に残留
酸素や水蒸気が存在しないよう、充分上記ガスを通じた
後、電気炉12によってそれぞれの層の成長温度より多少
高い温度、たとえば2〜20℃程度高い温度に当該成長用
材料を加熱し、かつその温度で一定時間(たとえば2〜
4時間)保つことによって、それぞれの成長用溶液の均
質化をはかる。
The slide boat 10 is installed in a quartz tube 15 through which high-purity hydrogen purified by a suitable method such as permeation of a palladium membrane or an inert gas such as high-purity nitrogen or argon is passed. After sufficiently passing the above gas so that residual oxygen or water vapor does not exist in the quartz tube 15, the growth material is heated to a temperature slightly higher than the growth temperature of each layer by the electric furnace 12, for example, about 2 to 20 ° C. higher. Heating and at that temperature for a certain period of time (for example 2 to
By homogenizing each growth solution for 4 hours.

【0021】しかる後、活性層の成長開始温度たとえば
820 ℃まで適当な速度0.01〜2.0 ℃/分で徐々に冷却す
る。この際、活性層4の成長用Ga溶液は、GaAsPが飽和
あるいはほぼ飽和に近い過飽和の状態となるように、仕
込み組成が調製されている。その後、スライダ操作棒17
を用いてスライダ13を動かし、GaAsP基板3′を溶液溜
11aの真下に移動させ、溶液溜11a内の成長溶液とGaAs
P基板3′とを接触させる。
Thereafter, the growth start temperature of the active layer, for example,
Gradually cool to 820 ° C at an appropriate rate of 0.01 to 2.0 ° C / min. At this time, the Ga solution for growth of the active layer 4 is prepared so that the GaAsP is in a saturated or supersaturated state close to saturation. After that, the slider operating rod 17
To move the slider 13 to collect the solution on the GaAsP substrate 3 '.
11A, the growth solution in the solution reservoir 11a and GaAs
The P substrate 3'is brought into contact.

【0022】溶液は適当な速度たとえば0.01〜2.0 ℃/
分で徐冷されているので、溶液中ではGaAsPが過飽和に
なり、それがGaAsP基板3′上に析出して、n形Teドー
プGaAsP活性層4が成長する。この活性層4が適当な厚
み、例えば15μm程度になった時点でスライダ13を動か
し、GaAsP基板3′を溶液溜11bの真下に移動させて、
p形ZnドープGaInPクラッド層5の成長を行なう。厚み
が所定の値、例えば35μm程度になった時点で再びスラ
イダ13を動かし、溶液溜11bの成長溶液をp形Znドープ
GaInPクラッド層5の表面から離れさせて、両者が接触
しないようにすることによって成長を終了させる。
The solution should be at a suitable rate, for example 0.01-2.0 ° C /
Since it is gradually cooled by a minute, GaAsP becomes supersaturated in the solution, which is deposited on the GaAsP substrate 3'and the n-type Te-doped GaAsP active layer 4 grows. When the active layer 4 has an appropriate thickness, for example, about 15 μm, the slider 13 is moved to move the GaAsP substrate 3'underneath the solution reservoir 11b.
The p-type Zn-doped GaInP cladding layer 5 is grown. When the thickness reaches a predetermined value, for example, about 35 μm, the slider 13 is moved again and the growth solution in the solution reservoir 11b is doped with p-type Zn.
The growth is terminated by separating the GaInP clad layer 5 from the surface so that they do not come into contact with each other.

【0023】上記の実施例においては、GaAsP基板3′
表面のGaAsP系一定組成層3と平衡なGaAsP系成長溶液
を用いて活性層4を成長させており、これによりヘテロ
接合の界面が平坦となり、電気的特性も向上する。
In the above embodiment, the GaAsP substrate 3 '
The active layer 4 is grown using a GaAsP-based growth solution that is in equilibrium with the GaAsP-based constant composition layer 3 on the surface, which makes the interface of the heterojunction flat and improves the electrical characteristics.

【0024】変更実施例として図3に示すように、GaAs
P基板3′上に直接p形ZnドープGaInPクラッド層5の
みを成長させた構造、即ちGaAsP系一定組成層3が活性
層となる構造とすることも可能である。この実施例の場
合、成長工程は一工程だけでよいという利点がある。
As a modified embodiment, as shown in FIG.
It is also possible to adopt a structure in which only the p-type Zn-doped GaInP cladding layer 5 is directly grown on the P substrate 3 ', that is, a structure in which the GaAsP-based constant composition layer 3 serves as an active layer. This embodiment has the advantage that only one growth step is required.

【0025】以上の実施例の場合、クラッド層5のZnド
ーパントは一般に拡散係数が大きいため、成長中にGaAs
P系層に拡散する。例えば図3のGaAsP一定組成層3
(GaAsP基板3′表面付近)へZnドーパントが拡散し
て、p形ZnドープGaAsP活性層6が形成される。GaAsP
基板3′表面よりも結晶性が良好な基板内部側にpn接
合が形成されることとなる為、電気的特性の向上や高輝
度が期待できる。また、液相成長法によるZnドーパント
の拡散は、気相成長法による場合に比して結晶性が良好
である。
In the above-mentioned embodiments, since the Zn dopant of the cladding layer 5 generally has a large diffusion coefficient, GaAs is not grown during the growth.
Diffuses in the P system layer. For example, the GaAsP constant composition layer 3 in FIG.
The Zn dopant is diffused into (near the surface of the GaAsP substrate 3 ') to form the p-type Zn-doped GaAsP active layer 6. GaAsP
Since the pn junction is formed on the inner side of the substrate having better crystallinity than the surface of the substrate 3 ', improvement in electrical characteristics and high brightness can be expected. Further, the diffusion of the Zn dopant by the liquid phase growth method has better crystallinity than that by the vapor phase growth method.

【0026】本発明においては、活性層となるGaAsP系
層の混晶比(x)を任意に選ぶことにより、波長領域が
555 〜700 nmの可視光が得られるが、xが0の場合に
は、GaInP層はクラッド層としては不適当であり、図4
に示すように、AlGaP層をクラッド層とする。
In the present invention, the wavelength region can be reduced by arbitrarily selecting the mixed crystal ratio (x) of the GaAsP-based layer as the active layer.
Although visible light of 555 to 700 nm can be obtained, when x is 0, the GaInP layer is unsuitable as a cladding layer.
As shown in, the AlGaP layer is used as the cladding layer.

【0027】以上の実施例においては、種子結晶基板と
してGaAsP の(100)面あるいは(111)面を使う例で説明
したが、その他任意の面を使用することができる。ま
た、オフ基板であってもジャスト基板であってもよい
が、望ましくは1〜5度のオフアングルを持った基板の
方が表面モホロジーは良好である。
In the above-mentioned embodiments, the case where the (100) plane or the (111) plane of GaAsP is used as the seed crystal substrate has been described, but any other plane can be used. Further, although it may be an off substrate or a just substrate, it is desirable that the substrate having an off angle of 1 to 5 has a better surface morphology.

【0028】[0028]

【発明の効果】本発明の半導体材料は、以上説明したよ
うに構成されているので、以下のような効果を奏する。
AlGaPおよびGaInP系層は、液相成長により層を厚く成
長させるのが容易であるから、電極からpn接合界面ま
での距離を調節して電流拡散性を向上させ、ひいては高
輝度化が可能となる。また、ヘテロ構造において、発光
波長より大きなバンドギャップのAlGaPおよびGaInP系
混晶を表面(クラッド)層としているため、活性層から
の発光を吸収せず注入率が高いことから、より高輝度化
が望める。
Since the semiconductor material of the present invention is constructed as described above, it has the following effects.
Since it is easy to grow the AlGaP and GaInP-based layers thick by liquid phase growth, the distance from the electrode to the pn junction interface can be adjusted to improve the current diffusivity, which in turn enables higher brightness. . Further, in the heterostructure, since AlGaP and GaInP mixed crystals having a bandgap larger than the emission wavelength are used as the surface (cladding) layer, the emission from the active layer is not absorbed and the injection rate is high, resulting in higher brightness. I can hope.

【0029】特に、クラッド層にZnをドーピングしたも
のは、ヘテロ接合界面よりも結晶性が良好なGaAsP基板
の内部にpn接合が形成されることとなり、高輝度化の
他に電気的特性の向上も期待できる。
Particularly, in the case where the cladding layer is doped with Zn, the pn junction is formed inside the GaAsP substrate having better crystallinity than the heterojunction interface, and the electrical characteristics are improved in addition to the high brightness. Can be expected.

【0030】その他、ドーパントを高濃度とすることが
可能であり、GaInPエピタキシャル層と電極との間の接
触抵抗を減少させることができる。従って、本発明の半
導体材料の上に電極を設けてLEDまたはLDを作製し
た場合、電極の密着性およびオーミック性が良好であ
り、その性能および信頼性を著しく向上させることがで
きる。
In addition, it is possible to increase the concentration of the dopant and reduce the contact resistance between the GaInP epitaxial layer and the electrode. Therefore, when an LED or LD is manufactured by providing an electrode on the semiconductor material of the present invention, the adhesion and ohmic property of the electrode are good, and the performance and reliability can be remarkably improved.

【0031】さらに、GaAsP基板の混晶比を適当に選択
することにより、多種多様な格子定数の基板を作製する
ことができ、様々な用途に応用できる。
Further, by properly selecting the mixed crystal ratio of the GaAsP substrate, substrates having a wide variety of lattice constants can be manufactured and applied to various uses.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る半導体素子材料の断面
図である。
FIG. 1 is a cross-sectional view of a semiconductor device material according to an embodiment of the present invention.

【図2】本発明の材料を製造する際に使用される結晶成
長装置の概略断面図である。
FIG. 2 is a schematic cross-sectional view of a crystal growth apparatus used when manufacturing the material of the present invention.

【図3】変更実施例に係る半導体素子材料の断面図であ
る。
FIG. 3 is a sectional view of a semiconductor device material according to a modified embodiment.

【図4】変更実施例に係る半導体素子材料の断面図であ
る。
FIG. 4 is a sectional view of a semiconductor device material according to a modified embodiment.

【図5】従来のホモ接合型のLEDの断面図である。FIG. 5 is a cross-sectional view of a conventional homojunction type LED.

【符号の説明】[Explanation of symbols]

1 :n形GaP基板 2 :n形GaAsP組成傾斜層 3 :n形GaAsP一定組成層 3′ :n形GaAsP基板 4 :n形TeドープGaAsP活性層 5 :p形ZnドープGaInPクラッド
層 6 :p形ZnドープGaAsP活性層 10 :スライドボート 11a、11b、11c:溶液溜 12 :電気炉 13 :スライダ 15 :石英管 16 :フタ 17 :スライダ操作棒
1: n-type GaP substrate 2: n-type GaAsP composition gradient layer 3: n-type GaAsP constant composition layer 3 ': n-type GaAsP substrate 4: n-type Te-doped GaAsP active layer 5: p-type Zn-doped GaInP cladding layer 6: p Type Zn-doped GaAsP active layer 10: Slide boats 11a, 11b, 11c: Solution reservoir 12: Electric furnace 13: Slider 15: Quartz tube 16: Lid 17: Slider operating rod

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 GaPまたはGaAs基板上に、少なくともGa
AsP系層およびAlGaPまたはGaInP系層が順次形成され
てなる半導体材料。
1. At least Ga on a GaP or GaAs substrate.
A semiconductor material in which an AsP-based layer and an AlGaP or GaInP-based layer are sequentially formed.
【請求項2】 GaPまたはGaAs基板上に、少なくともド
ーパント含有GaAsP活性層およびドーパント含有GaInP
クラッド層が順次形成されてなる請求項1記載の半導体
材料。
2. At least a dopant-containing GaAsP active layer and a dopant-containing GaInP on a GaP or GaAs substrate.
The semiconductor material according to claim 1, wherein the clad layers are sequentially formed.
【請求項3】 GaP基板上に、NまたはOドープGaP活
性層およびドーパント含有AlGaPクラッド層が少なくと
も順次形成されてなる請求項1記載の半導体材料。
3. The semiconductor material according to claim 1, wherein an N or O-doped GaP active layer and a dopant-containing AlGaP clad layer are formed at least sequentially on a GaP substrate.
【請求項4】 該クラッド層に含有されるドーパントが
Znドーパントである請求項2または3記載の半導体材
料。
4. The dopant contained in the cladding layer is
The semiconductor material according to claim 2, which is a Zn dopant.
JP3198850A 1991-07-12 1991-07-12 Semiconductor material having single heterojunction Pending JPH0521843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3198850A JPH0521843A (en) 1991-07-12 1991-07-12 Semiconductor material having single heterojunction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3198850A JPH0521843A (en) 1991-07-12 1991-07-12 Semiconductor material having single heterojunction

Publications (1)

Publication Number Publication Date
JPH0521843A true JPH0521843A (en) 1993-01-29

Family

ID=16397947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3198850A Pending JPH0521843A (en) 1991-07-12 1991-07-12 Semiconductor material having single heterojunction

Country Status (1)

Country Link
JP (1) JPH0521843A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4932169A (en) * 1989-11-01 1990-06-12 Robert Charbonneau Inflatable structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4932169A (en) * 1989-11-01 1990-06-12 Robert Charbonneau Inflatable structure

Similar Documents

Publication Publication Date Title
US5886367A (en) Epitaxial wafer device including an active layer having a two-phase structure and light-emitting device using the wafer
US5693963A (en) Compound semiconductor device with nitride
JPH0770755B2 (en) High brightness LED epitaxial substrate and method of manufacturing the same
US20110062466A1 (en) AlxGa(1-x)As Substrate, Epitaxial Wafer for Infrared LEDs, Infrared LED, Method of Manufacturing AlxGa(1-x)As Substrate, Method of Manufacturing Epitaxial Wafer for Infrared LEDs, and Method of Manufacturing Infrared LEDs
JPH0897467A (en) Semiconductor light emitting device
JP2020102494A (en) Semiconductor light-emitting element and manufacturing method therefor
JP3356041B2 (en) Gallium phosphide green light emitting device
JP2000101133A (en) Epitaxial wafer for light-emitting element and manufacture thereof
JP2856374B2 (en) Semiconductor light emitting device and method of manufacturing the same
JPH0521843A (en) Semiconductor material having single heterojunction
JPH055191B2 (en)
US5534717A (en) Epitaxial wafer for light-emitting diode
JPH0897466A (en) Light emitting device
US5985023A (en) Method for growth of a nitrogen-doped gallium phosphide epitaxial layer
JPH0575165A (en) Material and manufacture for homo-joint type gainp light emitting material
JP2001308017A (en) Method for manufacturing p-type iii-v nitride compound semiconductor, and method for manufacturing semiconductor element
JP2004356600A (en) Semiconductor light emitting device
JPH0728052B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP2714885B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP3622292B2 (en) Semiconductor light emitting device
JPH0555630A (en) Light emitting element material and its manufacture
JPH04278522A (en) Semiconductor material having si-doped gainp cap layer
JP3140037B2 (en) Semiconductor light emitting device
JP2804093B2 (en) Optical semiconductor device
JPH03161981A (en) Manufacture of semiconductor device and ii-vi compound semiconductor crystal layer