JPH0521638B2 - - Google Patents

Info

Publication number
JPH0521638B2
JPH0521638B2 JP23606685A JP23606685A JPH0521638B2 JP H0521638 B2 JPH0521638 B2 JP H0521638B2 JP 23606685 A JP23606685 A JP 23606685A JP 23606685 A JP23606685 A JP 23606685A JP H0521638 B2 JPH0521638 B2 JP H0521638B2
Authority
JP
Japan
Prior art keywords
sludge
mixed
tank
treatment
raw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23606685A
Other languages
Japanese (ja)
Other versions
JPS6297699A (en
Inventor
Masao Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABIKOSHI
Original Assignee
ABIKOSHI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABIKOSHI filed Critical ABIKOSHI
Priority to JP60236066A priority Critical patent/JPS6297699A/en
Publication of JPS6297699A publication Critical patent/JPS6297699A/en
Publication of JPH0521638B2 publication Critical patent/JPH0521638B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、生し尿、浄化槽汚泥、地域処理汚泥
(コミプラ汚泥)及び下水汚泥等のように有機質
を含む含水率の高い汚泥を安価に無害化処理する
有機性汚泥の処理方法に係り、詳しくは、希釈水
をさほど必要とすることなく有機質を含む濾液
(汚泥)を生物処理で無害化することができる超
低希釈処理方法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention is an inexpensive and harmless sludge that contains organic matter and has a high water content, such as human waste, septic tank sludge, community treatment sludge (Comipura sludge), and sewage sludge. The present invention relates to a method for treating organic sludge that undergoes chemical treatment, and more specifically, it relates to an ultra-low dilution treatment method that can render filtrate (sludge) containing organic matter harmless through biological treatment without requiring much dilution water. .

(従来の技術) 有機質を含む含水率の高い汚泥を無害化処理す
る従来例としては、例えば特開昭58−153600号公
報に見られるように、原汚泥から夾雑物を除去し
た後にこれを好気又は嫌気消化処理し、この処理
(生物処理)によつて発生した汚泥を前記夾雑物
とともに焼却するようにしたものがある。
(Prior art) As a conventional example of detoxifying sludge containing organic matter and having a high moisture content, for example, as shown in Japanese Patent Application Laid-open No. 153600/1983, a method is used in which contaminants are removed from raw sludge and then treated. There is a method in which pneumatic or anaerobic digestion is performed, and the sludge generated by this treatment (biological treatment) is incinerated together with the impurities.

ところが、このように原汚泥をほとんどそのま
まの状態で生物処理するようにした場合は、原汚
泥を多量の水で希釈する必要があると同時に、生
物処理によつて生じる余剰汚泥の量も多い。又、
人口が増加するにつれて住民生活の密着して排出
されるし尿及び下水汚泥等が年々増加することは
詳述するまでもない。
However, when raw sludge is subjected to biological treatment in its almost unchanged state as described above, it is necessary to dilute the raw sludge with a large amount of water, and at the same time, the amount of surplus sludge generated by biological treatment is large. or,
It is needless to mention in detail that as the population increases, the amount of human waste, sewage sludge, etc. discharged as a result of residents' daily lives increases year by year.

従つて、例えば人口が急増している地域の自治
体では汚泥処理システムの建設に最大の努力を図
つているが、これまでのように原汚泥をそのまま
水で希釈したうえで生物処理する場合は大容量の
生物処理施設を建設する必要性があり、あるい
は、汚泥の増加に伴つて増大する希釈水を確保す
ると共に、大量の余剰汚泥を焼却するために膨大
な燃料費が必要となるというように、経済的な負
担が急増する等の問題がある。
Therefore, for example, local governments in areas where the population is rapidly increasing are making maximum efforts to construct sludge treatment systems, but the conventional method of diluting raw sludge with water and then biologically treating it is very difficult. There is a need to construct a biological treatment facility with a large capacity, or there is a need to secure dilution water that increases with the increase in sludge, and a huge amount of fuel costs are required to incinerate a large amount of excess sludge. , there are problems such as a sharp increase in economic burden.

なお、余剰汚泥を焼却することによる燃料費を
節減するためにこれを埋立処理する場合は、広大
な埋立地を用意する必要があるなどの不具合もあ
る。
In addition, when incinerating excess sludge and disposing of it in a landfill to reduce fuel costs, there are also disadvantages such as the need to prepare a vast landfill site.

(発明が解決しようとする課題) 本発明が解決しようとする課題は、上記問題点
を解決するためになされたものであり、時代に即
応した新規な有機性汚泥の処理方法を提供するこ
とである。
(Problem to be solved by the invention) The problem to be solved by the present invention is to solve the above-mentioned problems by providing a new method for treating organic sludge that is responsive to the times. be.

(課題を解決するための手段) 本発明において課題を解決するための手段は、
有機質を含む含水率の高い原汚泥を沈砂処理した
後に、この原汚泥に含まれる固形物を破砕して夾
雑物を除去し、夾雑物が除去された原汚泥に余剰
汚泥を混合して曝気攪拌したうえで、この混合汚
泥から水分の一部を除去して濃縮・均質化する濃
縮工程と、該濃縮工程で濃縮・均質化された前記
混合汚泥にモミガラ、バーク等可燃性に富む有機
性の助材を混入し、該助材が混入された助材混入
汚泥を圧搾脱水して固形化する脱水工程と、前記
濃縮工程及び該脱水工程で生じた濾液を生物処理
して放流水と前記原汚泥に混合される余剰汚泥と
に分離する濾液処理工程とを含み、前記濃縮工程
で除去した夾雑物及び前記脱水工程で得た固形物
を最終処理し、前記濾液処理工程で生じた放流水
を放流すると共に余剰汚泥を濃縮した後に前記濃
縮工程に戻すようにしたことを特徴とするもので
ある。
(Means for solving the problem) Means for solving the problem in the present invention are as follows:
After the raw sludge with a high moisture content containing organic matter is subjected to sedimentation treatment, the solids contained in this raw sludge are crushed to remove impurities, and the surplus sludge is mixed with the raw sludge from which the impurities have been removed and aerated and agitated. After that, there is a concentration step in which a part of the water is removed from this mixed sludge to make it concentrated and homogenized, and highly flammable organic materials such as rice husk and bark are added to the mixed sludge that has been concentrated and homogenized in the concentration step. A dehydration step in which an auxiliary material is mixed and the sludge mixed with the auxiliary material is compressed and dehydrated to solidify it, and the filtrate produced in the concentration step and the dehydration step is biologically treated to produce effluent water and the raw material. a filtrate treatment step in which the sludge is separated from surplus sludge mixed with the sludge, the impurities removed in the concentration step and the solids obtained in the dehydration step are finally treated, and the effluent generated in the filtrate treatment step is treated. This is characterized in that the excess sludge is discharged and, after being concentrated, is returned to the concentration step.

(作用) 原汚泥を沈砂処理した後に、この原汚泥に含ま
れる固形物を破砕して夾雑物を除去するようにし
ているために、原汚泥に含まれる砂等による破砕
機あるいは原汚泥搬送用ポンプの損傷を少なくす
ることができる。又、沈砂処理を行つた原汚泥に
含まれる夾雑物を破砕してこれを除去するように
しているために、夾雑物が効率よく除去される。
(Function) After the raw sludge is treated with sand, the solids contained in the raw sludge are crushed and impurities are removed. Damage to the pump can be reduced. Further, since the foreign matter contained in the raw sludge that has been subjected to the sand settling treatment is crushed and removed, the foreign matter can be efficiently removed.

さらに、夾雑物が除去された原汚泥に余剰汚泥
を混合してこれを曝気攪拌した後に、この混合汚
泥から水分の一部を除去して濃縮・均質化し、こ
の汚泥に助材を混入して圧搾脱水を行なうように
しているために、汚泥中の固形分の除去効率が高
くなる。
Furthermore, surplus sludge is mixed with the raw sludge from which impurities have been removed, and this is aerated and stirred, and then a portion of the water is removed from this mixed sludge, concentrated and homogenized, and an auxiliary material is mixed into this sludge. Since compression dewatering is performed, the efficiency of removing solids from the sludge is increased.

一方、生物処理される濾液から固形の有機物が
予め機械的手法により取り出されているために、
生物処理に必要な希釈水の量が大幅に低減され
る。、又、燃焼性に富む有機質の助材を濃縮・均
質化された混合汚泥に混合してこれを圧搾脱水す
るようにしているために、最終的に行われる脱水
効率が高くなると共に、脱水された固形物に混入
している助材を助燃剤として有効利用し、あるい
は、この助材をそのまま堆肥化できるために、最
終処理の段階でこの助材を分離回収あるいは無害
化する必要性が全くない。
On the other hand, since solid organic matter is removed mechanically from the filtrate to be biologically treated,
The amount of dilution water required for biological treatment is significantly reduced. In addition, since highly combustible organic auxiliaries are mixed into the concentrated and homogenized mixed sludge and then compressed and dehydrated, the final dewatering efficiency is high and the dewatered water is Since the auxiliary materials mixed in the solids can be effectively used as combustion improvers, or they can be composted as is, there is no need to separate and recover or detoxify the auxiliary materials at the final processing stage. do not have.

さらに、生物処理工程で生じた余剰汚泥を濃縮
した後に濃縮固定に戻して原汚泥に混合させるよ
うにしているために、濃縮工程に還元される余剰
汚泥の量を減少させることもできる。
Furthermore, since the surplus sludge produced in the biological treatment process is concentrated, returned to the concentrated and fixed state and mixed with the raw sludge, the amount of surplus sludge returned to the concentration process can be reduced.

(実施例) 第1図は本発明に係る汚泥の処理工程を示すブ
ロツク図、第2図は本発明の実施例を示す装置全
体の概略構成図であり、汚泥の処理順序に従つて
各部の構成及び作用を説明する。
(Example) Fig. 1 is a block diagram showing the sludge treatment process according to the present invention, and Fig. 2 is a schematic configuration diagram of the entire apparatus showing the embodiment of the present invention. The structure and operation will be explained.

まず、濃縮工程Aを実現する濃縮手段におい
て、生し尿、浄化槽汚泥、コミプラ汚泥等の原汚
泥に含まれる砂等を除去する沈砂槽1を設けた受
入槽2から図示しないポンプで原汚泥が送り込ま
れる破砕機3は、原汚泥中に含まれる固形物を破
砕する。なお、破砕機3から受槽4を経て流出し
た原汚泥に含まれる夾雑物はドラムスクリーン
(ドラム式重力脱水機)5によつてし渣として分
離され、S、プレス6により脱水された後に焼却
される。
First, in the concentration means for realizing the concentration step A, raw sludge is sent by a pump (not shown) from a receiving tank 2 equipped with a settling tank 1 for removing sand, etc. contained in raw sludge such as human waste, septic tank sludge, Comiplast sludge, etc. The crusher 3 crushes the solids contained in the raw sludge. Incidentally, impurities contained in the raw sludge flowing out from the crusher 3 through the receiving tank 4 are separated as sludge by a drum screen (drum type gravity dehydrator) 5, dehydrated by a press 6, and then incinerated. Ru.

ドラムスクリーン5から受槽7を経て流出した
原汚泥は、後述する濾液処理手段から取り出した
余剰汚泥とともに混合汚泥貯溜槽8に送り込まれ
る。この混合汚泥貯溜槽8では、ブロワー曝気に
より原汚泥と余剰汚泥とが充分に攪拌されて、例
えば濃度が1.7〜1.8%の混合汚泥となり、この混
合汚泥を単位時間当り所定の流量でドラムスクリ
ーン9に圧送して水(濾液)を分離して汚泥濃度
が例えば8%になるまで濃縮される。
The raw sludge flowing out from the drum screen 5 through the receiving tank 7 is sent to the mixed sludge storage tank 8 together with excess sludge taken out from the filtrate processing means described later. In this mixed sludge storage tank 8, raw sludge and excess sludge are sufficiently stirred by blower aeration to form mixed sludge with a concentration of, for example, 1.7 to 1.8%. The water (filtrate) is separated and concentrated until the sludge concentration is, for example, 8%.

なお、前記ドラムスクリーン9には、必要に応
じて薬剤タンク10から凝集剤カチオンが添加さ
れて濃縮の効率が高められるが、混合汚泥の濃度
に応じて凝集剤カチオンの添加率を変化させて濃
縮汚泥の濃度を所定の値、例えば8%に保持させ
る。
It should be noted that flocculant cations are added to the drum screen 9 from the chemical tank 10 as needed to increase the efficiency of concentration, but the concentration is carried out by changing the addition rate of the flocculant cations depending on the concentration of the mixed sludge. The concentration of sludge is maintained at a predetermined value, for example 8%.

一方、脱水工程Bを具体化する脱水手段では、
前記のようにして濃縮された汚泥を混合槽11に
貯溜しておき、これを図示しないモノーポンプで
単位時間当り所定の流量で引き抜き、一次ブレン
ダー12で薬剤タンク10から供給された凝集剤
カチオンと混合する。その後、二次ブレンダー1
3で汚泥に助材を混合してネツトコンベア(コン
ベア式重力脱水機)14によつて、例えば、10分
間にわたつて重力・加圧脱水を行う。
On the other hand, in the dehydration means embodying the dehydration step B,
The sludge concentrated as described above is stored in a mixing tank 11, and is drawn out at a predetermined flow rate per unit time by a mono pump (not shown), and mixed with flocculant cations supplied from a chemical tank 10 in a primary blender 12. do. Then the secondary blender 1
In Step 3, the sludge is mixed with an auxiliary material and subjected to gravity/pressure dewatering for, for example, 10 minutes using a net conveyor (conveyor type gravity dehydrator) 14.

この脱水により汚泥の含水率が例えば70%程度
まで低下される。又、助材としてはモミガラ・バ
ーク等のように可燃性に富む無公害で、かつ低価
格な有機質素材を使用するが、最終的な処理に応
じて凝集剤及び助材の種類及び添加量を調整すれ
ばよい。
This dewatering reduces the water content of the sludge to, for example, about 70%. In addition, as auxiliary materials, highly flammable, non-polluting, and low-cost organic materials such as rice husk and bark are used, but the type and amount of flocculant and auxiliary materials to be added may be adjusted depending on the final treatment. Just adjust it.

上記のようにしてネツトコンベア14で脱水さ
れた汚泥は二連式キヤタピラプレス(圧搾脱水
機)15に供給され、この二連式キヤタピラプレ
ス15により例えば30分圧搾脱水して固形化(ケ
ーキ化)する。なお、このようにして得られた固
形物の含水率は例えば55〜58%であるが、前記助
材の選択によつて脱水処理差が生じる。
The sludge dewatered by the net conveyor 14 as described above is supplied to a two-barrel caterpillar press (squeezing/dewatering machine) 15, where the sludge is compressed and dehydrated for, for example, 30 minutes and solidified (caked). The moisture content of the solid material obtained in this way is, for example, 55 to 58%, but the dehydration treatment differs depending on the selection of the auxiliary material.

即ち、モミガラのように粒子が大きくて弾力性
に含む助材を使用した場合は汚泥と助材との間に
隙間が生じ、これにより水抜きがよいので多量の
汚泥を供給することができると共に脱水効率が高
い。逆に、バークのように粒子が小さいにも拘ら
ず燃焼カロリーが高い助材を使用した場合は汚泥
と助材との間の隙間が小さく、しかも、弾力性が
少ないために脱水効率が低いが、燃焼カロリーが
高いので固形化された汚泥を乾燥させた後に焼却
するような場合は都合がよいというように、脱水
及びその後の処理または汚泥の特性に応じて助材
の種類及び添加量を適当に選定すればよい。
In other words, when using an auxiliary material such as rice husk, which has large particles and is elastic, a gap is created between the sludge and the auxiliary material, which allows water to be drained easily and allows a large amount of sludge to be supplied. High dehydration efficiency. On the other hand, when using an auxiliary material such as bark, which has small particles but burns a high amount of calories, the gap between the sludge and the auxiliary material is small, and the dewatering efficiency is low due to the small amount of elasticity. The type and amount of additives should be adjusted appropriately depending on the characteristics of dewatering and subsequent processing or the sludge, such as when incinerating solidified sludge after drying because the combustion calories are high. You can select .

前記濃縮工程A及び脱水工程Bを実行するとに
よつて生じた濾液を生物処理する濾液処理手段に
は、従来公知の生物処理手段の場合と同様に貯溜
曝気槽16を設けている。なお、この貯溜曝気槽
16に送り込まれる濾液は汚泥を生脱水処理する
ことによつて固形物を先に回収(分離)した濾液
である。
The filtrate treatment means for biologically treating the filtrate produced by carrying out the concentration step A and the dehydration step B is provided with a storage aeration tank 16 as in the case of conventionally known biological treatment means. The filtrate sent to the storage aeration tank 16 is a filtrate from which solids have been previously recovered (separated) by subjecting the sludge to raw dehydration treatment.

従つて、混合汚泥のBODが17000ppmであるに
も拘らず、貯溜曝気槽16に送り込まれた濾液の
BODは平均800ppm程度であつた。
Therefore, even though the BOD of the mixed sludge is 17,000 ppm, the filtrate sent to the storage aeration tank 16 is
The average BOD was about 800 ppm.

貯溜曝気槽16では濾液及び場内の排水等が充
分に攪拌され、計量槽17を経て第一曝気槽18
に送り込まれる。なお、この第一曝気槽18には
井水が希釈水として供給される。
In the storage aeration tank 16, the filtrate and wastewater from the site are sufficiently stirred, and then passed through the measuring tank 17 to the first aeration tank 18.
sent to. Note that well water is supplied to this first aeration tank 18 as dilution water.

又、濾液は、第一曝気槽18から一次濃縮槽1
9及び第二曝気槽20を経て活性槽21に供給さ
れるが、この活性槽21にも井水が希釈水として
供給される。
In addition, the filtrate is transferred from the first aeration tank 18 to the primary concentration tank 1.
9 and a second aeration tank 20 to an activation tank 21, and well water is also supplied to this activation tank 21 as dilution water.

活性槽21のMLSSは、4槽平均1600〜2200
mg/の範囲であり、再曝気槽22のMLSSは
7000mg/のである。SVは、活性槽21の4槽
平均が17〜30%となるように最終沈殿槽23から
所定量だけ連結的に余剰汚泥濃縮槽24に引き抜
くが、凝集沈殿槽25から所定量(3m3/日)の
余剰汚泥を余剰汚泥濃縮槽24に引き抜き、しか
も、最終沈殿槽23から再曝気槽22に相当量
(293m3/日)の汚泥を返送することにより、余剰
汚泥濃縮槽24を介して濃縮手段に還元される余
剰汚泥の量を減少させるようにしている。
MLSS of activation tank 21 is 1600 to 2200 on average for 4 tanks
mg/, and the MLSS of reaeration tank 22 is
It is 7000mg/. The SV is connected to the surplus sludge thickening tank 24 by a predetermined amount from the final settling tank 23 so that the average of the four tanks in the activation tank 21 is 17 to 30%, but a predetermined amount (3 m 3 / By drawing out the excess sludge (days) to the excess sludge thickening tank 24 and returning a considerable amount (293 m 3 /day) of sludge from the final settling tank 23 to the reaeration tank 22, The amount of excess sludge returned to the thickening means is reduced.

なお、濾液中の固形物の量が少ないので一次濃
縮槽19から例えば3日に一度3m3程度の余剰汚
泥を混合汚泥曝気槽8に引き抜けばよく、これに
より管理作業性を向上する。
Since the amount of solids in the filtrate is small, it is sufficient to draw out about 3 m 3 of excess sludge from the primary thickening tank 19 to the mixed sludge aeration tank 8 once every three days, thereby improving management efficiency.

因に、一日当り172Kの混合汚泥を処理する
に必要な電力使用量は1296KWH、最終沈殿槽2
3からの汚泥の引抜量は26K、濃縮余剰汚泥の
引抜量は12K、返送汚泥の量は293m3、希釈水
の使用量は293m3、一次曝気風量は8.36m3/min
二次曝気風量は10.0m3/min、混合汚泥のPHは7.7
であり、濾液のPH8.2であつた。
Incidentally, the power consumption required to process 172K of mixed sludge per day is 1296KWH, and the final settling tank 2
The amount of sludge extracted from 3 is 26K, the amount of concentrated surplus sludge is 12K, the amount of returned sludge is 293m3 , the amount of dilution water used is 293m3 , and the primary aeration air volume is 8.36m3 /min.
Secondary aeration air volume is 10.0m 3 /min, mixed sludge pH is 7.7
The pH of the filtrate was 8.2.

又、活性槽21の平均SVは19%、PHは7.7、水
温は21.0℃、MLSSは1800mg/であり、再曝気
槽22のSVは83%であつた。最終沈殿槽23の
PHは7.7、透明度は30cm、DOは1.2mg/、水温
は21.5℃であつた。
In addition, the average SV of the activation tank 21 was 19%, the PH was 7.7, the water temperature was 21.0°C, and the MLSS was 1800 mg/, and the SV of the reaeration tank 22 was 83%. The final settling tank 23
PH was 7.7, transparency was 30cm, DO was 1.2mg/, and water temperature was 21.5℃.

一方、放流水の品質に直接関係する凝集沈殿槽
25のPHは7.8、透視度は30cm、水温は21.5℃で
あり、放流水に含まれる残留塩素は0.3mg/、
次亜塩素は180Kg/日であつた。
On the other hand, the pH of the coagulation sedimentation tank 25, which is directly related to the quality of the effluent water, is 7.8, the visibility is 30 cm, the water temperature is 21.5°C, and the residual chlorine contained in the effluent water is 0.3 mg/.
Hypochlorite was 180 kg/day.

なお、脱水により固形化された汚泥の処理は任
意であり、例えばこれを燃料として利用する場合
は、圧搾脱水に際して混入された可燃性に富む有
機質の助材が助燃材として機能して汚泥の燃焼を
促進させるために、補助の燃料を用いる必要性が
ない。又、固形化された汚泥を堆肥の原料として
利用する場合は、混入された助材がそのまま堆肥
化される。従つて、いずれの場合にも事後に助材
を無害化処理する必要がなく、処理コストの上昇
が回避される。
The treatment of the sludge that has been solidified through dewatering is optional. For example, when using it as fuel, the highly flammable organic auxiliary material mixed in during compressed dehydration functions as a combustion auxiliary material and increases the combustion of the sludge. There is no need to use supplemental fuel to facilitate this. Further, when solidified sludge is used as a raw material for compost, the mixed auxiliary materials are composted as they are. Therefore, in any case, there is no need to detoxify the auxiliary material after the fact, and an increase in processing costs can be avoided.

(発明の効果) 本発明は、原汚泥を沈砂処理した後に、この原
汚泥に含まれる固形物を破砕して夾雑物を除去
し、この夾雑物が除去された原汚泥に場内で発生
した余剰汚泥を濃縮して混合し、この混合汚泥を
曝気攪拌した後に水分の一部を除去して濃縮・均
質化して助材を混入し、その後脱水処理して固形
化して最終処理を行うと共に、前記濃縮及び固形
化によつて生じた濾液、つまり、固形分が除去さ
れた濾液を生物処理するようにしているので、希
釈水の量を削減でき、濾液処理手段の負荷を大幅
に軽減して装置全体を小型化することができる。
(Effects of the Invention) The present invention is characterized in that after the raw sludge is subjected to sedimentation treatment, the solid matter contained in the raw sludge is crushed to remove impurities, and the raw sludge from which the impurities have been removed is treated with surplus generated within the site. The sludge is concentrated and mixed, the mixed sludge is aerated and stirred, a part of the water is removed, it is concentrated and homogenized, auxiliary materials are mixed in, and then the final treatment is carried out by dewatering and solidifying. Since the filtrate produced by concentration and solidification, that is, the filtrate from which the solid content has been removed, is subjected to biological treatment, the amount of dilution water can be reduced, and the load on the filtrate treatment means can be significantly reduced. The entire structure can be downsized.

又、本発明は、濾液処理施設から排出された余
剰汚泥を濃縮した後に原汚泥に混合してこれを再
び処理するようにしているために、大量の余剰汚
泥が発生することがないので膨大な焼却費を必要
とせず、あるいは広大な最終処理場を用意する必
要がなく、経済的負担を大幅に軽減することがで
きる。
In addition, in the present invention, surplus sludge discharged from a filtrate treatment facility is concentrated and then mixed with raw sludge and processed again, so a large amount of surplus sludge is not generated. There is no need for incineration costs or the need to prepare a vast final treatment facility, and the economic burden can be significantly reduced.

さらに又、本発明は、混合汚泥に圧搾脱水して
固形化するに際してモミガラ、バーク等可燃性に
富む有機質の助材を混入するようにしているため
に、混合汚泥の脱水効果を高くできると共に、固
形化された汚泥を助材による助燃作用で効率よく
燃焼させることができ、あるいは固形化された汚
泥を堆肥化する場合は助材をそのまま堆肥化でき
るために、事後に助材の分離回収処理又は無害化
処理を行う必要がないものである。
Furthermore, in the present invention, highly flammable organic auxiliaries such as rice hulls and bark are mixed into the mixed sludge when it is compressed and dehydrated to solidify it, so that the dewatering effect of the mixed sludge can be enhanced, Solidified sludge can be efficiently combusted through the auxiliary action of auxiliary materials, or when solidified sludge is composted, the auxiliary materials can be composted as is, so the auxiliary materials can be separated and recovered after the fact. Or, it is not necessary to perform detoxification treatment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る汚泥の処理工程を示すブ
ロツク図、第2図は本発明の実施例を示す装置全
体の概略構成図である。 A……濃縮工程、B……脱水工程、C……濾液
処理工程、1……沈砂槽、2……受入槽、3……
破砕機、4……受槽、5……ドラムスクリーン、
6……S・プレス、7……受槽、8……混合汚泥
貯溜槽、9……ドラムスクリーン、10……薬剤
タンク、11……混合槽、12……一次ブレンダ
ー、13……二次ブレンダー、14……ネツトコ
ンベア、15……二連式キヤタピラプレス、16
……貯溜曝気槽、17……計量槽、18……第一
曝気槽、19……一次濃縮槽、20……第二曝気
槽、21……活性槽、22……再曝気槽、23…
…最終沈殿槽、24……余剰汚泥濃縮槽、25…
…凝集沈殿槽。
FIG. 1 is a block diagram showing a sludge treatment process according to the present invention, and FIG. 2 is a schematic diagram of the entire apparatus showing an embodiment of the present invention. A...Concentration process, B...Dehydration process, C...Filtrate treatment process, 1...Sand settling tank, 2...Receiving tank, 3...
Crusher, 4...Receiving tank, 5...Drum screen,
6... S press, 7... Receiving tank, 8... Mixed sludge storage tank, 9... Drum screen, 10... Chemical tank, 11... Mixing tank, 12... Primary blender, 13... Secondary blender , 14...Net conveyor, 15...Double type caterpillar press, 16
...Storage aeration tank, 17...Measuring tank, 18...First aeration tank, 19...Primary concentration tank, 20...Second aeration tank, 21...Activation tank, 22...Reaeration tank, 23...
...Final settling tank, 24... Surplus sludge thickening tank, 25...
...Flocculation sedimentation tank.

Claims (1)

【特許請求の範囲】[Claims] 1 有機質を含む含水率の高い原汚泥を沈砂処理
した後に、この原汚泥に含まれる固形物を破砕し
て夾雑物を除去し、夾雑物が除去された原汚泥に
余剰汚泥を混合して曝気攪拌したうえで、この混
合汚泥から水分の一部を除去して濃縮・均質化す
る濃縮工程と、該濃縮工程で濃縮・均質化された
前記混合汚泥にモミガラ、バーク等可燃性に富む
有機性の助材を混入し、該助材が混入された助材
混入汚泥を圧搾脱水して固形化する脱水工程と、
前記濃縮工程及び該脱水工程で生じた濾液を生物
処理して放流水と前記原汚泥に混合される余剰汚
泥とに分離する濾液処理工程とを含み、前記濃縮
工程で除去した夾雑物及び前記脱水工程で得た固
形物を最終処理し、前記濾液処理工程で生じた放
流水を放流すると共に余剰汚泥を濃縮した後に前
記濃縮工程に戻すようにしたことを特徴とする有
機性汚泥の超低稀釈処理方法。
1 After the raw sludge with a high moisture content containing organic matter is subjected to sedimentation treatment, the solids contained in this raw sludge are crushed to remove impurities, and the surplus sludge is mixed with the raw sludge from which the impurities have been removed and aerated. After stirring, a part of the moisture is removed from the mixed sludge to make it concentrated and homogenized, and the mixed sludge is mixed with highly flammable organic materials such as rice husk and bark. a dehydration step of mixing an auxiliary material and compressing and dewatering the sludge mixed with the auxiliary material to solidify it;
a filtrate treatment step in which the filtrate produced in the concentration step and the dehydration step is subjected to biological treatment and separated into effluent water and excess sludge mixed with the raw sludge, the impurities removed in the concentration step and the dewatering step; Ultra-low dilution of organic sludge, characterized in that the solid matter obtained in the process is finally treated, the effluent water generated in the filtrate treatment process is discharged, and the surplus sludge is concentrated and then returned to the concentration process. Processing method.
JP60236066A 1985-10-22 1985-10-22 Method for ultralow dilution treatment of organic sludge Granted JPS6297699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60236066A JPS6297699A (en) 1985-10-22 1985-10-22 Method for ultralow dilution treatment of organic sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60236066A JPS6297699A (en) 1985-10-22 1985-10-22 Method for ultralow dilution treatment of organic sludge

Publications (2)

Publication Number Publication Date
JPS6297699A JPS6297699A (en) 1987-05-07
JPH0521638B2 true JPH0521638B2 (en) 1993-03-25

Family

ID=16995217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60236066A Granted JPS6297699A (en) 1985-10-22 1985-10-22 Method for ultralow dilution treatment of organic sludge

Country Status (1)

Country Link
JP (1) JPS6297699A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4807966B2 (en) * 2005-05-12 2011-11-02 三菱重工環境・化学エンジニアリング株式会社 Organic wastewater treatment method and system
JP4671780B2 (en) * 2005-06-22 2011-04-20 三菱重工環境・化学エンジニアリング株式会社 Organic wastewater treatment method and system
US8061057B2 (en) * 2007-07-03 2011-11-22 Hydrocell Technologies Waste treatment system
US8196311B2 (en) 2008-10-22 2012-06-12 Hydrocell Technologies Waste treatment system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4895369A (en) * 1972-03-18 1973-12-07
JPS57105297A (en) * 1980-12-23 1982-06-30 Ebara Infilco Co Ltd Treatment of in-purifier sludge

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4895369A (en) * 1972-03-18 1973-12-07
JPS57105297A (en) * 1980-12-23 1982-06-30 Ebara Infilco Co Ltd Treatment of in-purifier sludge

Also Published As

Publication number Publication date
JPS6297699A (en) 1987-05-07

Similar Documents

Publication Publication Date Title
JP3452439B2 (en) Recovery and recycling of useful substances from organic waste
JP3442288B2 (en) Methane fermentation method for organic waste
TW593171B (en) Method for disposing organic effluent
JPH11221541A (en) Method for recycling organic waste
JPH10216785A (en) Treatment of night soil, garbage and sludge
JP4235091B2 (en) Method and apparatus for treating manure and organic sludge
JPH10286592A (en) Waste treatment method
JPH0521638B2 (en)
JP3276139B2 (en) Organic waste treatment method
JPH11197639A (en) Treatment of organic waste
JPS59179123A (en) Treating apparatus of captured substance such as jellyfish at intake of sea water
JPH10337594A (en) Apparatus for waste disposal
JP3907152B2 (en) Organic wastewater treatment method and treatment apparatus
JP4168552B2 (en) Organic waste treatment methods
JPH10286591A (en) Waste disposal method
JPH11285698A (en) Biological dephosphorization method
JPS6157300A (en) Treatment of sludge of excretion purification tank
JP3562760B2 (en) Wastewater treatment method and wastewater treatment facility by aeration and fermentation decomposition
KR200173545Y1 (en) Device for reclaiming waste water
JPH0330899A (en) Treatment of excretion
JPH0919700A (en) Sewage treating device
JPH0688861B2 (en) Human waste treatment method
JP3676589B2 (en) Sludge treatment method and apparatus
JPS60222118A (en) Dehydrating treatment of organic sludge
JPS63297288A (en) Method of composting high concentration organic component