JPH05218077A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH05218077A
JPH05218077A JP1265792A JP1265792A JPH05218077A JP H05218077 A JPH05218077 A JP H05218077A JP 1265792 A JP1265792 A JP 1265792A JP 1265792 A JP1265792 A JP 1265792A JP H05218077 A JPH05218077 A JP H05218077A
Authority
JP
Japan
Prior art keywords
gate electrode
oxide film
thickness
spacer
silicon oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1265792A
Other languages
Japanese (ja)
Inventor
Yoshifusa Uematsu
吉英 植松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1265792A priority Critical patent/JPH05218077A/en
Publication of JPH05218077A publication Critical patent/JPH05218077A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To make it possible to form a spacer of desired thickness which is larger than the film thickness of a gate electrode by repeating several times the deposition of an insulating film which has the same or larger thickness than the thickness of the gate electrode and the formation of a subspacer by etchback. CONSTITUTION:A field oxide film 21 for element isolation is formed on the surface of a P type silicon substrate 11 and then a gate oxide film of 15nm thickness 31 and a gate electrode of 100nm thickness 41 are formed. On the whole surface of the substrate, a first silicon oxide film 61 is deposited. Then, the silicon oxide film 61 is etched back and is left over as a first subspacer 61a only on a side wall of the gate electrode 41. Nextly, a second silicon oxide film 71 is deposited. Then, the silicon oxide film 71 is etched back and is left over as a second subspacer 71a only on a side wall of the first subspacer 61a. By this method, the spacers (the first and the second subspacer 61a, 71a) which are thicker than the gate electrode 41 can be formed on the side wall of the gate electrode 41.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の製造方法に
関し、特にゲート電極の側壁にスペーサを有する半導体
装置の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a semiconductor device having a spacer on a side wall of a gate electrode.

【0002】[0002]

【従来の技術】従来の技術を図を用いて説明する。2. Description of the Related Art A conventional technique will be described with reference to the drawings.

【0003】従来この種のスペーサを有する半導体装置
の製造方法は、まず、図3(a)に示すように、例えば
P型シリコン基板11の表面部に素子分離領域のフィー
ルド酸化膜21を形成し、ゲート酸化膜31を形成後に
ゲート電極用の膜を厚さ300〜400nm程度堆積し
てゲート電極41とした後、このゲート電極41をマス
クとして第1のN型不純物拡散層51を形成する。その
後厚さ500nm程度の酸化シリコン膜62を堆積し、
エッチバックし、図3(b)に示すように、ゲート電極
側壁に酸化シリコン膜をスペーサ62aとして残存させ
る。次に、図3(c)に示すように、スペーサ62aを
マスクとして、第1のN型不純物拡散層51より高濃度
の第2のN型不純物拡散層81を形成する。このように
してLDD構造のMOSトランジスタを形成することが
できる。
Conventionally, in a method of manufacturing a semiconductor device having a spacer of this type, first, as shown in FIG. 3A, a field oxide film 21 in an element isolation region is formed on the surface of a P-type silicon substrate 11, for example. After forming the gate oxide film 31, a film for the gate electrode is deposited to a thickness of about 300 to 400 nm to form the gate electrode 41, and then the first N-type impurity diffusion layer 51 is formed using the gate electrode 41 as a mask. After that, a silicon oxide film 62 having a thickness of about 500 nm is deposited,
By etching back, as shown in FIG. 3B, a silicon oxide film is left as a spacer 62a on the side wall of the gate electrode. Next, as shown in FIG. 3C, a second N-type impurity diffusion layer 81 having a higher concentration than that of the first N-type impurity diffusion layer 51 is formed using the spacer 62a as a mask. In this way, an LDD structure MOS transistor can be formed.

【0004】[0004]

【発明が解決しようとする課題】近年、半導体装置の微
細化に伴い、縦構造の薄膜化が進んでおり、ゲート電極
が100nm程度まで薄くなってきている。従来の技術
で100nm程度のゲート電極の側壁に厚さ200nm
程度のスペーサを形成する場合の例を図4を参照して説
明する。図4(a)はゲート電極41a形成後に酸化シ
リコン膜62を堆積した状態を示し、図4(b)はその
後酸化シリコン膜61をエッチバックしてスペーサ62
bを形成した状態を示す。ゲート電極41aに対する酸
化シリコンの膜厚化が高くなっているため、図4(a)
に示すように酸化シリコン膜62は、図3(a)に比べ
平坦化している。このため、酸化シリコン膜をエッチバ
ックした際、図4(b)に示すように、幅が150nm
程度で形状の悪いスペーサが形成されてしまう。このよ
うに従来の技術では、厚さ100nm程度のゲート電極
に対しては幅が200nm程度のスペーサを形成する事
は困難であった。
In recent years, along with the miniaturization of semiconductor devices, the vertical structure is becoming thinner, and the gate electrode is becoming thinner to about 100 nm. The thickness of 200 nm on the side wall of the gate electrode is about 100 nm by the conventional technique.
An example of forming spacers of a certain degree will be described with reference to FIG. FIG. 4A shows a state in which the silicon oxide film 62 is deposited after the gate electrode 41a is formed, and FIG. 4B shows the silicon oxide film 61 after that by etching back the spacer 62.
The state which formed b is shown. Since the thickness of the silicon oxide with respect to the gate electrode 41a is increased, FIG.
As shown in FIG. 3, the silicon oxide film 62 is flattened as compared with FIG. Therefore, when the silicon oxide film is etched back, the width is 150 nm as shown in FIG.
Spacers having a bad shape are formed to some extent. As described above, according to the conventional technique, it is difficult to form a spacer having a width of about 200 nm for a gate electrode having a thickness of about 100 nm.

【0005】[0005]

【課題を解決するための手段】本発明の半導体装置の製
造方法は、半導体基板表面の所定領域にゲート絶縁膜を
介してゲート電極を形成し、所定厚さの絶縁膜を堆積し
たのち異方性エッチングを行ない前記ゲート電極の側壁
に前記絶縁膜をスペーサとして残す工程を有し、前記ス
ペーサ形成工程は前記ゲート電極の膜厚より薄い絶縁膜
の堆積とエッチングによるサブスペーサの形成を繰り返
し行なうというものである。
According to a method of manufacturing a semiconductor device of the present invention, a gate electrode is formed in a predetermined region of a surface of a semiconductor substrate via a gate insulating film, an insulating film having a predetermined thickness is deposited, and then anisotropically formed. Conductive etching is performed to leave the insulating film as a spacer on the side wall of the gate electrode. In the spacer forming step, deposition of an insulating film thinner than the thickness of the gate electrode and formation of a sub spacer by etching are repeated. It is a thing.

【0006】[0006]

【実施例】次に本発明について図面を参照して説明す
る。
The present invention will be described below with reference to the drawings.

【0007】図1(a)〜(f)は本発明の第1の実施
例を説明するための工程順断面図である。
1A to 1F are sectional views in order of steps for explaining a first embodiment of the present invention.

【0008】まず、図1(a)に示すように、P型シリ
コン基板11の表面部に素子分離のフィールド酸化膜2
1を形成後、厚さ15nmのゲート酸化膜31,厚さ1
00nmゲート電極41を形成し、第1のN型不純物拡
散層51を形成する。次に、図1(b)に示すように減
圧CVD法により第1の酸化シリコン膜61を100n
m堆積する。この後、酸化シリコン膜を100nmエッ
チバックして、図1(c)に示すように、ゲート電極4
1の側壁に酸化シリコン膜を第1のサブスペーサ61a
として残存させる。さらに、図1(d)に示すように、
第2の酸化シリコン膜72を減圧CVD法により100
nm堆積する。この後、第2の酸化シリコン膜を100
nmエッチバックし、図1(e)に示すように第1のサ
ブスペーサ61aの側壁にさらに酸化シリコン膜を第2
のサブスペーサとして残存させる。その後、イオン注入
法により第2のN型不純物拡散層81を形成する。
First, as shown in FIG. 1A, a field oxide film 2 for element isolation is formed on the surface of a P-type silicon substrate 11.
1 is formed, a gate oxide film 31 having a thickness of 15 nm, a thickness of 1
The 00 nm gate electrode 41 is formed, and the first N-type impurity diffusion layer 51 is formed. Next, as shown in FIG. 1B, 100 n of the first silicon oxide film 61 is formed by a low pressure CVD method.
m is deposited. Then, the silicon oxide film is etched back by 100 nm to remove the gate electrode 4 as shown in FIG.
A silicon oxide film on the side wall of the first sub spacer 61a.
To remain as. Furthermore, as shown in FIG.
The second silicon oxide film 72 is formed to 100 by the low pressure CVD method.
nm deposition. Then, the second silicon oxide film is removed by 100
nm etch back, and as shown in FIG. 1E, a second silicon oxide film is further formed on the side wall of the first sub spacer 61a.
To remain as a sub-spacer. Then, the second N-type impurity diffusion layer 81 is formed by the ion implantation method.

【0009】本実施例により、従来の技術では困難であ
った100nmの膜厚のゲート電極の側壁にゲート電極
の膜厚より厚いスペーサ(第1,第2のサブスペーサよ
りなる)を形成する事が可能になる。
According to this embodiment, a spacer (consisting of the first and second sub-spacers) thicker than the thickness of the gate electrode is formed on the side wall of the gate electrode having a thickness of 100 nm, which is difficult with the conventional technique. Will be possible.

【0010】次に、第2の実施例について説明する。Next, a second embodiment will be described.

【0011】図1(f)に示された第1の実施例による
MOS型トランジスタにさらに減圧CVD法により厚さ
100nm程度の第3の酸化シリコン膜を堆積し、この
酸化シリコン膜を100nmエッチバックして、図2に
示すように、第2のサブスペーサ710aの側壁に第3
のサブスペーサ91aを形成する。その後イオン注入法
により第3のN型拡散層101を形成する。本実施例に
より、ゲート電極の3倍の膜厚のスペーサを得る事がで
き、第1,第2,第3のN型の不純物拡散層の順に不純
物濃度を高くしていくことにより3段階の濃度差を有す
るソース・ドレイン領域を形成できるため、ドレイン近
傍の電界が緩和され、ホットキャリア耐性の強いMOS
型トランジスタを形成する事が可能となる。なお、本実
施例では、ゲート電極形成後、第2サブスペース形成後
および第3のサブスペーサ形成後にそれぞれ不純物拡散
層を形成したが、各サブスペーサ不純物拡散層を形成す
る事も可能であり、サブスペーサの数および不純物拡散
層の形成回数は特に限定されるものではない。
A third silicon oxide film having a thickness of about 100 nm is further deposited on the MOS transistor according to the first embodiment shown in FIG. 1 (f) by a low pressure CVD method, and the silicon oxide film is etched back by 100 nm. Then, as shown in FIG. 2, the third sub-spacer 710a is provided with a third side wall.
To form the sub spacer 91a. After that, the third N-type diffusion layer 101 is formed by the ion implantation method. According to this embodiment, it is possible to obtain a spacer having a film thickness three times that of the gate electrode, and by increasing the impurity concentration in the order of the first, second, and third N-type impurity diffusion layers, three steps can be performed. Since a source / drain region having a difference in concentration can be formed, an electric field near the drain is relaxed, and a MOS with high hot carrier resistance
It becomes possible to form a type transistor. In the present embodiment, the impurity diffusion layers are formed after the gate electrode is formed, after the second subspace is formed, and after the third subspacer is formed, but it is also possible to form each subspacer impurity diffusion layer. The number of sub spacers and the number of times the impurity diffusion layers are formed are not particularly limited.

【0012】[0012]

【発明の効果】以上説明したように本発明は、ゲート電
極の膜厚以下の絶縁膜の堆積およびエッチバックによる
サブスペーサの形成工程を複数回繰り返す事により、ゲ
ート電極の膜厚より厚い任意の厚さのスペーサを形成で
きるという効果を有す。
As described above, according to the present invention, by repeating the step of forming the sub-spacer by depositing an insulating film having a thickness equal to or smaller than that of the gate electrode and etching back a plurality of times, an arbitrary thickness larger than that of the gate electrode can be obtained. It has an effect that a spacer having a thickness can be formed.

【0013】また、ある程度自由にスペーサ幅を設定で
きるためソース・ドレイン領域の不純物濃度をある程度
自由に変化でき、ホットキャリア耐性の優れたトランジ
スタを形成できる。
Further, since the spacer width can be freely set to some extent, the impurity concentration in the source / drain regions can be freely changed to some extent, and a transistor having excellent hot carrier resistance can be formed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の説明に使用するため
(a)〜(f)に分図して示す工程順断面図である。
1A to 1F are sectional views in order of steps, which are illustrated in FIGS. 1A to 1F for use in describing a first embodiment of the present invention.

【図2】第2の実施例の説明に使用する断面図である。FIG. 2 is a sectional view used to describe a second embodiment.

【図3】従来の技術の説明に使用するため(a)〜
(c)に分図して示す工程順断面図である。
FIG. 3A to FIG. 3A are used for explaining the prior art.
It is a process order sectional view divided and shown in (c).

【図4】従来の技術の説明に使用するため(a),
(b)に分図して示す工程順断面図である。
FIG. 4 is used for explaining the prior art (a),
It is a process order sectional view divided and shown in (b).

【符号の説明】[Explanation of symbols]

11 P型シリコン基板 21 フィールド酸化膜 31 ゲート酸化膜 41 ゲート電極 51 第1のN型不純物拡散層 61 第1の酸化シリコン膜 61a 第1のサブスペーサ 62 酸化シリコン膜 62a,62b スペーサ 71 第2の酸化シリコン膜 71a 第2のサブスペーサ 81 第2のN型不純物拡散層 91 第3の酸化シリコン膜 91a 第3のサブスペーサ 101 第3のN型不純物拡散層 11 P-type silicon substrate 21 Field oxide film 31 Gate oxide film 41 Gate electrode 51 First N-type impurity diffusion layer 61 First silicon oxide film 61a First sub spacer 62 Silicon oxide film 62a, 62b Spacer 71 Second Silicon oxide film 71a Second sub spacer 81 Second N type impurity diffusion layer 91 Third silicon oxide film 91a Third sub spacer 101 Third N type impurity diffusion layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板表面の所定領域にゲート絶縁
膜を介してゲート電極を形成し、所定厚さの絶縁膜を堆
積したのち異方性エッチングを行ない前記ゲート電極の
側壁に前記絶縁膜をスペーサとして残す工程を有し、前
記スペーサ形成工程は前記ゲート電極の膜厚より薄い絶
縁膜の堆積とエッチングによるサブスペーサの形成を繰
り返し行なうことを特徴とする半導体装置の製造方法。
1. A gate electrode is formed on a predetermined region of a surface of a semiconductor substrate via a gate insulating film, an insulating film having a predetermined thickness is deposited, and then anisotropic etching is performed to form the insulating film on the side wall of the gate electrode. A method of manufacturing a semiconductor device, comprising a step of leaving as a spacer, and in the spacer forming step, deposition of an insulating film thinner than a film thickness of the gate electrode and formation of a sub spacer by etching are repeated.
【請求項2】 ゲート電極の形成およびサブスペーサの
形成後にそれぞれイオン注入を行なって前記ゲート電極
から遠いほど不純物濃度が高い少なくとも第1ないし第
3の不純物拡散層からなるソース・ドレイン領域を形成
する請求項1記載の半導体装置の製造方法。
2. A source / drain region including at least first to third impurity diffusion layers having a higher impurity concentration is formed farther from the gate electrode by performing ion implantation after forming the gate electrode and forming the sub spacer. The method for manufacturing a semiconductor device according to claim 1.
JP1265792A 1992-01-28 1992-01-28 Manufacture of semiconductor device Withdrawn JPH05218077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1265792A JPH05218077A (en) 1992-01-28 1992-01-28 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1265792A JPH05218077A (en) 1992-01-28 1992-01-28 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH05218077A true JPH05218077A (en) 1993-08-27

Family

ID=11811434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1265792A Withdrawn JPH05218077A (en) 1992-01-28 1992-01-28 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH05218077A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000196071A (en) * 1998-12-25 2000-07-14 Mitsubishi Electric Corp Manufacture of semiconductor device, and the semiconductor device
JP2006049781A (en) * 2004-08-09 2006-02-16 Fujitsu Ltd Insulation-gate semiconductor device and driving method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000196071A (en) * 1998-12-25 2000-07-14 Mitsubishi Electric Corp Manufacture of semiconductor device, and the semiconductor device
JP2006049781A (en) * 2004-08-09 2006-02-16 Fujitsu Ltd Insulation-gate semiconductor device and driving method therefor

Similar Documents

Publication Publication Date Title
US5384276A (en) Method of fabricating a memory device with a multilayer insulating film
KR0171582B1 (en) Fabrication process of a semiconductor device with a wiring structure
JPS6156446A (en) Semiconductor device and manufacture thereof
JP2000091524A (en) Word line structure unit of dram cell capable of miniaturization and manufacture thereof
JPH06151747A (en) Manufacture of semiconductor device
JPH0697682B2 (en) Method for manufacturing semiconductor device
JPH04264767A (en) Semiconductor device and manufacture thereof
JPH05218077A (en) Manufacture of semiconductor device
JPH1126726A (en) Semiconductor element and manufacture thereof
JPH0888333A (en) Manufacture of semiconductor device
JPH08195436A (en) Contact hole formation of semiconductor element
JPH08293604A (en) Transistor with metal gate electrode and its preparation
JP3104262B2 (en) Semiconductor device and manufacturing method thereof
JP2002198437A (en) Semiconductor device and its fabricating method
JPS61225851A (en) Semiconductor device and manufacture thereof
JPH0237778A (en) Manufacture of semiconductor memory device
JP3067329B2 (en) Semiconductor memory device and method of manufacturing the same
JPH04264766A (en) Manufacture of semiconductor device
JPH02304970A (en) Manufacture of semiconductor device
JPH01260857A (en) Semiconductor device and manufacture thereof
KR100273229B1 (en) Manufacturing method for capacitor
JP2531680B2 (en) Semiconductor device and manufacturing method thereof
JPS61147575A (en) Manufacture of semiconductor device
JPH01235269A (en) Semiconductor device
JPH0284741A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990408