JPH05214491A - Fe-ni alloy excellent in plating suitability and its production - Google Patents

Fe-ni alloy excellent in plating suitability and its production

Info

Publication number
JPH05214491A
JPH05214491A JP35816291A JP35816291A JPH05214491A JP H05214491 A JPH05214491 A JP H05214491A JP 35816291 A JP35816291 A JP 35816291A JP 35816291 A JP35816291 A JP 35816291A JP H05214491 A JPH05214491 A JP H05214491A
Authority
JP
Japan
Prior art keywords
less
alloy
rolling
slab
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35816291A
Other languages
Japanese (ja)
Other versions
JP2663777B2 (en
Inventor
Tadashi Inoue
正 井上
Kiyoshi Tsuru
清 鶴
Eiju Matsuno
英寿 松野
Tomoyoshi Okita
智良 大北
Shinichi Okimoto
伸一 沖本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Publication of JPH05214491A publication Critical patent/JPH05214491A/en
Application granted granted Critical
Publication of JP2663777B2 publication Critical patent/JP2663777B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To produce a sheet for IC lead frame excellent in Ag plating suitabil ity and hot workability by regulating the Si segregation rate at the surface to a specific value at the time of forming a slab of Fe-Ni alloy having a specific composition into sheet-like state by means of rolling. CONSTITUTION:At the time of applying, in succession, slabbing, hot rolling, cold rolling, recrystallization annealing, temper rolling, and stress relief annealing to a cast ingot or continuously cast slab of an Fe-Ni alloy having a composition which consists of, by weight, 38-52% Ni, <0.0050% C, <0.01% Al, <0.0020% N, <0.0020% S, <0.0040% O, <1.0ppm H, <0.0040% P, 0.01-0.10% Si, 0.0002-0.0020% Ca, 0.0003-0.0020% Mg, and the balance Fe or further contains 5-18% Co and where the value of [Ca]+[Mg]/2 is regulated to 0.0005-0.0025% and also equation I and inequality II are satisfied and forming it into a sheet material, heating is done while regulating the holding time(t) at 1150-1300 deg.C (T deg.C) in the cases of >=35% and 20-70% reductions in area in the slabbing stage to values represented by inequalities IV, V and the surface Si segregation rate represented by expression III just before etching, etc., is regulated to <=10%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、メッキ性に優れたFe−
Ni系合金、特にAgメッキを施して用いられるリードフレ
ーム用素材に適しており、又ハンダ性にも優れ、かつ、
製造時の歩留りも改善した前記合金およびその製造方法
に係るものである。
BACKGROUND OF THE INVENTION The present invention relates to Fe- which has excellent plating properties.
Suitable for Ni-based alloys, especially for lead frame materials used with Ag plating, and also excellent in solderability, and
The present invention relates to the alloy and the manufacturing method thereof in which the yield during manufacturing is also improved.

【0002】[0002]

【従来の技術】ICリードフレーム用素材としては、半
導体素子、ガラスおよびセラミックス等との熱膨張係数
の整合性からNiを42%程度含み残部が鉄よりなる、4
2合金で代表されるようなFe−Ni系合金が広く使用され
ている。また近年では、高強度化を意図したFe−28%
Ni−16.5%CoやFe−29%Ni−6%Coといった合金も
使用され始めている。更にこのようなFe−Ni系合金から
ICリードフレーム素材を製造する方法としては、連続
鋳造または造塊法による合金塊に分塊圧延、熱間圧延お
よび冷間圧延等の加工を施して薄板とし、その薄板をス
リッタ加工することが通常行われている。
2. Description of the Related Art As a material for an IC lead frame, 42% of Ni is contained and the balance is made of iron because of the matching coefficient of thermal expansion with semiconductor elements, glass and ceramics.
Fe-Ni alloys such as the two alloys are widely used. In recent years, Fe-28%, which is intended for high strength,
Alloys such as Ni-16.5% Co and Fe-29% Ni-6% Co are also beginning to be used. Further, as a method for producing an IC lead frame material from such an Fe-Ni alloy, a thin plate is obtained by subjecting an alloy ingot by continuous casting or ingot making to slab rolling, hot rolling, cold rolling, or the like. It is common practice to slitter the thin plate.

【0003】また、このようにして製造された素材をリ
ードフレームに加工するには、打抜きまたはフォトエッ
チングにより、リードフレーム形状に加工した後、その
表面にAgメッキが施され、以降Siチップのダイボンディ
ング、ワイヤーボンディング、パッケージング、脚部の
スズメッキが施されることが通常行われている。さら
に、リードフレームが基板に着装される時にはハンダ付
けが施される。この際、ICリードフレームに使用され
るFe−Ni系合金には、メッキ性、特にAgメッキ性、ハン
ダ性に優れていることが強く要望される。
Further, in order to process the material thus manufactured into a lead frame, it is processed into a lead frame shape by punching or photo-etching, and then its surface is subjected to Ag plating. Bonding, wire bonding, packaging, and tin plating on the legs are commonly performed. Further, when the lead frame is attached to the substrate, it is soldered. At this time, it is strongly desired that the Fe-Ni alloy used for the IC lead frame has excellent plating properties, particularly Ag plating properties and soldering properties.

【0004】しかしながら、この合金はAgメッキとの密
着性が悪く、例えばICの組立工程におけるリードフレ
ームへのワイヤーボンディング時の加熱により、Agメッ
キ層に“フクレ”が生じたりメッキ層が剥離する等の問
題が起こる。従って、従来はAgメッキの前処理に、Niま
たはCuのストライクメッキ(短時間高電流密度メッキ)
を素材表面に施すことが通常行われている。
However, this alloy has poor adhesion to Ag plating, and for example, "blister" occurs in the Ag plating layer or the plating layer peels off due to heating during wire bonding to the lead frame in the IC assembly process. Problem occurs. Therefore, conventionally, Ni or Cu strike plating (short-time high current density plating) is used for pretreatment of Ag plating.
Is usually applied to the material surface.

【0005】また、ハンダ性は、その前工程に施される
スズメッキにおいて、“ウイスカー”とよばれる針状の
微細結晶が異常に成長しやすく、このウイスカーのため
に劣化し、たとえばスズメッキされたリードフレームと
ハンダとの濡れ時間が長くなり、結果的にハンダの濡れ
面積が所要の性能を満たさなくなるといった問題が起こ
る。
Further, the solderability is deteriorated due to the whiskers, and needle-like fine crystals called "whiskers" are apt to grow abnormally in the tin plating applied in the preceding step, and the tin-plated leads, for example. The wetting time between the frame and the solder becomes long, resulting in a problem that the wetted area of the solder does not satisfy the required performance.

【0006】上記の問題に対して、Agメッキ性を改善す
べく、AlとCaを複合微量添加し、非金属介在物を大幅に
低減させ、かつ、それらを合金中に微細に分散させて表
面疵発生を防止し、メッキ性を向上させたものが特開昭
62−207845号公報で発表されている。また、特
開平3−166340号公報ではCo0.5 〜22%、Ni2
2〜32.5%を含有するFe−Ni系において、メッキ性、
ハンダ性をMn、Si量の低減で達成しようとしている。
In order to improve the Ag plating property, in order to improve the Ag plating property, a small amount of Al and Ca is added in combination to significantly reduce non-metallic inclusions and to finely disperse them in the alloy to form a surface. The one in which flaws are prevented and the plating property is improved is disclosed in JP-A-62-207845. Further, in JP-A-3-166340, Co0.5-22%, Ni2
Fe-Ni system containing 2 to 32.5%, plating property,
We are trying to achieve solderability by reducing the amount of Mn and Si.

【0007】[0007]

【発明が解決しようとする課題】前記した特開昭62−
207845の開示技術においては、Niのストライクメ
ッキなしで3μm 厚のAgメッキを施した場合のメッキの
密着性の向上を達成している。しかしながら、最近の低
コスト化の要望からAgメッキの厚さも、上記よりさらに
薄メッキ化の傾向もあり、このような薄メッキ化にとも
なうAgメッキ性を確保する技術は未だ知られていない。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
In the disclosed technology of 207845, the adhesion of plating is improved when Ag plating of 3 μm thickness is applied without Ni strike plating. However, due to the recent demand for cost reduction, there is a tendency for the thickness of Ag plating to become thinner than the above, and a technique for ensuring the Ag plating property accompanying such thinning has not yet been known.

【0008】さらには、前記技術で特徴とするAl、Caの
複合添加によれば、リードフレーム用素材の製造工程の
中で施される熱処理により不均一な酸化膜が形成され、
この酸化膜の存在によりその後で施されるスズメッキに
おいてウイスカーが多発し、ハンダ性の著しい劣化を招
いていたのである。また、このようなAl、Caの複合添加
によると熱間加工性が劣化し製造工程の中で、合金塊を
分塊圧延してスラブとする際の疵発生が著しく、製造時
の歩留りが低いという欠点を有していた。
Further, according to the composite addition of Al and Ca, which is characteristic of the above-mentioned technique, a non-uniform oxide film is formed by the heat treatment performed in the manufacturing process of the lead frame material,
Due to the presence of this oxide film, whiskers frequently occurred in the tin plating subsequently applied, resulting in a marked deterioration in solderability. Further, due to the combined addition of Al and Ca, the hot workability deteriorates, and during the manufacturing process, the occurrence of flaws when the alloy lump is slab-rolled into a slab is remarkable, and the yield during manufacturing is low. It had the drawback.

【0009】また、特開平3−166340の開示技術
では、Agメッキにおいては、厚さ3μm のAgメッキの場
合のメッキ密着性の向上を達成しているが、最近の低コ
スト化の所望からの薄メッキ化(3μm 未満の厚さのAg
メッキ)の傾向もあり、このような薄メッキ化にともな
うAgメッキ性の向上は達成されていない。さらには、こ
の技術でみられるハンダ性向上も、ハンダの耐候性の面
のみであり、ハンダのぬれ性までは改善されていない。
また、この技術では、製造工程の中で合金塊を分塊圧延
してスラブとする際の疵発生が著しく、製造時の歩留り
が低いという欠点を有していた。
Further, in the technique disclosed in Japanese Patent Laid-Open No. 3-166340, in the Ag plating, the improvement of the plating adhesion in the case of the Ag plating having the thickness of 3 μm is achieved. However, the recent cost reduction is desired. Thin plating (Ag with a thickness of less than 3 μm
There is also a tendency for plating), and the improvement of Ag plating property due to such thinning has not been achieved. Furthermore, the improvement in solderability seen with this technique is only in terms of the weather resistance of the solder, and the wettability of the solder has not been improved.
In addition, this technique has a drawback in that a large amount of flaws are produced when the alloy ingot is slab-rolled into a slab during the manufacturing process, and the yield during manufacturing is low.

【0010】以上のように従来技術のみではより薄メッ
キを指向した場合のAgメッキ性と、ハンダ性を両立さ
せ、かつ、製造時の歩留りも向上させる技術は、未だ見
出されておらず、従ってこれらの特性をともに満足する
ような材料が切望されていた。
[0010] As described above, no technique has been found yet for the conventional technique alone, which achieves both the Ag plating property and the soldering property when aiming for thinner plating, and also improves the yield during manufacturing. Therefore, a material that satisfies both of these characteristics has been earnestly desired.

【0011】[0011]

【課題を解決するための手段】本発明者らはこのような
従来の問題点に鑑み、リードフレーム用Fe−Ni系合金に
おいてAgメッキ性、ハンダ性に優れ、かつ製造時の歩留
りも向上させるべく研究を重ね、その結果、Agメッキ性
の向上(Agメッキ密着性向上)には、(1) H、S、P、
O、Al量の低減、(2) Siの最適添加およびSiの分布の適
正化、が有効である。
In view of such conventional problems, the inventors of the present invention have excellent Ag plating properties and solderability in lead frame Fe-Ni alloys, and also improve the production yield. As a result of repeated research, as a result, in order to improve the Ag plating property (improvement of Ag plating adhesion), (1) H, S, P,
It is effective to reduce the amounts of O and Al, (2) optimize the addition of Si and optimize the Si distribution.

【0012】又、ハンダ性の向上(スズメッキ時のウイ
スカー発生抑制)のためには、(1) H、S、O量の低
減、(2) Siの適量添加およびSiの分布の適正化、(3) 合
金の熱間加工性の向上を極力図り、分塊圧延時の微細な
内部ワレを抑制し、リード端面でのマイクロボイトの形
成を防止するためには、C、N、S、O、P量の総量規
定およびMg、Caの微量添加、が有効である。
Further, in order to improve solderability (suppression of whisker generation during tin plating), (1) reduction of H, S and O contents, (2) addition of an appropriate amount of Si and optimization of Si distribution, 3) In order to improve the hot workability of the alloy as much as possible, suppress fine internal cracks during slabbing, and prevent the formation of microvoites on the lead end faces, C, N, S, O, It is effective to regulate the total amount of P and to add a trace amount of Mg and Ca.

【0013】更に、分塊圧延時の表面疵発生を少なくさ
せ(製造時の歩留りを向上させる)、かつ、所要のAgメ
ッキ性、ハンダ性を確保するためには、(1) C、N、
S、O、P量の低減、(2) Mg、Caの微量添加、がそれぞ
れ有効であることを見出した。また、Siの分布の適正化
のための手段としては、分塊圧延での加熱条件(温度、
時間)、加工条件(断面減少率、ヒート回数)の適正化
が有効であることを見出し、本発明完成に至ったもので
あって、以下の如くである。
Further, in order to reduce the occurrence of surface defects during slabbing (improve the yield during manufacturing) and to secure the required Ag plating property and solderability, (1) C, N,
It was found that reducing the amounts of S, O and P and (2) adding trace amounts of Mg and Ca are effective. Further, as a means for optimizing the distribution of Si, heating conditions (temperature,
It was found that the optimization of time) and processing conditions (cross-section reduction rate, number of heats) is effective, and the present invention has been completed, and is as follows.

【0014】(1) Ni:38〜52wt%、 C:0.0050 wt%
以下、 Al: 0.010wt%以下、N:0.0020wt %以下、 S:0.
0020 wt%以下、 O:0.0040 wt%以下、H:1.0ppm 以下、
P:0.0040 wt%以下、 Si: 0.01 〜0.10wt%、Ca:
0.0002 〜0.0020wt%、 Mg: 0.0003〜0.0020wt%、 [Ca]+[Mg]/2 : 0.0005 〜0.0025wt% を含有し、かつ [C]/10+[N]/10+[S] +[O]/5 +[P]/2 : 0.0045wt%、 ([Ca]+[Mg]/2)/([S] +[O]/5 )≧1 の関係を満たし、残部不可避不純物およびFeの成分組成
からなり、しかもその合金鋼帯のエッチング直前または
プレス打抜き直前での合金板表面におけるSiの成分偏析
率、すなわち、 〔|偏析域の成分濃度−平均成分濃度|/平均成分濃
度〕×100……(I)式 が10%以下であることを特徴とするメッキ性に優れた
Fe−Ni系合金。
(1) Ni: 38 to 52 wt%, C: 0.0050 wt%
Below, Al: 0.010wt% or less, N: 0.0020wt% or less, S: 0.
0020 wt% or less, O: 0.0040 wt% or less, H: 1.0 ppm or less,
P: 0.0040 wt% or less, Si: 0.01 to 0.10 wt%, Ca:
0.0002 to 0.0020wt%, Mg: 0.0003 to 0.0020wt%, [Ca] + [Mg] / 2: 0.0005 to 0.0025wt%, and [C] / 10 + [N] / 10 + [S] + [O ] / 5 + [P] / 2: 0.0045wt%, ([Ca] + [Mg] / 2) / ([S] + [O] / 5) ≧ 1 is satisfied, and the balance of inevitable impurities and Fe The component segregation rate of Si on the alloy plate surface immediately before the etching of the alloy steel strip or just before the punching of the alloy steel strip, that is, [| component concentration in the segregation region-average component concentration | / average component concentration] × 100 …… (I) is less than 10%, which is excellent in plating property.
Fe-Ni alloy.

【0015】(2) Ni:27〜30wt%、 C:0.0050wt%
以下、 Co:5〜18%、Al: 0.010wt%以下、 N:0.0
020wt%以下、 S:0.0020 wt%以下、O:0.0040wt %以
下、 H:1.0ppm以下、 P:0.0040 wt%以下、Si:
0.01 〜0.10 wt %、 Ca: 0.0002〜0.0020wt%、Mg:
0.00003〜0.0020wt%、 [Ca]+[Mg]/2 : 0.0005 〜0.0025wt% を含有し、かつ [C]/10+[N]/10+[S] +[O]/5 +[P]/2 : 0.0045wt%、 ([Ca]+[Mg]/2)/([S] +[O]/5 )≧1 の関係を満たし、残部不可避不純物およびFeの成分組成
からなり、しかもその合金鋼帯のエッチング直前または
プレス打抜き直前での合金板表面におけるSiの成分偏析
率、すなわち、 〔|偏析域の成分濃度−平均成分濃度|/平均成分濃
度〕×100……(I)式 が10%以下であることを特徴とするメッキ性に優れた
Fe−Ni系合金。
(2) Ni: 27-30 wt%, C: 0.0050 wt%
Below, Co: 5-18%, Al: 0.010wt% or less, N: 0.0
020wt% or less, S: 0.0020wt% or less, O: 0.0040wt% or less, H: 1.0ppm or less, P: 0.0040wt% or less, Si:
0.01 to 0.10 wt%, Ca: 0.0002 to 0.0020 wt%, Mg:
0.00003 to 0.0020wt%, [Ca] + [Mg] / 2: 0.0005 to 0.0025wt% and [C] / 10 + [N] / 10 + [S] + [O] / 5 + [P] / 2: 0.0045wt%, satisfying the relationship of ([Ca] + [Mg] / 2) / ([S] + [O] / 5) ≧ 1, consisting of the balance of inevitable impurities and Fe composition, and its alloy The component segregation ratio of Si on the surface of the alloy plate immediately before the etching of the steel strip or immediately before the punching, that is, [| component concentration in the segregation region-average component concentration | / average component concentration] × 100 (I) is 10 % Or less, excellent plating property
Fe-Ni alloy.

【0016】(3) 請求項1に記載の成分組成を有する合
金を造塊法または連続鋳造法により製造するに際して造
塊法による鋼塊または連続鋳造法によるスラブを以降、
分塊圧延−疵取り−熱間圧延−脱スケール・疵取り−1
回または2回以上の冷間圧延(2回以上の冷間圧延の場
合は中間に再結晶焼鈍を行う)−再結晶焼鈍−調質圧延
−歪取り焼鈍の工程でエッチング直前またはプレス打抜
き前の合金薄板を得るに当り、分塊圧延工程での加熱炉
における加熱雰囲気中のH2S の濃度を100ppm以下、
加熱温度を1150〜1300℃とし、該加熱温度に達
してからの保持時間t(hr) を加熱温度T(℃)に応じ
て、 7.71-5.33 ×10-3T ≦log t ≦8.00-5.33 ×10-3T ……
(II) 式 とし、分塊圧延での断面減少率を35%以上となし、分
塊圧延後徐冷することにより前記したエッチングが直前
またはプレス打抜き前の合金薄板表面でのSiの成分偏析
率(前記(I)式)を10%以下とすることを特徴とす
るメッキ性に優れたFe−Ni系合金の製造法。
(3) In producing an alloy having the composition according to claim 1 by an ingot making method or a continuous casting method, a steel ingot made by the ingot making method or a slab made by the continuous casting method is hereafter
Slump rolling-Scratch removal-Hot rolling-Descaling / Scratch removal-1
One time or two or more times of cold rolling (in the case of two or more times cold rolling, recrystallization annealing is performed in the middle) -recrystallization annealing-temper rolling-strain relief annealing. In obtaining the alloy thin plate, the H 2 S concentration in the heating atmosphere in the heating furnace in the slab rolling process is 100 ppm or less,
The heating temperature is set to 1150 to 1300 ° C, and the holding time t (hr) after reaching the heating temperature is 7.71-5.33 × 10 -3 T ≤ log t ≤ 8.00-5.33 × depending on the heating temperature T (° C). 10 -3 T ......
Formula (II) is adopted, and the cross-sectional reduction rate in slab rolling is set to 35% or more, and the slab component segregation rate on the surface of the alloy sheet just before the above etching or before press punching is performed by gradually cooling after slab rolling. (Formula (I)) is set to 10% or less, a method for producing an Fe-Ni alloy having excellent plating properties.

【0017】(4) 請求項1に記載の成分組成を有する合
金を造塊法または連続鋳造法により製造するに際して造
塊法による鋼塊または連続鋳造法によるスラブを以降、
分塊圧延−疵取り−熱間圧延−脱スケール・疵取り−1
回または2回以上の冷間圧延(2回以上の冷間圧延の場
合は中間に再結晶焼鈍を行う)−再結晶焼鈍−調質圧延
−歪取り焼鈍の工程でのエッチング直前またはプレス打
抜き前の合金薄板を得るに当り、分塊圧延工程での加熱
炉における加熱雰囲気中のH2S の濃度を100ppm 以
下、加熱温度を1150〜1300℃とし、該加熱温度
に達してからの保持時間t(hr) を加熱温度T(℃)に
応じて、 7.40-5.33 ×10-3T ≦log t ≦7.71-5.33 ×10-3T ……
(III)式 とし、1次分塊圧延を断面積減少率20〜70%で行
い、次いで前記加熱雰囲気にて加熱温度1150〜13
00℃で前記(III) 式の関係の範囲内で加熱し、その後
2次分塊圧延を断面積減少率20〜70%とし、分塊圧
延後徐冷することにより前記したエッチング直前または
プレス打抜き前の合金薄板表面でのSiの成分偏析率( 前
記(I)式)を10%以下とすることを特徴とするメッ
キ性に優れたFe−Ni系合金の製造法。
(4) In producing an alloy having the composition according to claim 1 by an ingot making method or a continuous casting method, a steel ingot made by the ingot making method or a slab made by the continuous casting method is hereafter
Slump rolling-Scratch removal-Hot rolling-Descaling / Scratch removal-1
Immediately before etching or before press punching in the process of single or two or more cold rollings (in the case of two or more cold rollings, recrystallization annealing is performed in the middle) -recrystallization annealing-temper rolling-strain relief annealing In obtaining the alloy thin plate of No. 1, the concentration of H 2 S in the heating atmosphere in the heating furnace in the slab rolling process is 100 ppm or less, the heating temperature is 1150 to 1300 ° C., and the holding time t after the heating temperature is reached is t. (Hr) according to the heating temperature T (℃) 7.40-5.33 × 10 -3 T ≤log t ≤7.71-5.33 × 10 -3 T ......
(III), primary slabbing is performed at a cross-sectional area reduction rate of 20 to 70%, and then the heating temperature is 1150 to 13 in the heating atmosphere.
Immediately before etching or press punching by heating at 00 ° C. within the range of the above formula (III), and then performing secondary slabbing at a cross-sectional area reduction rate of 20 to 70% and gradually cooling after slabbing. A method for producing an Fe-Ni-based alloy having excellent plating properties, characterized in that the segregation rate of Si component (formula (I)) on the surface of the previous alloy sheet is set to 10% or less.

【0018】(5) 請求項2に記載の成分組成を有する合
金を造塊法または連続鋳造法により製造するに際して造
塊法による鋼塊または連続鋳造法によるスラブを以降、
分塊圧延−疵取り−熱間圧延−脱スケール・疵取り−1
回または2回以上の冷間圧延(2回以上の冷間圧延の場
合は中間に再結晶焼鈍を行う)−再結晶焼鈍−調質圧延
−歪取り焼鈍の工程でエッチング直前またはプレス打抜
き前の合金薄板を得るに当り、分塊圧延工程での加熱炉
における加熱雰囲気中のH2S の濃度を100ppm以下、
加熱温度を1150〜1300℃とし、該加熱温度に達
してからの保持時間t(hr)を加熱温度T(℃)に応じ
て、 7.71-5.33 ×10-3T ≦log t ≦8.00-5.33 ×10-3T ……
(II) 式 とし、分塊圧延での断面減少率を35%以上となし、分
塊圧延後徐冷することにより前記したエッチングが直前
またはプレス打抜き前の合金薄板表面でのSiの成分偏析
率(前記(I)式)を10%以下とすることを特徴とす
るメッキ性に優れたFe−Ni系合金の製造法。
(5) In producing an alloy having the composition according to claim 2 by an ingot making method or a continuous casting method, a steel ingot made by the ingot making method or a slab made by the continuous casting method is hereafter
Slump rolling-Scratch removal-Hot rolling-Descaling / Scratch removal-1
One time or two or more times of cold rolling (in the case of two or more times cold rolling, recrystallization annealing is performed in the middle) -recrystallization annealing-temper rolling-strain relief annealing. In obtaining the alloy thin plate, the H 2 S concentration in the heating atmosphere in the heating furnace in the slab rolling process is 100 ppm or less,
The heating temperature is set to 1150 to 1300 ° C., and the holding time t (hr) after reaching the heating temperature is 7.71-5.33 × 10 −3 T ≦ log t ≦ 8.00-5.33 × depending on the heating temperature T (° C.). 10 -3 T ......
Formula (II) is adopted, and the cross-sectional reduction rate in slab rolling is set to 35% or more, and the slab component segregation rate on the surface of the alloy sheet just before the above etching or before press punching is performed by gradually cooling after slab rolling. (Formula (I)) is set to 10% or less, a method for producing an Fe-Ni alloy having excellent plating properties.

【0019】(6) 請求項2に記載の成分組成を有する合
金を造塊法または連続鋳造法により製造するに際して造
塊法による鋼塊または連続鋳造法によるスラブを以降、
分塊圧延−疵取り−熱間圧延−脱スケール・疵取り−1
回または2回以上の冷間圧延(2回以上の冷間圧延の場
合は中間に再結晶焼鈍を行う)−再結晶焼鈍−調質圧延
−歪取り焼鈍の工程でエッチング直前またはプレス打抜
き前の合金薄板を得るに当り、分塊圧延工程での加熱炉
における加熱雰囲気中のH2S の濃度を100ppm以下、
加熱温度を1150〜1300℃とし、該加熱温度に達
してからの保持時間t(hr)を加熱温度T(℃)に応じ
て、 7.40-0.33 ×10-3T ≦log t ≦7.71-5.33 ×10-3T ……
(III)式 とし、1次分塊圧延を断面積減少率20〜70%で行
い、次いで前記加熱雰囲気にて加熱温度1150〜13
00℃で前記(III) 式の関係の範囲内で加熱し、その後
2次分塊圧延を断面積減少率20〜70%とし、分塊圧
延後徐冷することにより前記したエッチング直前または
プレス打抜き前の合金薄板表面でのSiの成分偏析率( 前
記(I)式)を10%以下とすることを特徴とするメッ
キ性に優れたFe−Ni系合金の製造法。
(6) In producing an alloy having the composition according to claim 2 by an ingot making method or a continuous casting method, a steel ingot made by the ingot making method or a slab made by the continuous casting method is hereafter
Slump rolling-Scratch removal-Hot rolling-Descaling / Scratch removal-1
One time or two or more times of cold rolling (in the case of two or more times cold rolling, recrystallization annealing is performed in the middle) -recrystallization annealing-temper rolling-strain relief annealing. In obtaining the alloy thin plate, the H 2 S concentration in the heating atmosphere in the heating furnace in the slab rolling process is 100 ppm or less,
The heating temperature is set to 1150 to 1300 ° C, and the holding time t (hr) after reaching the heating temperature is 7.40-0.33 × 10 -3 T ≤ log t ≤ 7.71-5.33 × depending on the heating temperature T (° C). 10 -3 T ......
(III), primary slabbing is performed at a cross-sectional area reduction rate of 20 to 70%, and then the heating temperature is 1150 to 13 in the heating atmosphere.
Immediately before etching or press punching by heating at 00 ° C. within the range of the formula (III), and then performing secondary slabbing at a cross-sectional area reduction rate of 20 to 70%, and gradually cooling after slabbing. A method for producing an Fe-Ni-based alloy having excellent plating properties, characterized in that the segregation rate of Si component (formula (I)) on the surface of the previous alloy sheet is set to 10% or less.

【0020】[0020]

【作用】上記したような本発明について説明すると、ま
ず、本発明合金の化学成分の限定理由をwt%(以下単に
%という)によって述べると、以下の如くである。
The present invention as described above will be described. First, the reason for limiting the chemical composition of the alloy of the present invention will be described in terms of wt% (hereinafter simply referred to as%).

【0021】Niは、本合金の基本成分であり、Niが38
%未満、または、52%を超える場合には合金の熱膨張
係数が大きくなりすぎ、半導体素子、ガラスおよびセラ
ミックス等との整合性が保てなくなる。従って、Niの範
囲は38〜52%とした。
Ni is a basic component of this alloy, and Ni is 38
If it is less than 50% or more than 52%, the thermal expansion coefficient of the alloy becomes too large, and the compatibility with the semiconductor element, glass, ceramics and the like cannot be maintained. Therefore, the range of Ni is set to 38 to 52%.

【0022】Coは、半導体素子、ガラスおよびセラミッ
クス等との整合性をより高める場合、必要に応じて添加
される元素である。Coが5%未満または18%超では、
この効果が得られないため、Coの範囲は5〜18%とし
た。なお、Coが5〜18%添加された場合、Niが27%
未満、または30%を超える時は熱膨張特性が逆に劣化
してしまう。従って、Coが5〜18%含有される時のNi
の範囲は、27〜30%とした。
Co is an element that is added as necessary when the compatibility with semiconductor elements, glass, ceramics and the like is further enhanced. If Co is less than 5% or more than 18%,
Since this effect cannot be obtained, the range of Co is set to 5 to 18%. When Co is added 5 to 18%, Ni is 27%
If it is less than 30% or more than 30%, the thermal expansion property is deteriorated. Therefore, when Co is contained 5 to 18%, Ni
Was set to 27 to 30%.

【0023】Cは、含有量が多くなると、熱間加工性は
劣化し、分塊圧延時に表面疵発生が著しくなり、また後
述するN、S、O、Pとの相乗作用で分塊圧延時の合金
内部に微細なワレを発生させ、ハンダ性を劣化させる。
即ち、Cが0.0050%を超えると本発明で意図する熱
間加工性の向上が達成できないため、0.0050%を上
限とした。
When the content of C is large, the hot workability is deteriorated, the surface defects are significantly generated during the slabbing, and the synergistic effect with N, S, O and P described later causes the slabbing. Fine cracks are generated inside the alloy and deteriorate the solderability.
That is, if C exceeds 0.0050%, the improvement in hot workability intended in the present invention cannot be achieved, so 0.0050% was made the upper limit.

【0024】Nは、含有量が多くなると、粒界に窒化物
が析出し、熱間加工性が劣化して、分塊圧延時に表面疵
発生が著しくなり、また後述するC、S、O、Pとの相
乗作用で分塊圧延時の合金内部に微細なワレを発生さ
せ、ハンダ性を劣化させる。このNが0.0020%を超
えると本発明で意図する熱間加工性の向上が達成できな
いため、0.0020%を上限とした。
When the content of N is large, a nitride precipitates on the grain boundaries, the hot workability is deteriorated, and the surface defects are significantly generated during the slabbing. Further, C, S, O, which will be described later, Synergistic action with P causes fine cracks to occur inside the alloy during slabbing and deteriorates solderability. If this N exceeds 0.0020%, the improvement in hot workability intended by the present invention cannot be achieved, so 0.0020% was made the upper limit.

【0025】以下、本発明で意図する熱間加工性向上と
は、分塊圧延時の表面疵発生を少なくし、かつ合金内部
に微細なワレの発生を防止することと定義する。
In the following, the improvement of hot workability intended in the present invention is defined as reducing the occurrence of surface flaws during slabbing and preventing the generation of fine cracks inside the alloy.

【0026】Sは、合金中のオーステナイト粒界に偏析
して粒界を脆化させ、熱間加工性を著しく劣化させる元
素である。また、S量が多いと合金中の介在物が多くな
り、Agメッキ性、ハンダ性が劣化する。本発明で意図す
る熱間加工性の向上のためのS量は後述のMg、Caの適正
添加のもとで、0.0020%以下である。また、上記Ag
メッキ性、ハンダ性向上のためのS量も0.0020%以
下である。なお、これらのメッキ性向上のためのより好
ましいS量は0.0010%以下である。
S is an element that segregates at the austenite grain boundaries in the alloy, embrittles the grain boundaries, and significantly deteriorates hot workability. Also, if the amount of S is large, the amount of inclusions in the alloy increases, and Ag plating properties and soldering properties deteriorate. The amount of S for improving the hot workability intended in the present invention is 0.0020% or less under the proper addition of Mg and Ca described later. Also, the above Ag
The amount of S for improving the plating property and the soldering property is also 0.0020% or less. A more preferable amount of S for improving the plating properties is 0.0010% or less.

【0027】Oは、合金中のオーステナイト粒界に低融
点酸化物として析出し、熱間加工性を著しく劣化させる
元素である。また、このO量が多いと合金中の介在物が
多くなり、Agメッキ性、ハンダ性が劣化する。本発明で
意図する熱間加工性の向上のためのO量は、後述のMg、
Caの適正添加のもとで0.0040%以下である。また、
Agメッキ性、ハンダ性向上のためのO量としても、0.0
040%以下、より好ましくは0.0025%以下であ
る。
O is an element that precipitates as a low melting point oxide at the austenite grain boundaries in the alloy and significantly deteriorates hot workability. Also, if the amount of O is large, the amount of inclusions in the alloy increases, and Ag plating properties and soldering properties deteriorate. The amount of O for improving the hot workability intended in the present invention is Mg, which will be described later,
It is 0.0040% or less under the proper addition of Ca. Also,
The amount of O for improving Ag plating property and solderability is also 0.0
It is 040% or less, more preferably 0.0025% or less.

【0028】Pは、合金中のオーステナイト粒界に偏析
して、粒界を脆化させ、熱間加工性を劣化させる元素で
ある。また、P量が多くなると、Pと表面偏析が合金鋼
帯の熱処理時に生じ、Agメッキ性が劣化する。本発明で
意図する熱間加工性の向上のためのP量は、0.0040
%以下である。また、Agメッキ性向上のためのP量も0.
0040%以下、より好ましくは0.0010%以下であ
る。
P is an element that segregates at the austenite grain boundaries in the alloy, embrittles the grain boundaries, and deteriorates hot workability. Further, when the amount of P is large, P and surface segregation occur during the heat treatment of the alloy steel strip, which deteriorates the Ag plating property. The amount of P for improving the hot workability intended in the present invention is 0.0040.
% Or less. Also, the amount of P for improving the Ag plating property is 0.
It is 0040% or less, more preferably 0.0010% or less.

【0029】Siは、本合金において、脱酸を目的とする
もので重要な合金元素の1つであるが、Agメッキ性、ハ
ンダ性の観点からは、その量および分布が制御されねば
ならない元素でもある。このSi量が、0.01%未満で
は、O量が本発明規定の0.0040%以下とならない。
一方、0.10%を超える場合、合金鋼帯の熱処理時に、
不均一な酸化膜が形成され、Agメッキ性、ハンダ性が劣
化するため、Siは0.01%を下限とし、0.10%を上限
と定めた。
Si is one of the important alloying elements for the purpose of deoxidizing in the present alloy, but from the viewpoint of Ag plating property and soldering property, its amount and distribution must be controlled. But also. If the amount of Si is less than 0.01%, the amount of O does not fall below 0.0040% specified in the present invention.
On the other hand, if the content exceeds 0.10%, the
Since a non-uniform oxide film is formed and Ag plating property and soldering property are deteriorated, the lower limit of Si is 0.01% and the upper limit of Si is 0.10%.

【0030】なお、Si量がこの範囲内の場合でも合金表
面でのSiの成分変動が大きいと局部的にAgメッキ性、ハ
ンダ性の劣化する領域が存在し、結果的にこれらのメッ
キ性に問題が生じるため、このような成分変動は制御さ
れねばならない。従って、本発明では上記Si量の規定に
加え、エッチング直前又はプレス打抜き直前での合金板
表面におけるSiの成分偏析率、即ち、 〔|偏析域の成分濃度−平均成分濃度|/平均成分濃
度〕×100 を10%以下とすることにより上記の成分変動によるAg
メッキ性、ハンダ性の局部的劣化を解決する。
Even when the amount of Si is within this range, if the variation of Si component on the alloy surface is large, there is a region where the Ag plating property and the soldering property are locally deteriorated, and as a result, these plating properties are deteriorated. Such component variations must be controlled as problems arise. Therefore, in the present invention, in addition to the regulation of the above Si amount, the component segregation ratio of Si on the alloy plate surface immediately before etching or immediately before press punching, that is, [| component concentration in the segregation region-average component concentration | / average component concentration] By setting × 100 to 10% or less, Ag due to the above component fluctuation
Solves local deterioration of plating and soldering.

【0031】また、このSiの成分偏析率が10%以下で
あっても最小濃度部で0.01%未満となると、合金鋼帯
の熱処理時で形成される酸化膜の性状が不均一となり、
結果的にAgメッキ性に問題が生じ、一方最大濃度部で0.
10%を超えるような場合にはAgメッキ性、ハンダ性が
劣化するため、このようなことにならないように制御す
る。
Further, even if the segregation ratio of Si is 10% or less, if it is less than 0.01% in the minimum concentration portion, the properties of the oxide film formed during the heat treatment of the alloy steel strip become non-uniform,
As a result, there is a problem with the Ag plating property, while the maximum density is 0.
If it exceeds 10%, the Ag plating property and the solder property are deteriorated, so control is performed so as not to cause this.

【0032】Alは、量が多くなると、Alの強固な酸化膜
が合金鋼帯の熱処理時に生じ、特にAgメッキ性が劣化し
たり、Caとの共存のもとで低融点酸化物を合金中に形成
し、熱間加工性が劣化する。本発明で意図するAgメッキ
性向上および熱間加工性向上のためのAl量は、0.010
%以下、より好ましくは0.0050%以下である。
When the amount of Al is large, a strong oxide film of Al is generated during the heat treatment of the alloy steel strip, particularly the Ag plating property is deteriorated, and the low melting point oxide is contained in the alloy in the presence of Ca. And the hot workability deteriorates. The amount of Al for improving Ag plating property and hot workability intended in the present invention is 0.010.
% Or less, more preferably 0.0005% or less.

【0033】Hは、本合金のメッキ性に対しては、著し
く大きな影響を及ぼす元素である。すなわち、Hは本合
金中の溶製時では、不可避的に混入し、その量は従来1.
0ppm を超え、場合により4〜7ppm 程度も残存してい
た。このガスがIC製造過程のAgのスポットメッキ後の
ダイボンデイングの加熱時に放出され、メッキ層と下地
合金(リードフレーム材料)の界面に移動し、“フク
レ”と呼ばれるメッキ不良となってしまう。この現象は
Agのメッキ層の厚さが比較的厚い従来の3μm 程度の厚
さでは、メッキ層の強度の点から問題となっていなかっ
た。しかし、最近のAgの薄メッキ化の傾向より、2μm
より薄いメッキ厚も一般的となりつつあり、このような
薄いAgメッキ厚では、Agメッキ層の強度が、Hのガス圧
力よりも、小さくなってしまい、上記した“フクレ”の
問題が顕在化してきた。また、上記した従来レベルのH
を含有する合金にハンダ付けをする場合でも、ハンダの
ぬれ性が劣っているといった問題があった。このような
Hの極微量の存在によるメッキ性への悪影響は本合金で
は特に認められるものである。
H is an element that has a significantly great influence on the plating property of the present alloy. That is, H is inevitably mixed during melting in this alloy, and its amount is 1.
It exceeded 0 ppm, and in some cases about 4 to 7 ppm remained. This gas is released during the heating of the die bonding after spot plating of Ag in the IC manufacturing process, moves to the interface between the plating layer and the base alloy (lead frame material), and causes plating failure called "blister". This phenomenon
When the thickness of the Ag plating layer is relatively thick, which is about 3 μm in the related art, there was no problem in terms of the strength of the plating layer. However, due to the recent trend of thinning Ag, 2 μm
Thinner plating thicknesses are becoming common, and the strength of the Ag plating layer becomes smaller than the gas pressure of H at such a thin Ag plating thickness, and the problem of "blister" mentioned above becomes apparent. It was Also, the above-mentioned conventional level H
Even when soldering an alloy containing Al, there is a problem that the wettability of the solder is inferior. The adverse effect on the plating property due to the presence of such a trace amount of H is particularly recognized in the present alloy.

【0034】上記したように、Hが1.0ppm を超える
と、本合金によって本発明で意図するメッキ性が得られ
なくなるため、1.0ppm を上限とした。なお、本発明で
規定するH量を得るには、溶製時の真空脱ガス方法の最
適化が必要である。すなわち、みかけの水素圧を低下さ
せるため、本発明で意図する合金では0.1torrと同じ
か、それ以下の圧力の高真空度を達成することや、底吹
き希釈Arガス量を増加させる等の方法が採られる。
As described above, when H exceeds 1.0 ppm, the present alloy cannot obtain the plating property intended by the present invention, so 1.0 ppm was made the upper limit. In addition, in order to obtain the amount of H specified in the present invention, it is necessary to optimize the vacuum degassing method during melting. That is, in order to reduce the apparent hydrogen pressure, in the alloy intended in the present invention, a high vacuum degree of a pressure equal to or lower than 0.1 torr can be achieved, and the bottom-blown diluted Ar gas amount can be increased. The method is adopted.

【0035】本発明が意図するAgメッキ性、ハンダ性を
確保しつつ、しかも本合金の熱間加工性の向上を極力図
り、分塊圧延時の微細な内部割れを抑制し、又リード端
面でのマイクロボイドの形成を防止し、ハンダ性を向上
させるには、C、N、S、O、P量の総量規定およびM
g、Caの微量の複合添加が必要とされる。すなわち、C/1
0+N/10+S+O/5+P/2が0.0045%を超える場合、
N、S、O、Pによる粒界強度の低下、Cによる粒内強
化により、粒界脆化が著しくなり、分塊圧延時にオース
テナイト粒界の3重点といったところなどで、微細なワ
レが発生し、以降の熱間圧延の工程でも、未圧着のまま
合金内部にワレとして残り、ハンダ性を劣化させる。こ
のため C/10 + N/10 +S+O/5+P/2の上限は0.00
45%とした。
While ensuring the Ag plating property and the soldering property intended by the present invention, the improvement of the hot workability of the present alloy is achieved as much as possible to suppress the fine internal cracks during the slabbing rolling, and the lead end surface In order to prevent the formation of micro voids and improve the solderability, the total amount of C, N, S, O and P must be specified and M
A small amount of combined addition of g and Ca is required. Ie C / 1
When 0 + N / 10 + S + O / 5 + P / 2 exceeds 0.0045%,
Grain boundary embrittlement becomes remarkable due to the decrease in grain boundary strength due to N, S, O, P and intragranular strengthening due to C, and fine cracks occur at the triple point of austenite grain boundaries during slab rolling. Even in the subsequent hot rolling process, it remains as cracks inside the alloy without being pressure-bonded and deteriorates the solderability. Therefore, the upper limit of C / 10 + N / 10 + S + O / 5 + P / 2 is 0.00
It was set to 45%.

【0036】本発明で意図する熱間加工性向上のために
は、上記のようなC、N、S、O、Pの低減に加え、C
a、MgのS量、O量に応じた適量添加が必須である。す
なわち、Caは0.0002〜0.0020%、Mgは0.000
3〜0.0020%、かつ、Ca+ Mg/2 :0.0005〜0.
0025%かつ、S、O量に応じて、(Ca+Mg/2 )/
(S+O/5)≧1とする必要がある。
In order to improve the hot workability intended in the present invention, in addition to the reduction of C, N, S, O and P as described above, C
It is essential to add a proper amount of a and Mg according to the S and O amounts. That is, Ca is 0.0002 to 0.0020% and Mg is 0.000%.
3 to 0.0020%, and Ca + Mg / 2: 0.0005 to 0.
0025% and (Ca + Mg / 2) /, depending on the amount of S and O
(S + O / 5) ≧ 1 is required.

【0037】図1に、Agメッキ性、ハンダ性、スラブ疵
取り量とCa、Mg量の関係を示すが、Caは0.0002%未
満、Mgは0.0003%未満では、本発明で意図する熱間
加工性向上が達成されずハンダ性の向上も得られず、一
方、いずれの成分でも0.0020%を超えると、合金鋼
帯の熱処理時で表面に強固な酸化膜が形成され、Agメッ
キ性、ハンダ性が損われる。
FIG. 1 shows the relationship between the Ag plating property, the solder property, the slab defect removal amount, and the Ca and Mg amounts. When Ca is less than 0.0002% and Mg is less than 0.0003%, it is not intended in the present invention. No improvement in hot workability was achieved and no improvement in solderability was obtained. On the other hand, if the content of both components exceeds 0.0020%, a strong oxide film is formed on the surface during heat treatment of the alloy steel strip, Ag plating properties and solderability are impaired.

【0038】本発明で意図する熱間加工性向上の効果は
Ca、Mgのいずれか一方の単独添加では十分に現われず、
両者とも本発明の規定の下限値以上の添加は必要であ
る。すなわち、Ca+ Mg/2 が0.0005%未満では、本
発明で目標とする熱間加工性向上およびハンダ性向上が
得られず、一方 Ca+ Mg/2 が0.0025%を超える
と、合金鋼帯の熱処理時で表面に強固な酸化膜が形成さ
れ、Agメッキ性、ハンダ性が損われる。これらより、Ca
+ Mg/2 は0.0005%〜0.0025%の範囲に定め
た。
The effect of improving the hot workability intended by the present invention is
It does not appear sufficiently with the addition of either Ca or Mg alone,
In both cases, it is necessary to add more than the lower limit specified in the present invention. That is, if Ca + Mg / 2 is less than 0.0005%, the improvement in hot workability and solderability targeted by the present invention cannot be obtained, while if Ca + Mg / 2 exceeds 0.0025%, the alloy steel is A strong oxide film is formed on the surface during heat treatment of the strip, impairing the Ag plating property and solderability. From these, Ca
+ Mg / 2 was set in the range of 0.0005% to 0.0025%.

【0039】上記のようなCa、Mg添加による熱間加工性
の向上は、凝固過程において、SやOが安定無害な析出
物として固定されるためと考えられる。なお、CaとMgと
では本合金の場合SやOの析出物を形成する温度域が異
なり、このことがCaとMgの複合添加がSやOを安定な析
出物としてより十分に固定できる理由であると推察され
る。
It is considered that the improvement of the hot workability by adding Ca and Mg as described above is because S and O are fixed as stable and harmless precipitates in the solidification process. In the case of the present alloy, Ca and Mg have different temperature ranges where precipitates of S and O are formed, which is the reason why the combined addition of Ca and Mg can fix S and O more sufficiently as stable precipitates. It is presumed that

【0040】なお、CaとMgの総量の下限は、S量とO量
に応じて変えることができ、この規定を満たすことによ
り、Agメッキ性およびハンダ性を高いレベルとし、かつ
本発明で意図する熱間加工性をより高いレベルとするこ
とができる。すなわち、図2はAgメッキ性、ハンダ性、
スラブ疵取り量と〔Ca〕+〔Mg〕/2、〔S〕+〔O〕/5
の関係を示すが、( Ca + Mg/2 )/(S+O/5)が1
以上の場合、前記のCa、Mg量のそれぞれの規定を満たし
たときのみの場合に比べて、熱間加工性をより向上させ
ることができ、表面疵取り量を小さくすることができ
る。
The lower limit of the total amount of Ca and Mg can be changed according to the amounts of S and O. By satisfying this requirement, the Ag plating property and the soldering property can be increased to a high level, and the present invention intends. The hot workability can be increased to a higher level. That is, FIG. 2 shows Ag plating property, solder property,
Slab flaw removal and [Ca] + [Mg] / 2, [S] + [O] / 5
The relation of (Ca + Mg / 2) / (S + O / 5) is 1
In the above case, the hot workability can be further improved, and the surface flaw removal amount can be reduced, as compared with the case where only the respective regulations of Ca and Mg contents are satisfied.

【0041】一方、( Ca + Mg/2 )/(S+O/5)
が1未満の場合は、Ca、Mg、S、O量がそれぞれ本発明
規定内の場合であっても、S、Oを完全に安定無害な析
出物として固定化できないため、基本的には、本発明で
意図する高い熱間加工性は有しているものの、( Ca +
Mg/2 )/(S+O/5)≧1 の場合のような飛躍的な
熱間加工性の向上は得られない。以上により本発明で意
図する熱間加工性をより向上させ、かつ、Agメッキ性と
ハンダ性を高いレベルにするための条件として( Ca +
Mg/2 )/(S+O/5)≧1 を定めた。
On the other hand, (Ca + Mg / 2) / (S + O / 5)
Is less than 1, even if the amounts of Ca, Mg, S, and O are within the scope of the present invention, S and O cannot be immobilized as completely stable and harmless precipitates, so basically, Although having the high hot workability intended by the present invention, (Ca +
A dramatic improvement in hot workability as in the case of Mg / 2) / (S + O / 5) ≧ 1 cannot be obtained. From the above, as a condition for further improving the hot workability intended by the present invention and achieving a high level of Ag plating property and solderability (Ca +
Mg / 2) / (S + O / 5) ≧ 1 was defined.

【0042】以上のような成分規定により、本発明で対
象とするFe−Ni系合金のAgメッキ性、ハンダ性を向上さ
せつつ、熱間加工性の向上を達成しうるが、以下に示す
ような、分塊圧延工程における加熱炉の雰囲気、加熱、
加工条件の適正化により、上記の特性について一層の向
上を達成し得る。
By the above compositional regulation, the hot workability can be improved while improving the Ag plating property and the soldering property of the Fe-Ni alloy targeted by the present invention. The atmosphere of the heating furnace in the slab rolling process, heating,
Further optimization of the above characteristics can be achieved by optimizing the processing conditions.

【0043】先ず、Siの成分偏析をより低減する方法の
1つとしては、分塊圧延における加熱温度、保持時間、
加工条件の適正化である。すなわち、造塊法による鋼塊
又は連続鋳造によるスラブを分塊圧延するに際して、加
熱と圧延を1回だけで行なう1ヒートの分塊の場合、図
3に示すように、 1150≦T(℃)≦1300・・・(V)式 log t≧7.71−5.33×10-3T・・・・(VI) 式 log t≦8.00−5.33×10-3T・・・・(VII)式 但し、これらの式において、tは保持時間(hr) であ
り、Tは加熱温度(℃)であり、以下これらを単にt、
Tという、のV〜VII 3式を満たした条件下で加熱し、
分塊圧延での加工を断面減少率35%以上で行ない、圧
延後徐冷することによりSiの成分偏析率を10%以下と
することができ、かつ分塊圧延により得られたスラブの
疵取り量を5mm以下とすることができる。
First, as one of the methods for further reducing the segregation of Si components, the heating temperature, holding time, and
It is the optimization of processing conditions. That is, when the steel ingot by the ingot making method or the slab by continuous casting is slab-rolled, in the case of one-heat slab in which heating and rolling are performed only once, as shown in FIG. 3, 1150 ≦ T (° C.) ≦ 1300 ・ ・ ・ (V) formula log t ≧ 7.71−5.33 × 10 −3 T ・ ・ ・ ・ (VI) formula log t ≦ 8.00−5.33 × 10 −3 T ・ ・ ・ ・ (VII) formula In the formula, t is a holding time (hr), T is a heating temperature (° C.), and these are simply referred to as t,
Heated under the condition of satisfying the formulas V to VII 3 of T,
By performing slab rolling at a cross-section reduction rate of 35% or more, and gradually cooling after rolling, the segregation rate of Si can be reduced to 10% or less, and the slab obtained by slab rolling is flawed The amount can be 5 mm or less.

【0044】なお、(V)式の下限未満または(VII)式
を満たさない場合は、最終板厚でのSiの偏析率が10%
超となり、不適である。また、(V)式の上限超、また
は(VII)式を満たさない場合は、分塊圧延後のスラブの
疵取り量(片面当り)が5mmを超え、熱間歩留りが悪
く、本発明の範囲外である。
If the lower limit of the formula (V) is not satisfied or the formula (VII) is not satisfied, the segregation ratio of Si in the final plate thickness is 10%.
It becomes super and is unsuitable. If the upper limit of the formula (V) is not satisfied or the formula (VII) is not satisfied, the flaw removal amount (per one side) of the slab after slabbing exceeds 5 mm, the hot yield is poor, and the range of the present invention is satisfied. Outside.

【0045】更に、前記鋼塊または連続鋳造スラブを分
塊圧延するに際して、加熱と圧延を2回で行なう2ヒー
トの分塊の場合、1ヒートに比べてよりSiのミクロ偏析
を低いレベルとすることができる。この場合、図4に示
すように、 1150≦T(℃)≦1300・・・(VIII) 式 log t≧7.40−5.33×10-3T・・・・(IX) 式 log t≦7.71−5.33×10-3T・・・・(X)式 のVIII〜X式を満たした条件で加熱し、1回目の分塊圧
延での加工を断面減少率20〜70%で行い、圧延後、
前記3式を満たす条件にて再加熱し、そののち2回目の
分塊圧延にて、断面減少率20〜70%範囲内にて加工
し、その加工後徐冷することによりSiの成分偏析率を1
0%以下とすることができ、且つ分塊圧延により得られ
たスラブの疵取り量を5mm以下とすることができる。
Further, when the steel ingot or the continuously cast slab is subjected to slab-rolling, in the case of slabbing of two heats in which heating and rolling are performed twice, the microsegregation of Si is at a lower level than in one heat. be able to. In this case, as shown in FIG. 4, 1150 ≦ T (° C.) ≦ 1300 ... (VIII) formula log t ≧ 7.40−5.33 × 10 −3 T ··· (IX) formula log t ≦ 7.71−5.33 × 10 −3 T ... (X) Equation (VIII) to X are heated under the conditions that satisfy the equations, and the first slabbing process is performed at a cross-section reduction rate of 20 to 70%.
It is reheated under the conditions that satisfy the above three formulas, and then, by the second slabbing, it is processed within the range of the cross-sectional reduction rate of 20 to 70%, and after the processing, it is gradually cooled to segregate Si components. 1
It can be set to 0% or less, and the amount of flaw removal of the slab obtained by the slab rolling can be set to 5 mm or less.

【0046】なお、(VIII) 式の下限未満、または(I
X) 式を満たさない場合は、最終板厚でのSiの偏析率が
10%超となり不適である。また、(VIII) 式の上限超
または(X)式を満たさない場合は、分塊圧延後のスラ
ブの疵取り量(片面当り)が5mmを超え、熱間歩留りが
悪く、本発明の範囲外である。
It should be noted that less than the lower limit of the formula (VIII), or (I
When the formula X) is not satisfied, the segregation rate of Si in the final plate thickness exceeds 10%, which is not suitable. If the upper limit of the formula (VIII) is not satisfied or the formula (X) is not satisfied, the flaw removal amount (per one side) of the slab after slabbing exceeds 5 mm, the hot yield is poor, and it is outside the range of the present invention. Is.

【0047】加熱時の加熱炉の雰囲気中のH2S 濃度制御
により分塊圧延時の表面疵発生をより低レベルにするこ
とができる。すなわち、加熱雰囲気中のH2S が100pp
m を超える場合、Sによる粒界脆化が表面およびその近
傍でおこり、分塊圧延後に表面疵発生が多くなり、前記
の成分および加熱雰囲気以外の分塊条件を本発明規定内
とした場合でも、スラブの疵取り量(片面当り)が5mm
を超えるため、H2S の濃度の上限を100ppm とした。
By controlling the H 2 S concentration in the atmosphere of the heating furnace at the time of heating, the generation of surface defects at the time of slabbing can be made lower. That is, H 2 S in the heating atmosphere is 100 pp
If it exceeds m, grain boundary embrittlement due to S occurs on the surface and in the vicinity thereof, and surface defects are often generated after slabbing. , Slab flaw removal amount (per side) is 5mm
Therefore, the upper limit of the H 2 S concentration is set to 100 ppm.

【0048】更に、分塊圧延後の冷却を徐冷とすること
によりSiの成分偏析率をより低いレベルとすることがで
きる。即ち、Siの成分偏析を本発明で意図するレベルま
で低減する方法は、上記の方法に加え、インゴット製造
時の偏析防止、急冷凝固(薄鋳片に鋳造)、具体的に
は、鋳造時の電磁攪拌、一方向凝固、軽圧下鋳造、偏平
鋼塊の採用による凝固時間の短縮、または、条製造工程
中においては熱間加工、温間加工、冷間加工とそれぞれ
1種以上の加工と、熱処理の組み合わせにより達成でき
る。
Further, by gradually cooling after the slabbing rolling, the segregation rate of Si component can be made lower. That is, the method of reducing the component segregation of Si to the level intended by the present invention, in addition to the above method, segregation prevention during ingot production, rapid solidification (casting into thin slabs), specifically, during casting Electromagnetic stirring, unidirectional solidification, light pressure casting, shortening of solidification time by adopting flat steel ingot, or hot working, warm working, cold working and one or more kinds of processing each during the strip manufacturing process, It can be achieved by a combination of heat treatments.

【0049】[0049]

【実施例】本発明によるものの具体的な実施例について
説明すると、以下の如くである。 (実施例1)Fe−Ni系合金を電気炉にて出鋼し、その後
に取鍋精錬を行なうことにより7トン鋼塊を得た。な
お、このものの出鋼後の取鍋精錬は、CaO :40%以下
のMgO-CaO 系耐火物よりなる取鍋を使用し、溶滓の成分
がwt%で、〔CaO 〕/〔SiO2〕:0.65〜0.8、Al
2O3 :3%以下、MgO :15%以下のCaO −SiO2−Al2O
3 系のものであり、これにより処理することで、次の表
1の化学成分のような合金を得た。
EXAMPLES Specific examples of the present invention are described below. (Example 1) A Fe-Ni alloy was tapped in an electric furnace and then ladle refining was performed to obtain a 7-ton ingot. For ladle refining of this product after tapping, a ladle consisting of CaO: 40% or less of MgO-CaO refractory was used, and the content of slag was wt%, and [CaO] / [SiO 2 ] : 0.65-0.8, Al
2 O 3: 3% or less, MgO: 15% or less of CaO -SiO 2 -Al 2 O
It is of the 3 type, and by treatment with this, an alloy having the chemical composition shown in the following Table 1 was obtained.

【0050】[0050]

【表1】 [Table 1]

【0051】上記したように得られたNo. 1〜No. 19
およびNo. 21の鋼塊を手入れの後、1200℃で12
時間加熱し、1次分塊にて断面減少率60%で分塊圧延
を行ない、しかるのち1200℃で12時間加熱し、2
次分塊にて断面減少率45%で分塊圧延を行ない、徐冷
することによりスラブを得た。なお、合金No. 20は供
試材No. 1と同じ成分を有する7トン鋼塊を手入れ後、
1200℃にて15時間加熱し、断面減少率78%で分
塊圧延を行ない、徐冷することにより、スラブを準備し
た。加熱炉の雰囲気ガス中のH2S 濃度は55ppm であ
る。
No. 1 to No. 19 obtained as described above
And after caring for No. 21 steel ingot, 12 at 1200 ℃
After heating for 1 hour, slab rolling is performed at the primary slab with a cross-sectional reduction rate of 60%, and then at 1200 ° C for 12 hours,
A slab was obtained by performing slab rolling in the next slab with a cross-sectional reduction rate of 45% and then slowly cooling. Alloy No. 20 is a 7 ton steel ingot having the same composition as sample material No. 1
A slab was prepared by heating at 1200 ° C. for 15 hours, slab rolling at a cross-section reduction rate of 78%, and slow cooling. The H 2 S concentration in the atmosphere gas of the heating furnace is 55 ppm.

【0052】これらのスラブを手入れし酸化防止剤を塗
布後、加熱温度1100℃で加熱してから熱間圧延を行
なった。なおこの際、1000℃以上での合計圧下率は
82%であり、850℃以上での合計圧下率は98%で
あって、熱間圧延された熱延コイルの巻取り温度は55
0〜750℃であった。スラブの表面疵発生は目視観察
およびカラーチェックにより調べた。表面疵取り量はス
ラブ表面を溶剤・グラインダーにより表面疵がなくなる
まで手入れして、その手入れ前後のスラブの幅厚さの変
化を測定することにより求めた。合金中の微細な内部割
れは、合金鋼帯のUST検査により調べた。
These slabs were cared for, coated with an antioxidant, heated at a heating temperature of 1100 ° C., and then hot-rolled. At this time, the total reduction rate at 1000 ° C. or higher was 82%, the total reduction rate at 850 ° C. or higher was 98%, and the coiling temperature of the hot-rolled hot-rolled coil was 55%.
It was 0-750 degreeC. The occurrence of surface defects on the slab was examined by visual observation and color check. The amount of surface flaw removal was determined by cleaning the slab surface with a solvent grinder until the surface flaw disappeared, and measuring the change in the width and thickness of the slab before and after the maintenance. Fine internal cracks in the alloy were examined by UST inspection of the alloy steel strip.

【0053】上記のようにして得られた熱延コイルは脱
スケール後、冷延、焼鈍を繰返し、最終に調質圧延を施
し、所要の表面粗度を有する板厚0.15mmの合金板を夫
々得、そののちに歪取り焼鈍を行い、合金板を得た。然
してこれらの各合金板の板面におけるSiの偏析率はEP
MAによるマッピングアナライザー(面分析)により調
査した。
The hot-rolled coil obtained as described above is descaled, cold-rolled and annealed repeatedly, and finally temper-rolled to obtain an alloy plate having a required surface roughness of 0.15 mm. Each was obtained, and then strain relief annealing was performed to obtain an alloy plate. However, the segregation ratio of Si on the plate surface of each of these alloy plates is EP
It investigated by the mapping analyzer (area analysis) by MA.

【0054】銀メッキ性は前記合金薄板を脱脂→酸洗の
前処理後、厚さ1μm のAgメッキを施した後、450℃
×5min 大気中で加熱し、メッキフクレの発生の有無を
50倍に拡大して調べることにより行った。
The silver plating property is 450 ° C. after the alloy thin plate is pre-treated by degreasing → pickling and then plated with 1 μm thick Ag.
It was conducted by heating in the atmosphere for 5 minutes and then checking the presence or absence of generation of plating blisters by magnifying 50 times.

【0055】ハンダ性は前記合金薄板上に1.5μm 厚さ
のスズメッキを施した素材を用い、メニスコグラフ法に
より、ハンダ組成Sn60%、Pb40%、ハンダ浴温度2
35±5℃、ハンダ浴浸漬深さ2mm、ハンダ浴浸漬時間
5秒の条件でハンダ浴中に浸漬し、評価は、ハンダ濡れ
時間t2 で行なった。また供試材を大気中100℃で加
熱して、ハンダ性の劣化の程度も調べた。これらの結果
は次の表2に示す如くである。
For the soldering property, a material having a thickness of 1.5 μm and plated with tin on the alloy thin plate is used, and the solder composition is Sn 60%, Pb 40%, and solder bath temperature 2 by the meniscograph method.
The sample was immersed in a solder bath under the conditions of 35 ± 5 ° C., solder bath immersion depth of 2 mm, and solder bath immersion time of 5 seconds, and evaluation was performed at solder wet time t 2 . Further, the test material was heated at 100 ° C. in the atmosphere, and the degree of deterioration of solderability was also examined. The results are shown in Table 2 below.

【0056】[0056]

【表2】 [Table 2]

【0057】すなわち、供試材No. 1、2、3、4は
C、N、S、O、P、Si、Ca、Mg、[Ca] + [Mg]/2 、
[C]/10+[N]/10+[S] +[O]/5 +[P]/2 、([Ca]+[Mg]
/2)/([S] +[O]/5 )、Siの偏析率が本発明規定内で
あり、表面疵発生は少なく、Agメッキ性、ハンダ性も優
れレベルを示しており、本発明で意図する効果が発揮さ
れている。とくに、供試材No. 1、3、4はC、N、
S、O、Pがより好ましいレベルまで低減されたもので
あり、Agメッキ性、ハンダ性もより優れたレベルにあ
る。これに対して、供試材No. 5、6の各材はそれぞれ
C、Nが本発明規定量を超えるものであり、表面疵発生
が多い。
That is, the sample materials Nos. 1, 2, 3, and 4 are C, N, S, O, P, Si, Ca, Mg, [Ca] + [Mg] / 2,
[C] / 10 + [N] / 10 + [S] + [O] / 5 + [P] / 2, ([Ca] + [Mg]
/ 2) / ([S] + [O] / 5), the segregation ratio of Si is within the scope of the present invention, the occurrence of surface defects is small, and the Ag plating property and soldering property are excellent. The intended effect is exhibited. In particular, sample materials Nos. 1, 3, and 4 are C, N,
S, O, and P are reduced to a more preferable level, and Ag plating property and soldering property are also at excellent levels. On the other hand, each of the test materials Nos. 5 and 6 had C and N exceeding the amounts specified in the present invention, and many surface defects were generated.

【0058】供試材No. 7、8、9の各材はそれぞれ、
S、O、Pが本発明規定量を超えるものであり、表面疵
発生は本発明例に比べて多く、Agメッキ性、ハンダ性の
1種以上が劣っている。とくにNo. 8の材料ではSiが本
発明の規定未満のものであり、Oが本発明規定を超えて
いる。このように脱酸剤としてのSiの適正添加が必要な
ことが理解される。
The test materials Nos. 7, 8 and 9 are respectively
The contents of S, O, and P exceeded the amounts prescribed in the present invention, the occurrence of surface defects was larger than that of the present invention, and one or more types of Ag plating property and soldering property were inferior. Particularly, in the material of No. 8, Si is below the regulation of the present invention, and O exceeds the regulation of the present invention. Thus, it is understood that proper addition of Si as a deoxidizer is necessary.

【0059】供試材No. 10、20の各材は、それぞ
れ、Siの上限を超えるもの、Siの偏析率が本発明規定の
上限を超えるものであるが、とくにAgメッキ性、ハンダ
性は供試材No. 1、2、3、4に比べて劣っている。特
にNo.11材は特開昭62−207845の特徴とする
成分であるが、熱間加工性は著しく悪く、表面疵発生が
極めて多く、表面疵取り量も多く、製造性に問題を有し
ていることがわかる。また、厚さ1μm のAgメッキ性、
ハンダ性は本発明例(No.1、2、3、4材)よりやや
劣っている。
Each of the test material Nos. 10 and 20 exceeds the upper limit of Si, and the segregation ratio of Si exceeds the upper limit specified in the present invention, but especially Ag plating property and soldering property are It is inferior to sample materials No. 1, 2, 3, and 4. Especially No. Material No. 11 is a component characterized by JP-A No. 62-207845, but it has a markedly poor hot workability, has a large number of surface defects, has a large amount of surface defects, and has a problem in manufacturability. I understand. In addition, 1 μm thick Ag plating property,
The solderability is slightly inferior to the invention examples (No. 1, 2, 3, 4 materials).

【0060】供試材No. 12、14、16の各材は、そ
れぞれCa、Mg、 Ca+ Mg/2 が本発明規定の上限を超え
るものであり、Agメッキ性、ハンダ性は本発明例に比べ
て劣っている。
Each of the test materials Nos. 12, 14, and 16 had Ca, Mg, and Ca + Mg / 2 exceeding the upper limits specified in the present invention. Ag plating property and soldering property were the same as those of the present invention. It is inferior in comparison.

【0061】また、供試材No. 13、15、17の各材
はそれぞれ、Ca、Mg、〔Ca〕+〔Mg〕/2が本発明規定の
下限未満のものであり、微細な内部ワレ発生がややみら
れハンダ性は本発明例(No. 1、2、3、4材)より劣
り、表面疵発生は多く、表面疵取り量も多い。
Further, each of the test materials Nos. 13, 15, and 17 had Ca, Mg, and [Ca] + [Mg] / 2 below the lower limit specified in the present invention, and had fine internal cracks. Occurrence was slightly observed, and the solderability was inferior to that of the examples of the present invention (Nos. 1, 2, 3, and 4 materials), many surface defects were generated, and a large amount of surface defects were removed.

【0062】更に、供試材No. 18は、[C]/10+[N]/10
+[S] +[O]/5 +[P]/2 が本発明規定を超える場合であ
り、この場合、微細な内部ワレ発生がみられ、ハンダ性
に特に著しい劣化がみられ、表面疵発生もNo. 1、2、
3、4の材料に比べて多くなっている。
Further, the sample material No. 18 is [C] / 10 + [N] / 10
This is the case where + [S] + [O] / 5 + [P] / 2 exceeds the specification of the present invention. In this case, minute internal cracks are observed, particularly remarkable deterioration in solderability is observed, and surface defects Occurrence No. 1, 2,
It is larger than that of materials 3 and 4.

【0063】供試材No. 19は([Ca]+[Mg]/2)/
([S] +[O]/5 )が本発明規定外のものであるが、表面
疵取り量は供試材No. 1、2、3、4の材料に比べて多
くなっている。供試材No. 21は、Hが本発明規定外の
ものであり、Agメッキ性、ハンダ性に劣化がみられる。
とくに、ハンダ性は、スズメッキ時のウイスカーが発生
する場合、劣化がみられ、これらの間に良い相関がみら
れている。
Specimen No. 19 is ([Ca] + [Mg] / 2) /
Although ([S] + [O] / 5) is outside the scope of the present invention, the amount of surface flaw removal is larger than that of the test materials Nos. 1, 2, 3, and 4. In the sample material No. 21, H is outside the scope of the present invention, and the Ag plating property and the solder property are deteriorated.
In particular, the solderability is deteriorated when whiskers are generated during tin plating, and there is a good correlation between them.

【0064】以上のように、リードフレーム用Fe−Ni系
合金においても、本発明で規定される成分およびSiの偏
析率の制御のもとではじめて、本発明で意図する効果が
得られることがわかる。とくに、本発明で特徴とする合
金は、たとえば、Siの偏析率を低減する手法として、分
塊圧延以外の方法を用いた際でも、本質的に熱間加工性
は高い合金であるため、条製造工程中の歩留りは高いと
いう利点も有している。たとえば、本合金の溶鋼を急冷
凝固して、薄鋳片を作製する場合でも、表面疵の発生を
極めて少なく歩留りは高い。
As described above, also in the Fe-Ni alloy for lead frames, the effect intended by the present invention can be obtained only under the control of the segregation ratio of the components and Si specified in the present invention. Recognize. In particular, the alloy featured in the present invention has a high hot workability even when a method other than slabbing is used as a method of reducing the segregation rate of Si. It also has the advantage of high yield during the manufacturing process. For example, even when the molten steel of the present alloy is rapidly cooled and solidified to produce a thin slab, the occurrence of surface defects is extremely small and the yield is high.

【0065】(実施例2)前記した実施例1における供
試材No. 1およびNo. 3と同じ成分を有する鋼塊を手に
入れ後、次の表3に示すような分塊圧延条件にて、分塊
圧延後、徐冷することにより、スラブを得た。以降は、
実施例1と同様の製造条件にて、板厚0.15mmの合金板
を得た。
(Example 2) After obtaining a steel ingot having the same composition as the test materials No. 1 and No. 3 in the above-mentioned Example 1, the slab rolling conditions as shown in Table 3 below were obtained. Then, the slab was obtained by gradually cooling after slab rolling. Later,
Under the same manufacturing conditions as in Example 1, an alloy plate having a plate thickness of 0.15 mm was obtained.

【0066】[0066]

【表3】 [Table 3]

【0067】Siの偏析率、表面疵発生、表面疵取り量、
ハンダ性、銀メッキ性、微細な内部割れ発生は実施例1
と同様な手法により調べた。結果は次の表4の如くであ
る。
Segregation rate of Si, generation of surface flaws, amount of surface flaw removal,
Example 1 shows solderability, silver plating property, and generation of fine internal cracks.
It investigated by the method similar to. The results are shown in Table 4 below.

【0068】[0068]

【表4】 [Table 4]

【0069】すなわち、供試材No. 22、23、27、
28の各材は、加熱炉雰囲気におけるH2S 濃度、分塊圧
延の加熱温度、加熱時間、加工度が本発明規定内となっ
ており、表面疵発生は少なく、Agメッキ性、ハンダ性は
優れたレベルにある。
That is, the test materials Nos. 22, 23, 27,
Each of the No. 28 materials had the H 2 S concentration in the heating furnace atmosphere, the heating temperature of the slabbing rolling, the heating time, and the workability within the scope of the present invention. At an excellent level.

【0070】これに対して供試材No. 24、25、2
9、30、34、35の各材はそれぞれ、1ヒート分塊
での加工度が本発明規定の下限を下まわるもの、1ヒー
ト分塊での加熱時間が(III)式の下限未満のもの、2ヒ
ート分塊での1ヒート目の加熱時間が(IV) 式の下限未
満のもの、2ヒート分塊での2ヒート目の加工度が本発
明規定の下限を下まわるもの、2ヒート分塊で1ヒート
目、2ヒート目の加熱温度が本発明規定の下限未満のも
の、2ヒート分塊での1ヒート目の加工度が本発明規定
の下限を下まわるものであるが、いずれもSiの偏析率
は、10%を超えており、Agメッキ性、ハンダ性に問題
がある。
On the other hand, sample materials No. 24, 25, 2
Each of Nos. 9, 30, 34, and 35 has a workability in one heat agglomeration that is lower than the lower limit specified in the present invention, and a heating time in one heat agglomeration is less than the lower limit of the formula (III). The heating time of the first heat in the second heat agglomeration is less than the lower limit of the formula (IV), the processing degree of the second heat in the second heat agglomeration is below the lower limit of the present invention, the second heat In the lump, the heating temperature of the first heat and the second heat is less than the lower limit specified in the present invention, and the workability of the first heat in the second heat lump is lower than the lower limit specified in the present invention. The segregation rate of Si exceeds 10%, and there is a problem in Ag plating properties and solderability.

【0071】一方、供試材No. 26、31、33の各材
はそれぞれ、1ヒート分塊での加熱時間が(III)式の上
限を超えるもの、2ヒート分塊での2ヒート目の加熱時
間が(IV) 式の上限を超えるもの、1ヒート分塊での加
熱温度が本発明規定の上限を超えるものであり、いずれ
も表面疵発生は本発明例(供試材No. 22、23、2
7、28)に比べて多く、表面疵取り量も多い。供試材
No. 32は加熱炉中のH2S 濃度が本発明規定を超えるも
のであり、分塊での加熱・加工条件は本発明規定内にあ
るが、表面疵発生は極めて多い。
On the other hand, each of the test materials Nos. 26, 31, and 33 has a heating time in one heat agglomeration exceeding the upper limit of the formula (III), and a second heat agglomeration in the second heat agglomeration. The heating time exceeds the upper limit of the formula (IV), the heating temperature in one heat agglomeration exceeds the upper limit of the present invention, and in both cases, surface defects are caused by the present invention example (sample No. 22, Sample No. 22, 23, 2
7 and 28), and the amount of surface flaw removal is also large. Sample material
In No. 32, the H 2 S concentration in the heating furnace exceeds the regulation of the present invention, and the heating and processing conditions in the lumps are within the regulation of the present invention, but surface defects are extremely large.

【0072】以上より、化学成分を本発明規定内とした
場合でも、分塊圧延での条件も本発明規定内とすること
が必要であることが理解される。
From the above, it is understood that even if the chemical composition is within the range of the present invention, the conditions for slab rolling must be within the range of the present invention.

【0073】[0073]

【発明の効果】以上説明したような、本発明によれば、
ICリードフレームでのAgメッキ性を従来より向上さ
せ、かつハンダ性も優れ、さらには、製造時の歩留りも
向上させる合金およびその好ましい製造方法を提供する
ことができるものであり、その工業的価値の極めて大き
い発明である。
According to the present invention as described above,
It is possible to provide an alloy which improves the Ag plating property of an IC lead frame as compared with the conventional one, is excellent in solderability, and further improves the yield at the time of manufacturing, and a preferable manufacturing method thereof, and its industrial value. It is an extremely large invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】Agメッキ性、ハンダ性、スラブ疵取り量とCa、
Mg量の関係を示した図表である。
[Fig.1] Ag plating property, soldering property, slab defect removal amount and Ca,
It is a chart showing the relationship of the amount of Mg.

【図2】Agメッキ性、ハンダ性、スラブ疵取り量[Ca]+
1/2[Mg] 、[S] +1/5[O]の関係を示した図表である。
[Fig.2] Ag plating property, solder property, slab defect removal amount [Ca] +
It is a chart showing the relation of 1/2 [Mg], [S] + 1/5 [O].

【図3】分塊圧延での断面減少率≧35%の場合におい
て、最終板厚でのSiの偏析率、スラブ疵取り量と加熱温
度、加熱時間の関係を要約して示した図表である。
FIG. 3 is a chart summarizing the relationship between the segregation rate of Si at the final plate thickness, the slab flaw removal amount, the heating temperature, and the heating time when the cross-section reduction rate in slabbing ≧ 35%. ..

【図4】1次分塊、2次分塊での断面減少率が20〜7
0%の場合において、最終板厚でのSiの偏析率、スラブ
疵取り量と加熱温度、加熱保持時間の関係を要約して示
した図表である。
FIG. 4 is a cross sectional reduction rate of 20 to 7 in the primary lump and the secondary lump.
It is the chart which summarized and showed the segregation rate of Si in the case of 0%, the amount of slab defects, the heating temperature, and the heating holding time in the case of 0%.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年2月20日[Submission date] February 20, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0056[Correction target item name] 0056

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0056】[0056]

【表2】 [Table 2]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/08 C22F 1/10 Z 9157−4K H01L 23/48 V 8225−4M (72)発明者 大北 智良 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 沖本 伸一 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical indication C22C 38/08 C22F 1/10 Z 9157-4K H01L 23/48 V 8225-4M (72) Inventor Tomoyoshi Okita 1-2-2 Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan KK (72) Inventor Shinichi Okimoto 1-2-1 Marunouchi, Chiyoda-ku, Tokyo Nihon Koube KK

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】Ni: 38〜52wt%、 C: 0.0050wt%以
下、 Al: 0.010wt%以下、 N:0.0020wt%以下、 S: 0.0020wt%以下、 O: 0.0040
wt%以下、 H:1.0ppm以下、 P: 0.0040wt%以下、 Si: 0.01
〜0.10wt%、 Ca: 0.0002〜0.0020wt%、 Mg: 0.0003〜0.0020wt
%、 [Ca]+[Mg]/2 : 0.0005 〜0.0025wt% を含有し、かつ [C]/10+[N]/10+[S] +[O]/5 +[P]/2 : 0.0045wt%、 ([Ca] +[Mg]/2) /([S] +[O]/5 )≧1 の関係を満たし、残部不可避不純物およびFeの成分組成
からなり、しかもその合金鋼帯のエッチング直前または
プレス打抜き直前での合金板表面におけるSiの成分偏析
率、すなわち、 〔|偏析域の成分濃度−平均成分濃度|/平均成分濃
度〕×100……(I)式 が10%以下であることを特徴とするメッキ性に優れた
Fe−Ni系合金。
1. Ni: 38 to 52 wt%, C: 0.0050 wt% or less, Al: 0.010 wt% or less, N: 0.0020 wt% or less, S: 0.0020 wt% or less, O: 0.0040
wt% or less, H: 1.0 ppm or less, P: 0.0040 wt% or less, Si: 0.01
~ 0.10wt%, Ca: 0.0002-0.0020wt%, Mg: 0.0003-0.0020wt
%, [Ca] + [Mg] / 2: 0.0005 to 0.0025wt%, and [C] / 10 + [N] / 10 + [S] + [O] / 5 + [P] / 2: 0.0045wt %, ([Ca] + [Mg] / 2) / ([S] + [O] / 5) ≥ 1 is satisfied, the balance consists of unavoidable impurities and Fe component composition, and the alloy steel strip is etched. The component segregation ratio of Si on the surface of the alloy plate immediately before or immediately before punching, that is, [| component concentration in the segregation region-average component concentration | / average component concentration] x 100 (I) formula is 10% or less. Excellent plating property
Fe-Ni alloy.
【請求項2】Ni: 27〜30wt%、 C:0.0050wt%以
下、 Co:5〜18%、 Al: 0.010 wt%以下、 N:0.0020wt%以下、 S:0.002
0 wt%以下、 O:0.0040wt%以下、 H:1.0ppm以下、 P:0.004
0 wt%以下、 Si: 0.01〜0.10 wt %、 Ca:0.0002〜0.0020wt%、 Mg: 0.0003〜0.0020wt%、 [Ca]+[Mg]/2 : 0.0005 〜0.0025wt% を含有し、かつ [C]/10+[N]/10+[S] +[O]/5 +[P]/2 : 0.0045wt%、 ([Ca]+[Mg]/2)/([S] +[O]/5 )≧1 の関係を満たし、残部不可避不純物およびFeの成分組成
からなり、しかもその合金鋼帯のエッチング直前または
プレス打抜き直前での合金板表面におけるSiの成分偏析
率、すなわち、 〔|偏析域の成分濃度−平均成分濃度|/平均成分濃
度〕×100……(I)式 が10%以下であることを特徴とするメッキ性に優れた
Fe−Ni系合金。
2. Ni: 27 to 30 wt%, C: 0.0050 wt% or less, Co: 5 to 18%, Al: 0.010 wt% or less, N: 0.0020 wt% or less, S: 0.002
0 wt% or less, O: 0.0040 wt% or less, H: 1.0 ppm or less, P: 0.004
0 wt% or less, Si: 0.01 to 0.10 wt%, Ca: 0.0002 to 0.0020 wt%, Mg: 0.0003 to 0.0020 wt%, [Ca] + [Mg] / 2: 0.0005 to 0.0025 wt%, and [ C] / 10 + [N] / 10 + [S] + [O] / 5 + [P] / 2: 0.0045wt%, ([Ca] + [Mg] / 2) / ([S] + [O] / 5) ≧ 1 is satisfied, the balance consists of inevitable impurities and the composition of Fe, and the segregation rate of Si on the alloy plate surface immediately before etching of the alloy steel strip or immediately before press punching, that is, [| segregation area Component concentration−average component concentration | / average component concentration] × 100 (I) is 10% or less, excellent plating property
Fe-Ni alloy.
【請求項3】 請求項1に記載の成分組成を有する合金
を造塊法または連続鋳造法により製造するに際して造塊
法による鋼塊または連続鋳造法によるスラブを以降、分
塊圧延−疵取り−熱間圧延−脱スケール・疵取り−1回
または2回以上の冷間圧延(2回以上の冷間圧延の場合
は中間に再結晶焼鈍を行う)−再結晶焼鈍−調質圧延−
歪取り焼鈍の工程でエッチング直前またはプレス打抜き
前の合金薄板を得るに当り、分塊圧延工程での加熱炉に
おける加熱雰囲気中のH2S の濃度を100ppm 以下、加
熱温度を1150〜1300℃とし、該加熱温度に達し
てからの保持時間t(hr) を加熱温度T(℃)に応じ
て、 7.71-5.33 ×10-3T ≦log t ≦8.00-5.33 ×10-3T ……
(II) 式 とし、分塊圧延での断面減少率を35%以上となし、分
塊圧延後徐冷することにより前記したエッチングが直前
またはプレス打抜き前の合金薄板表面でのSiの成分偏析
率(前記(I)式)を10%以下とすることを特徴とす
るメッキ性に優れたFe−Ni系合金の製造法。
3. When producing an alloy having the component composition according to claim 1 by an ingot making method or a continuous casting method, a steel ingot made by the ingot making method or a slab made by the continuous casting method is thereafter subjected to slab rolling-defect removal- Hot rolling-Descaling / defect removal-Cold rolling once or twice or more (in the case of two or more cold rolling, recrystallization annealing is performed in the middle) -Recrystallization annealing-Quench rolling-
In obtaining the alloy sheet just before etching or before press punching in the strain relief annealing step, the H 2 S concentration in the heating atmosphere in the heating furnace in the slabbing step is 100 ppm or less, and the heating temperature is 1150 to 1300 ° C. The holding time t (hr) after reaching the heating temperature is 7.71-5.33 × 10 -3 T ≤log t ≤8.00-5.33 × 10 -3 T depending on the heating temperature T (° C).
Formula (II) is adopted, and the cross-sectional reduction rate in slab rolling is set to 35% or more, and the slab component segregation rate on the surface of the alloy sheet just before the above etching or before press punching is performed by gradually cooling after slab rolling. (Formula (I)) is set to 10% or less, a method for producing an Fe-Ni alloy having excellent plating properties.
【請求項4】 請求項1に記載の成分組成を有する合金
を造塊法または連続鋳造法により製造するに際して造塊
法による鋼塊または連続鋳造法によるスラブを以降、分
塊圧延−疵取り−熱間圧延−脱スケール・疵取り−1回
または2回以上の冷間圧延(2回以上の冷間圧延の場合
は中間に再結晶焼鈍を行う)−再結晶焼鈍−調質圧延−
歪取り焼鈍の工程でエッチング直前またはプレス打抜き
前の合金薄板を得るに当り、分塊圧延工程での加熱炉に
おける加熱雰囲気中のH2S の濃度を100ppm 以下、加
熱温度を1150〜1300℃とし、該加熱温度に達し
てからの保持時間t(hr) を加熱温度T(℃)に応じ
て、 7.40-5.33 ×10-3T ≦log t ≦7.71-5.33 ×10-3T ……
(III)式 とし、1次分塊圧延を断面積減少率20〜70%で行
い、次いで前記加熱雰囲気にて加熱温度1150〜13
00℃で前記(III) 式の関係の範囲内で加熱し、その後
2次分塊圧延を断面積減少率20〜70%とし、分塊圧
延後徐冷することにより前記したエッチング直前または
プレス打抜き前の合金薄板表面でのSiの成分偏析率( 前
記(I)式)を10%以下とすることを特徴とするメッ
キ性に優れたFe−Ni系合金の製造法。
4. When producing the alloy having the composition of claim 1 by the ingot casting method or the continuous casting method, a steel ingot by the ingot casting method or a slab by the continuous casting method is subsequently subjected to slab rolling-defect removal- Hot rolling-Descaling / defect removal-Cold rolling once or twice or more (in the case of two or more cold rolling, recrystallization annealing is performed in the middle) -Recrystallization annealing-Quench rolling-
In obtaining the alloy thin plate just before etching or before press punching in the strain relief annealing step, the H 2 S concentration in the heating atmosphere in the heating furnace in the slabbing step is 100 ppm or less, and the heating temperature is 1150 to 1300 ° C. The holding time t (hr) after reaching the heating temperature is 7.40-5.33 × 10 -3 T ≤ log t ≤ 7.71-5.33 × 10 -3 T according to the heating temperature T (° C).
(III), primary slabbing is performed at a cross-sectional area reduction rate of 20 to 70%, and then the heating temperature is 1150 to 13 in the heating atmosphere.
Immediately before etching or press punching by heating at 00 ° C. within the range of the above formula (III), and then performing secondary slabbing at a cross-sectional area reduction rate of 20 to 70% and gradually cooling after slabbing. A method for producing an Fe-Ni-based alloy having excellent plating properties, characterized in that the segregation rate of Si component (formula (I)) on the surface of the previous alloy sheet is set to 10% or less.
【請求項5】 請求項2に記載と成分組成を有する合金
を造塊法または連続鋳造法により製造するに際して造塊
法による鋼塊または連続鋳造法によるスラブを以降、分
塊圧延−疵取り−熱間圧延−脱スケール・疵取り−1回
または2回以上の冷間圧延(2回以上の冷間圧延の場合
は中間に再結晶焼鈍を行う)−再結晶焼鈍−調質圧延−
歪取り焼鈍の工程でエッチング直前またはプレス打抜き
前の合金薄板を得るに当り、分塊圧延工程での加熱炉に
おける加熱雰囲気中のH2S の濃度を100ppm 以下、加
熱温度を1150〜1300℃とし、該加熱温度に達し
てからの保持時間t(hr)を加熱温度T(℃)に応じて、 7.71-5.33 ×10-3T ≦log t ≦8.00-5.33 ×10-3T ……
(II) 式 とし、分塊圧延での断面減少率を35%以上となし、分
塊圧延後徐冷することにより前記したエッチングが直前
またはプレス打抜き前の合金薄板表面でのSiの成分偏析
率(前記(I)式)を10%以下とすることを特徴とす
るメッキ性に優れたFe−Ni系合金の製造法。
5. When producing an alloy having the composition as set forth in claim 2 by an ingot casting method or a continuous casting method, a steel ingot produced by the ingot making method or a slab made by the continuous casting method is thereafter subjected to slab rolling-defect removal- Hot rolling-Descaling / defect removal-Cold rolling once or twice or more (in the case of two or more cold rolling, recrystallization annealing is performed in the middle) -Recrystallization annealing-Quench rolling-
In obtaining the alloy sheet just before etching or before press punching in the strain relief annealing step, the H 2 S concentration in the heating atmosphere in the heating furnace in the slabbing step is 100 ppm or less, and the heating temperature is 1150 to 1300 ° C. The holding time t (hr) after reaching the heating temperature is 7.71-5.33 × 10 -3 T ≤log t ≤8.00-5.33 × 10 -3 T depending on the heating temperature T (° C).
Formula (II) is adopted, and the cross-sectional reduction rate in slab rolling is set to 35% or more, and the slab component segregation rate on the surface of the alloy sheet just before the above etching or before press punching is performed by gradually cooling after slab rolling. (Formula (I)) is set to 10% or less, a method for producing an Fe-Ni alloy having excellent plating properties.
【請求項6】 請求項2に記載の成分組成を有する合金
を造塊法または連続鋳造法により製造するに際して造塊
法による鋼塊または連続鋳造法によるスラブを以降、分
塊圧延−疵取り−熱間圧延−脱スケール・疵取り−1回
または2回以上の冷間圧延(2回以上の冷間圧延の場合
は中間に再結晶焼鈍を行う)−再結晶焼鈍−調質圧延−
歪取り焼鈍の工程でエッチング直前またはプレス打抜き
前の合金薄板を得るに当り、分塊圧延工程での加熱炉に
おける加熱雰囲気中のH2S の濃度を100ppm 以下、加
熱温度を1150〜1300℃とし、該加熱温度に達し
てからの保持時間t(hr)を加熱温度T(℃)に応じて、 7.40-5.33 ×10-3T ≦log t ≦7.71-5.33 ×10-3T ……
(III)式 とし、1次分塊圧延を断面積減少率20〜70%で行
い、次いで前記加熱雰囲気にて加熱温度1150〜13
00℃で前記(III) 式の関係の範囲内で加熱し、その後
2次分塊圧延を断面積減少率20〜70%とし、分塊圧
延後徐冷することにより前記したエッチング直前または
プレス打抜き前の合金薄板表面でのSiの成分偏析率( 前
記(I)式)を10%以下とすることを特徴とするメッ
キ性に優れたFe−Ni系合金の製造法。
6. When producing an alloy having the component composition according to claim 2 by an ingot making method or a continuous casting method, a steel ingot made by the ingot making method or a slab made by the continuous casting method is subsequently subjected to slab rolling-defect removal- Hot rolling-Descaling / defect removal-Cold rolling once or twice or more (in the case of two or more cold rolling, recrystallization annealing is performed in the middle) -Recrystallization annealing-Quench rolling-
In obtaining the alloy sheet just before etching or before press punching in the strain relief annealing step, the H 2 S concentration in the heating atmosphere in the heating furnace in the slabbing step is 100 ppm or less, and the heating temperature is 1150 to 1300 ° C. The holding time t (hr) after reaching the heating temperature is 7.40-5.33 × 10 -3 T ≤ log t ≤ 7.71-5.33 × 10 -3 T depending on the heating temperature T (° C).
(III), primary slabbing is performed at a cross-sectional area reduction rate of 20 to 70%, and then the heating temperature is 1150 to 13 in the heating atmosphere.
Immediately before etching or press punching by heating at 00 ° C. within the range of the formula (III), and then performing secondary slabbing at a cross-sectional area reduction rate of 20 to 70%, and gradually cooling after slabbing. A method for producing an Fe-Ni-based alloy having excellent plating properties, characterized in that the segregation rate of Si component (formula (I)) on the surface of the previous alloy sheet is set to 10% or less.
JP35816291A 1991-12-12 1991-12-27 Fe-Ni alloy excellent in plating property and method for producing the same Expired - Fee Related JP2663777B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP35071791 1991-12-12
JP3-350717 1991-12-12

Publications (2)

Publication Number Publication Date
JPH05214491A true JPH05214491A (en) 1993-08-24
JP2663777B2 JP2663777B2 (en) 1997-10-15

Family

ID=18412378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35816291A Expired - Fee Related JP2663777B2 (en) 1991-12-12 1991-12-27 Fe-Ni alloy excellent in plating property and method for producing the same

Country Status (1)

Country Link
JP (1) JP2663777B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11264055A (en) * 1998-03-17 1999-09-28 Sumitomo Metal Ind Ltd Oxdide-dispersed low thermal expansion alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11264055A (en) * 1998-03-17 1999-09-28 Sumitomo Metal Ind Ltd Oxdide-dispersed low thermal expansion alloy

Also Published As

Publication number Publication date
JP2663777B2 (en) 1997-10-15

Similar Documents

Publication Publication Date Title
JP2536685B2 (en) Fe-Ni alloy for lead frame material having excellent Ag plating property and method for producing the same
KR950004936B1 (en) Fe-ni alloy sheet for shadow mask excellent in etching pierce ability preventing sticking during annealing and inhibiting production of gases
US5792286A (en) High-strength thin plate of iron-nickel-cobalt alloy excellent in corrosion resisitance, repeated bending behavior and etchability, and production thereof
JP2590657B2 (en) Fe-Ni alloy excellent in adhesion seizure prevention and gas emission during annealing, and method for producing the same
JPH06316736A (en) Ni-fe magnetic alloy excellent in magnetic property and producibility and its production
JP2663777B2 (en) Fe-Ni alloy excellent in plating property and method for producing the same
JP3094807B2 (en) Hot-rolled steel sheet excellent in hot-dip galvanizing property and method for producing the same
JP3510445B2 (en) Fe-Ni alloy thin plate for electronic parts with excellent softening and annealing properties
JP2864964B2 (en) Fe-Ni-based alloy cold rolled sheet excellent in plating property and solderability and method for producing the same
JP3069482B2 (en) Fe-Ni alloy cold rolled sheet with excellent plating and punching properties
JP2808452B2 (en) Manufacturing method of cold rolled steel sheet with excellent brazing crack resistance
JPH0826429B2 (en) High strength and low thermal expansion Fe-Ni alloy excellent in plating property, soldering property and cyclic bending property and method for producing the same
JP2797835B2 (en) High-strength Fe-Ni-Co alloy thin plate excellent in corrosion resistance and repeated bending characteristics, and method for producing the same
JP3080301B2 (en) Fe-Ni alloy thin plate with excellent surface properties and etching properties
JP3554283B2 (en) Fe-Ni alloy excellent in surface properties and method for producing the same
JP3360033B2 (en) Fe-Ni alloy for shadow mask and method for producing the same
JP2830472B2 (en) High-strength Fe-Ni-Co alloy thin plate excellent in corrosion resistance, repeated bending characteristics, and etching properties, and method for producing the same
JP2939118B2 (en) Fe-Ni alloy for electronic and electromagnetic applications
JP3451771B2 (en) High strength low thermal expansion alloy wire rod and method of manufacturing the same
JP3180575B2 (en) Hot rolled steel sheet free of cracks and surface flaws and method for producing the same
JP2550784B2 (en) High strength and low thermal expansion Fe-Ni-Co alloy excellent in plating property, soldering property and cyclic bending property, and method for producing the same
JPH07188817A (en) Ni-fe magnetic alloy excellent in magnetic property and workability and its production
JP3363607B2 (en) Shadow mask material with reduced streaking and method of manufacturing the same
JPH06279901A (en) Fe-ni magnetic alloy excellent in hot workability and magnetic property
JPH06108203A (en) Fe-ni alloy for lead frame and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees