JPH05214465A - Metallic sheet minimal in anisotropy of characteristic and excellent in spring limit value and strength and its production - Google Patents

Metallic sheet minimal in anisotropy of characteristic and excellent in spring limit value and strength and its production

Info

Publication number
JPH05214465A
JPH05214465A JP4017796A JP1779692A JPH05214465A JP H05214465 A JPH05214465 A JP H05214465A JP 4017796 A JP4017796 A JP 4017796A JP 1779692 A JP1779692 A JP 1779692A JP H05214465 A JPH05214465 A JP H05214465A
Authority
JP
Japan
Prior art keywords
weight
strength
limit value
spring limit
metal plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4017796A
Other languages
Japanese (ja)
Other versions
JP2599526B2 (en
Inventor
Satoru Nishimura
哲 西村
Kosaku Shioda
浩作 潮田
Yoshiyuki Uejima
良之 上島
Riyuuji Uemori
龍治 植森
Toshiaki Mizoguchi
利明 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4017796A priority Critical patent/JP2599526B2/en
Publication of JPH05214465A publication Critical patent/JPH05214465A/en
Application granted granted Critical
Publication of JP2599526B2 publication Critical patent/JP2599526B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain a metallic sheet minimal in the anisotropy of characteristics and excellent in spring limit value and strength. CONSTITUTION:A molten alloy having a composition consisting of 20-85% Cu, 0.0005-1.0% Co, 0.005-3.5% Ti, 0.1-10% Cr, 0.001-1.5% Mo, and the balance Fe is cast at >=100 deg.C/sec solidification cooling rate, which is subjected to primary cold rolling at >=50%, to annealing, to secondary cold rolling at 5-70%, and then to ageing treatment. By this method, the metallic sheet in which the aspect ratio of crystalline grain is regulated to <=20% can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特性異方性(圧延方向
と圧延直角方向での特性の差)の小さいバネ限界値と強
度に優れた金属薄板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin metal sheet having a small spring having a small anisotropy of characteristics (difference in characteristics between the rolling direction and the direction perpendicular to the rolling direction) and excellent strength.

【0002】[0002]

【従来の技術】この種の金属材料薄板としては、たとえ
ばバネ用材料のJIS規格のC1720−PのCu−
1.81Be−0.05Fe合金、特開平1−1627
36号公報に記載されているCu−Ti(2.5〜5.
0)重量%合金などがあるが、特性異方性が小さいこと
と優れたバネ限界値を同時に兼ね備えていない。
2. Description of the Related Art As a thin metal material plate of this type, for example, a Cu material of C1720-P of JIS standard for a spring material is used.
1.81Be-0.05Fe alloy, JP-A-1-1627
Cu-Ti (2.5-5.
0) Although there are alloys such as weight%, they do not have both a small characteristic anisotropy and an excellent spring limit value.

【0003】[0003]

【発明が解決しようとする課題】本発明は、かかる金属
薄板において、小さい特性異方性と優れたバネ限界値の
両方を具備した金属薄板及びこの金属薄板を低コストで
実現できる製造方法を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention provides a metal thin plate having both a small characteristic anisotropy and an excellent spring limit value, and a method of manufacturing the metal thin plate at low cost. The purpose is to do.

【0004】[0004]

【課題を解決するための手段】本発明は上記目的を達成
するために、次のような構成をなすものである。すなわ
ち、本発明の特徴は重量%で、Cu:20〜85%,C
o:0.0005〜1.0%,Ti:0.005〜3.
5%,Cr:0.1〜10%,Mo:0.001〜1.
5%を含有し、残部が不可避的不純物およびFeからな
る溶融金属を100〜50000℃/秒の凝固冷却速度
で板厚0.5〜8mmの金属板に鋳造し、該金属板を圧下
率50〜95%で一次冷間圧延を施し、次いで450〜
1000℃の温度範囲で焼鈍した後圧下率5〜70%で
二次冷間圧延を施し、続いて150〜650℃の温度範
囲で時効処理を施すことにより、アスペスト比が20以
下の特性異方性が小さく、かつバネ限界値と強度に優
れ、更に高導電性と高ヤング率を有する金属薄板を得る
ところにある。
In order to achieve the above object, the present invention has the following constitution. That is, the feature of the present invention is, by weight, Cu: 20 to 85%, C
o: 0.0005 to 1.0%, Ti: 0.005 to 3.
5%, Cr: 0.1-10%, Mo: 0.001-1.
A molten metal containing 5% and the balance being unavoidable impurities and Fe is cast into a metal plate having a plate thickness of 0.5 to 8 mm at a solidification cooling rate of 100 to 50000 ° C./sec, and the metal plate has a reduction ratio of 50. ~ 95% primary cold rolling, then 450 ~
After annealing in the temperature range of 1000 ° C, secondary cold rolling is performed at a reduction rate of 5 to 70%, and then aging treatment is performed in the temperature range of 150 to 650 ° C. The purpose of the present invention is to obtain a thin metal plate that has low elasticity, is excellent in spring limit value and strength, and has high conductivity and high Young's modulus.

【0005】[0005]

【作用】以下本構成要件の限定理由を説明する。まず、
合金の化学組成の限定理由は以下の通りである。バネ限
界値・強度とヤング率を向上させるためにはCuの含有
量が高いほど好ましく、また実用上の金属薄板としての
電気伝導性の要求に対してはCuの含有量を制御して目
的とする電気伝導性と、バネ限界値・強度およびヤング
率のバランスを得ることが望ましい。Cu含有量は図1
に示すように20重量%未満ではこれらの用途として実
用上必要な電気伝導性が得られず、バネ限界値、強度と
ヤング率への効果のみであるのでこれを下限とする。ま
た上限を85重量%とするのは、Feを主とするCu以
外の総含有量が15重量%未満では、本合金の特徴とす
るバネ限界値・強度とヤング率の優れたバランスが得ら
れなくなるからである。従ってCu含有量を15〜85
重量%の範囲とする。
[Function] The reason for limiting the present constituent requirements will be described below. First,
The reasons for limiting the chemical composition of the alloy are as follows. In order to improve the spring limit value / strength and Young's modulus, the higher the Cu content is, the more preferable. In addition, the Cu content is controlled to meet the purpose of electric conductivity required as a practical thin metal plate. It is desirable to obtain a balance between the electrical conductivity to be achieved and the spring limit value / strength and Young's modulus. Figure 1 shows the Cu content
As shown in the above, if it is less than 20% by weight, the electrical conductivity practically required for these applications cannot be obtained and only the effect on the spring limit value, strength and Young's modulus is obtained, so this is the lower limit. Further, the upper limit is set to 85% by weight, when the total content other than Cu, mainly Fe, is less than 15% by weight, an excellent balance between the spring limit value / strength and Young's modulus, which is the characteristic of the present alloy, can be obtained. Because it will disappear. Therefore, the Cu content is 15 to 85
The range is wt%.

【0006】次にCoを0.0005〜1.0重量%に
規定するが、これは0.0005%未満ではバネ限界値
・強度への効果が少なく、1.0重量%超ではバネ限界
値と強度への効果が飽和する上にコストが大きくなるか
らである。またTiを0.005〜3.5重量%に規定
するのは0.005%未満では導電性への効果が少なく
3.5重量%超では導電性への効果が飽和する上に鋳
造、冷間加工などの製造性を阻害するからである。Cr
を0.1〜10重量%に、また、Moを0.001〜
1.5重量%にそれぞれ規定するのは最終製品としての
隙間腐食性を半田・Agメッキ性を劣化させずにCrと
Moの複合効果で向上させるためであり、Moの含有量
が0.001重量%未満では隙間腐食性への効果が少な
く、1.5重量%超では、隙間腐食性への効果が飽和す
る上にコストが大きくなる。なお、Cr含有量をFe含
有量に対し重量比で6〜13.5%に規定すると、素材
の耐食性を前記Moとの複合効果によって、より一層向
上させることができる。すなわち、6%未満ではその効
果が不十分で、また13.5%を超えても耐食性への効
果が飽和する上に半田・Agメッキ性などを劣化させる
のでこの範囲にする。
Next, Co is specified to 0.0005 to 1.0% by weight. If it is less than 0.0005%, it has little effect on the spring limit value / strength, and if it exceeds 1.0% by weight, the spring limit value. This is because the effect on strength is saturated and the cost increases. Further, the Ti content is specified to be 0.005 to 3.5% by weight when the content is less than 0.005%, the effect on the conductivity is small, and when it exceeds 3.5% by weight, the effect on the conductivity is saturated and casting and cooling are performed. This is because the productivity such as hot working is hindered. Cr
To 0.1 to 10% by weight, and Mo to 0.001 to
The content of Mo is 0.001 in order to improve the crevice corrosion resistance of the final product by the combined effect of Cr and Mo without deteriorating the solder / Ag plating property. If it is less than weight%, the effect on crevice corrosion is small, and if it exceeds 1.5% by weight, the effect on crevice corrosion is saturated and the cost increases. When the Cr content is specified to be 6 to 13.5% by weight ratio with respect to the Fe content, the corrosion resistance of the raw material can be further improved by the combined effect with Mo. That is, if it is less than 6%, the effect is insufficient, and if it exceeds 13.5%, the effect on the corrosion resistance is saturated and the solder / Ag plating property is deteriorated, so this range is set.

【0007】また、鋳造組織制御やバネ限界値・強度向
上、加工性、各種メッキ性ならびに半田耐候性(半田付
けした後の150℃で1000時間以上の長時間加熱剥
離性)などの改善の必要に応じて、更に、Zr,Si,
Al,Ni,Zn,Sn,Nb,P,La,Ce,Y,
V,Ca,Be,Mg及びHfの1種又は2種以上を合
計で0.005〜8重量%,C及びBの1種又は2種を
合計で0.005〜2重量%添加する。
Further, it is necessary to improve casting structure control, spring limit value / strength improvement, workability, various plating properties, and solder weather resistance (long-time heat peelability at 150 ° C. for 1000 hours or more after soldering). In addition, Zr, Si,
Al, Ni, Zn, Sn, Nb, P, La, Ce, Y,
One or more of V, Ca, Be, Mg and Hf are added in a total amount of 0.005 to 8% by weight, and one or two of C and B are added in a total amount of 0.005 to 2% by weight.

【0008】特にFe含有量に対するCr含有量の重量
比が6%,Mo含有量のそれが0.01%を超える成分
では、上記各成分を0.005重量%以上の範囲内で添
加し、下記で説明する双ロール式鋳造方法などの急冷凝
固方式によって、本発明のCrおよびMoを含むFe相
とCu相が均一に微細分散された鋳造組織を得ることが
できるが、このことは加工、熱処理後、板厚方向で10
μm以下の大きさの結晶粒を有する金属組織を得る上で
重要である。
In particular, in the case where the weight ratio of the Cr content to the Fe content exceeds 6% and the Mo content exceeds 0.01%, the above-mentioned respective components are added within the range of 0.005% by weight or more, By a rapid solidification method such as a twin roll casting method described below, it is possible to obtain a cast structure in which the Fe phase containing Cr and Mo and the Cu phase of the present invention are uniformly finely dispersed. After heat treatment, 10 in the thickness direction
It is important for obtaining a metallographic structure having crystal grains with a size of μm or less.

【0009】また、本発明の材料はアスペクト比を20
以下にすることを必須要件とする。アスペクト比は板厚
方向結晶組織長さに対する圧延方向結晶組織長さの比で
表わされるが、図3に示すようにアスペクト比が20以
下になると特性異方性指数(%)、すなわちバネ限界
値、強度、繰返えし曲げ回数及び導電性のそれぞれの特
性値を(圧延方向の特性値−圧延直角方向の特性値)/
圧延方向の特性値×100(%)の式に導入して求めた
値を総和し、更にこの総和値を1/4にした値、が5%
以下になり、圧延方向と圧延直角方向での各特性値の差
が極めて小さくなるのである。
The material of the present invention has an aspect ratio of 20.
The following are mandatory requirements. The aspect ratio is represented by the ratio of the crystal structure length in the rolling direction to the crystal structure length in the plate thickness direction. As shown in FIG. 3, when the aspect ratio becomes 20 or less, the characteristic anisotropy index (%), that is, the spring limit value , Strength, number of times of repeated bending, and conductivity are represented by (characteristic value in rolling direction-characteristic value in direction orthogonal to rolling) /
The value obtained by introducing into the formula of characteristic value in rolling direction x 100 (%) is summed, and the value obtained by making this sum value 1/4 is 5%.
Below, the difference between the respective characteristic values in the rolling direction and the direction orthogonal to the rolling becomes extremely small.

【0010】本発明は以上の成分及びアスペクト比によ
り、特性異方性が小さく、バネ限界値、強度及び電導性
の優れた材料を提供することができる。次に、本発明の
金属板を製造する方法について説明する。前述の化学成
分を有する溶融金属を例えば急冷凝固的手段である双ロ
ール式鋳造装置の湯溜り部に注入し、冷却ロールの回転
によって溶融金属を急速に冷却し、0.5〜8mm板厚の
金属板を鋳造する。このときの凝固冷却速度を100〜
50000℃/秒にすることが重要である。
By virtue of the above components and aspect ratio, the present invention can provide a material having a small characteristic anisotropy and an excellent spring limit value, strength and electric conductivity. Next, a method for manufacturing the metal plate of the present invention will be described. Molten metal having the above-mentioned chemical composition is injected into a pool of a twin-roll type casting device which is, for example, a rapid solidification method, and the molten metal is rapidly cooled by rotating a cooling roll to obtain a plate having a thickness of 0.5 to 8 mm. Cast a metal plate. The solidification cooling rate at this time is 100-
It is important to set it to 50,000 ° C./second.

【0011】溶融金属の凝固冷却速度と加工・熱処理後
の結晶粒径の関係は図2に示す通りである。なお結晶粒
径はASTMの切断法によって得られた。図2に示すよ
うに溶湯凝固冷却速度を大きくすると、結晶組織のサイ
ズは微細化する。また本プロセスで加工・熱処理後Fe
相、Cu相ともに10μm以下の等方的組織を得るため
には溶湯の凝固冷却速度を100℃/秒以上にすること
が必要であり、この時CrおよびMoを含むFe相とC
u相が均一分散した組織が得られる。また他の効果とし
て凝固冷却時のFe相中のCu,Cu相中のFeの過飽
和度の向上によるバネ限界値・強度の向上と時効促進効
果による時効時間短縮の効果も得られる。
The relationship between the solidification cooling rate of the molten metal and the crystal grain size after working / heat treatment is as shown in FIG. The crystal grain size was obtained by the ASTM cutting method. As shown in FIG. 2, when the melt solidification cooling rate is increased, the size of the crystal structure becomes finer. After processing and heat treatment in this process, Fe
In order to obtain an isotropic structure of 10 μm or less for both the Cu phase and the Cu phase, it is necessary to set the solidification cooling rate of the melt to 100 ° C./sec or more. At this time, the Fe phase containing Cr and Mo and the C phase are added.
A structure in which the u phase is uniformly dispersed is obtained. Further, as other effects, it is possible to obtain the effect of shortening the aging time by improving the spring limit value / strength by improving the supersaturation degree of Cu in the Fe phase and the Fe in the Cu phase during solidification cooling and the aging acceleration effect.

【0012】さらに引続いて圧下率50〜95%の一次
冷間圧延を行う。これは必要な板厚を得ることと、50
%以上の一次冷間圧延を実施することにより、その後の
焼鈍処理によって繰り返し曲げ性などの加工性付与を行
うためである。そしてその時の焼鈍は徐加熱・徐冷却型
(BAF型)および急速加熱型(連続焼鈍型)のいずれ
においても一次冷間圧延で蓄積した加工歪みにより回復
・再結晶を生じさるに必要な温度、すなわち450〜1
000℃の温度範囲で行う。次いで二次冷間圧延を5〜
70%の範囲で実施した後、150〜650℃の温度で
10〜500分の間保持する時効処理を行う。
Subsequently, primary cold rolling is carried out with a rolling reduction of 50 to 95%. This is to get the required plate thickness and 50
This is because by carrying out the primary cold rolling of not less than%, the workability such as bendability is repeatedly given by the subsequent annealing treatment. The annealing at that time is the temperature required for recovery / recrystallization due to the working strain accumulated in the primary cold rolling in both the slow heating / slow cooling type (BAF type) and the rapid heating type (continuous annealing type). That is, 450-1
It is performed in the temperature range of 000 ° C. Then carry out secondary cold rolling 5
After carrying out in the range of 70%, an aging treatment is carried out by holding at a temperature of 150 to 650 ° C. for 10 to 500 minutes.

【0013】以上の各工程によってアスペスト比が20
以下の組織を得ることができ、これにより特性異方性が
小さくバネ限界値、強度及び導電性に優れた材料を製造
することができる。ここで時効処理はバネ限界値・強度
と電気伝導性を向上させるために、製造工程上必須のも
のであり、化学組成と前工程条件により適性な温度を選
定すべきである。その条件としては時効条件とバネ限界
値・強度ならび導電性の関係より、低温過ぎると析出物
の周りに歪みが生じるため導電性や伸びの低下が生じる
ことや、目的の導電性を得るため設備制約や製造効率に
影響してコスト増になる。また高温過ぎると析出物が少
なくなり高いバネ限界値と強度が得られないため、15
0〜650℃で10〜500分の時効処理が適性条件で
ある。
As a result of the above processes, the aspart ratio is 20.
The following structure can be obtained, which makes it possible to manufacture a material having small characteristic anisotropy and excellent spring limit value, strength and conductivity. Here, the aging treatment is essential in the manufacturing process in order to improve the spring limit value / strength and electric conductivity, and an appropriate temperature should be selected depending on the chemical composition and the previous process conditions. As the condition, due to the relationship between the aging condition and the spring limit value / strength and conductivity, if the temperature is too low, strain will occur around the precipitate and the conductivity and elongation will decrease. Costs increase due to restrictions and manufacturing efficiency. If the temperature is too high, precipitates will decrease and high spring limit value and strength cannot be obtained.
The aging treatment at 0 to 650 ° C for 10 to 500 minutes is a suitable condition.

【0014】上記金属板はコイル状またはスリット状に
加工された後Ni,Cu,Ag,Auなどのメッキまた
はそれら合金メッキおよび半田、Snメッキなどが施さ
れる。或いは上記金属板が予めバネ部品として加工され
た後に、上記メッキ処理が施される。いずれの場合でも
メッキは以下の条件で行う。メッキはかかる素板にアル
カリ系脱脂剤を用いて電解また浸漬脱脂を行い、さらに
酸洗により表面を活性化した後に所望の金属浴または合
金浴を用いて電気または浸漬メッキを行う。
The metal plate is processed into a coil shape or a slit shape, and then plated with Ni, Cu, Ag, Au or the like, or alloy plating thereof, solder, Sn plating and the like. Alternatively, the metal plate is processed as a spring component in advance and then the plating process is performed. In either case, plating is performed under the following conditions. For plating, the base plate is subjected to electrolytic or immersion degreasing using an alkaline degreasing agent, and after the surface is activated by pickling, electrical or immersion plating is performed using a desired metal bath or alloy bath.

【0015】メッキ層の厚みは通常0.01〜10μm
程度の範囲であるが、密着性、厚み均一性、半田耐候性
ならびに経済性から見て0.20〜5.0μmの範囲が
良好である。0.20μm以下では半田耐候性(半田の
150℃で1000時間あるいは1500時間の低温長
時間加熱で剥離する現象)やピンホールの存在により信
頼性が劣化する。また5.0μmを超えると密着性およ
び厚みの均一性が劣化する。
The thickness of the plating layer is usually 0.01 to 10 μm.
The range is about 0.20 to 5.0 μm in terms of adhesion, thickness uniformity, solder weather resistance and economy. When the thickness is 0.20 μm or less, the solder weather resistance (a phenomenon in which the solder is peeled off by heating at 150 ° C. for 1000 hours or 1500 hours at a low temperature for a long time) and the presence of pinholes deteriorate reliability. On the other hand, if it exceeds 5.0 μm, the adhesion and the uniformity of thickness are deteriorated.

【0016】[0016]

【実施例】 (実施例1)表1に示す本発明の成分範囲の合金(供試
材A〜FとQ〜HH)と比較例の成分範囲の合金(供試
材G〜P)をそれぞれ、双ロール鋳造機の湯溜り部へ溶
融状態で注入し、3.2×102 ℃/秒の凝固冷却速度
によって板厚2.2mmの金属板を鋳造した。
Examples (Example 1) Alloys in the component ranges of the present invention (test materials A to F and Q to HH) and alloys in the component ranges of the comparative examples (test materials G to P) shown in Table 1 are respectively shown. The molten metal was poured into the pool of the twin roll casting machine, and a metal plate having a plate thickness of 2.2 mm was cast at a solidification cooling rate of 3.2 × 10 2 ° C./sec.

【0017】[0017]

【表1】 [Table 1]

【0018】次に、冷間圧延時の割れ対策として、得ら
れた金属板に800℃で1時間の軟化焼鈍を施したあ
と、板厚2.1mmに表面研削し、85%の一次冷間圧延
を行った。引続き750℃で3時間の焼鈍を施し、次い
で25%の二次冷間圧延を行ったあと、480℃で3時
間の時効処理を施した。このようにして得られた金属薄
板の材質特性を表2の試料番号1〜34に示す。なお、
表2中の試料番号35,36は本発明の供試材B,Dを
本発明の範囲外の凝固冷却速度10℃/秒で板厚10.
0mmの金属板を水平連続鋳造機で鋳造したものである。
また、比較例としてBe−Cu,Cu−Ti、リン青銅
又はCDA195を比較合金として用い、上記の本発明
の鋳造方法で鋳造した。
Next, as a countermeasure against cracking during cold rolling, the obtained metal sheet was soft annealed at 800 ° C. for 1 hour, and then surface-ground to a sheet thickness of 2.1 mm to obtain 85% primary cold rolling. It was rolled. Subsequently, annealing was performed at 750 ° C. for 3 hours, then secondary cold rolling of 25% was performed, and then aging treatment was performed at 480 ° C. for 3 hours. The material properties of the metal thin plate thus obtained are shown in sample numbers 1 to 34 of Table 2. In addition,
Sample Nos. 35 and 36 in Table 2 are the test materials B and D of the present invention having a plate thickness of 10.degree. C. at a solidification cooling rate of 10.degree.
A 0 mm metal plate was cast by a horizontal continuous casting machine.
As a comparative example, Be-Cu, Cu-Ti, phosphor bronze or CDA195 was used as a comparative alloy and cast by the above casting method of the present invention.

【0019】なお金属薄板のアスペクト比は試料番号1
〜6,17〜34では5.3〜13.5%の範囲にあ
り、試料番号7〜16,35,36及びBe−Cu,C
u−Ti、リン青銅、CDA195では5.3〜13.
5%の範囲であった。表2および表3中のバネ限界値は
モーメント方式により測定し、強度はJIS13B引張
試験(引張り速度:10mm/min )により、またヤング
率は共振法、導電率は4端子法によりそれぞれ求めた。
耐食性として隙間腐食は切断面を含む0.125mm板
厚、10mm幅、30mm長さの試料をポリカーボネート製
の樹脂の間に挟み込みJIS−Z2371に準じて塩水
噴霧試験を96時間行い、試料全面での赤錆発生面積率
により判定し、また通常の耐食性は前記方法で素材の裸
状態で行った。
The aspect ratio of the thin metal plate is Sample No. 1
-6, 17-34, the range is 5.3-13.5%, and sample numbers 7-16, 35, 36 and Be-Cu, C
u-Ti, phosphor bronze, and CDA195, 5.3 to 13.
It was in the range of 5%. The spring limit values in Tables 2 and 3 were measured by the moment method, the strength was determined by the JIS13B tensile test (pulling speed: 10 mm / min), the Young's modulus was determined by the resonance method, and the conductivity was determined by the 4-terminal method.
As corrosion resistance, crevice corrosion is 0.125 mm plate thickness including cut surface, 10 mm width, 30 mm length sample is sandwiched between polycarbonate resin and salt water spray test is carried out for 96 hours according to JIS-Z2371. Judgment was made based on the area ratio of red rust generation, and normal corrosion resistance was carried out by the above method in the bare state of the material.

【0020】メッキ特性での半田濡れ性については濡れ
面積率で95%以上を合格とした。またAgメッキ耐熱
性はCuストライクメッキを約0.3μm施した後、A
gを約3μmメッキし、しかる後大気中430℃で3分
加熱してメッキ表面での膨れの発生により判定した。製
造性は鋳造時のノズル詰り状況と冷間加工性(2.0mm
から0.125mmまで中間焼鈍を行わず、15パス以内
で冷間加工した場合のエッジとセンターでの割れ状況)
で判定した。さらにコスト評価はCo,Mo添加をしな
い時の平均原料価格に対して、1.3倍以下を良好と判
定した。表中にはBe−Cu合金、Cu−Ti合金、リ
ン青銅の特性も比較に加えた。
Regarding the solder wettability in terms of plating characteristics, a wetted area ratio of 95% or more was passed. The heat resistance of Ag plating is about 0.3 μm after Cu strike plating.
g was plated at about 3 μm, and then heated at 430 ° C. for 3 minutes in the atmosphere, and judged by occurrence of swelling on the plated surface. Manufacturability includes nozzle clogging during casting and cold workability (2.0 mm
From 0.1 to 0.125 mm without intermediate annealing and cold working within 15 passes, cracks at the edge and center)
It was judged by. Further, the cost evaluation was judged to be good when 1.3 times or less of the average raw material price when Co and Mo were not added. In the table, the characteristics of Be-Cu alloy, Cu-Ti alloy and phosphor bronze are also added for comparison.

【0021】ここで試料番号7はCu添加量が20重量
%以下の場合であり、リン青銅並みの低い導電率であ
る。また試料番号8はCu添加量が85重量%以上の場
合でFeなどのヤング率に有効に働く元素の添加量が少
ないためにヤング率が低く、試料番号9はCo添加量が
0.0005重量%以下のためバネ限界値と強度が低
い。また試料番号10はCo添加量が多いためコストが
高い。試料番号11はTi含有量が0.005%以下の
ため導電性が低く、試料番号12はTi含有量が3.5
%以上で製造性が劣る。試料番号13はMoが低いため
隙間腐食性が不良、試料番号14はコストが高い。また
試料番号15はCrが低いため耐食性が低く、試料番号
16は半田濡れ性、Agメッキ耐熱性が劣る。試料番号
35,36は溶融金属の凝固冷却速度が本発明の範囲外
の小さい場合で、バネ限界値と強度が低く本発明の特性
が優れていることは明らかである。
Here, Sample No. 7 is a case where the added amount of Cu is 20% by weight or less, and has a conductivity as low as that of phosphor bronze. In addition, Sample No. 8 has a low Young's modulus because the amount of addition of elements such as Fe that effectively acts on Young's modulus is small when the amount of Cu added is 85% by weight or more, and Sample No. 9 has a Co addition amount of 0.0005% by weight. %, The spring limit value and strength are low. In addition, sample No. 10 has a high cost because the amount of Co added is large. Sample No. 11 has a low Ti content of 0.005% or less and thus has low conductivity. Sample No. 12 has a Ti content of 3.5.
%, The productivity is poor. Sample No. 13 has a low Mo content because of low Mo, and Sample No. 14 has a high cost. Sample No. 15 has low corrosion resistance due to low Cr content, and Sample No. 16 has poor solder wettability and heat resistance against Ag plating. It is apparent that sample Nos. 35 and 36 have a low spring limit value and strength and are excellent in the characteristics of the present invention when the solidification cooling rate of the molten metal is small outside the range of the present invention.

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【表3】 [Table 3]

【0024】(実施例2)表1に示す本発明の成分範囲
の合金、供試材B,Qをそれぞれ双ロール鋳造機の湯溜
り部へ溶融状態で注入し、3.2×102 ℃/秒の凝固
冷却速度によって板厚2.2mmの金属板を鋳造した。こ
の金属板に、一次冷間圧延時の割れ対策として800℃
で1時間の軟化焼鈍を施し、かつ一次冷間圧延後板厚が
0.15mmになるよう圧下率を考慮した上で表面研削を
行い、次いで一次冷間圧延を圧下率35,55及び90
%の3水準で行った。しかる後、これらの金属板に焼鈍
を750℃で3時間施し、引続き二次冷間圧延を3,
8,25,55及び65%の5水準で行って板厚0.1
46,0.138,0.120,0.068及び0.0
53mmの金属薄板とした。次いで該金属薄板に480℃
で3時間の時効処理を施した。
(Example 2) Alloys in the component ranges of the present invention shown in Table 1 and test materials B and Q were respectively poured into the pool of a twin roll casting machine in a molten state at 3.2 x 10 2 ° C. A metal plate having a plate thickness of 2.2 mm was cast at a solidification cooling rate of 1 / sec. This metal plate has a temperature of 800 ° C as a measure against cracks during primary cold rolling.
After 1 hour of softening and annealing, the surface is ground after considering the reduction ratio so that the plate thickness after the primary cold rolling becomes 0.15 mm, and then the primary cold rolling is performed with the reduction ratios of 35, 55 and 90.
It was carried out at 3 levels of%. After that, these metal sheets were annealed at 750 ° C. for 3 hours, and then subjected to secondary cold rolling for 3 hours.
The plate thickness is 0.1 at 5 levels of 8, 25, 55 and 65%.
46, 0.138, 0.120, 0.068 and 0.0
It was a 53 mm thin metal plate. Then 480 ℃ to the metal sheet
Aged for 3 hours.

【0025】上記の金属薄板の材質特性を表4に示す。
評価は実施例1と同様にバネ限界値・強度と導電率につ
いて圧延方向と平行で測定を行い、加工性は密着曲げに
よった。以下の結果より一次冷間圧延率の低いものや、
二次冷間圧延率70%超のものは加工性が不良であり、
さらに二次冷間圧延率の5%未満のものは導電性が低い
ことが判明した。
Table 4 shows the material characteristics of the above-mentioned thin metal plate.
The evaluation was performed in the same manner as in Example 1 by measuring the spring limit value / strength and conductivity in parallel with the rolling direction, and the workability was based on contact bending. Those with a lower primary cold rolling rate than the following results,
If the secondary cold rolling rate exceeds 70%, the workability is poor,
Further, it was found that those having a secondary cold rolling rate of less than 5% had low conductivity.

【0026】なお、試料番号中本発明例のアスペクト比
は5.3〜13.5%の範囲にあり、比較例のそれは
5.3〜13.5%の範囲にあった。
In the sample numbers, the aspect ratio of the present invention example was in the range of 5.3 to 13.5%, and that of the comparative example was in the range of 5.3 to 13.5%.

【0027】[0027]

【表4】 [Table 4]

【0028】(実施例3)実施例2の表面研削した金属
板を圧下率30,60及び90%の3水準で一次冷間圧
延を行い、この金属板に焼鈍を以下の条件で行った。 (1)BAF型焼鈍炉において、50℃/時間の加熱速
度で加熱後、 A:550℃×3時間,B:750℃×3時間,C:9
50℃×3時間 の3種類の保定を行い、その後50℃/時間の冷却速度
で100℃まで冷却した。
Example 3 The surface-ground metal plate of Example 2 was subjected to primary cold rolling at three levels of reduction ratios of 30, 60 and 90%, and this metal plate was annealed under the following conditions. (1) After heating at a heating rate of 50 ° C./hour in a BAF type annealing furnace, A: 550 ° C. × 3 hours, B: 750 ° C. × 3 hours, C: 9
Three types of retention were carried out at 50 ° C. for 3 hours, and then cooled to 100 ° C. at a cooling rate of 50 ° C./hour.

【0029】(2)連続焼鈍炉において、10℃/Sの
加熱速度で加熱後、 D:750℃×60秒、E:950℃×60秒 の2種類の保持を行い、その後室温まで空冷した。次
に、上記各金属板に10,25,60または75%の圧
延率で二次冷間圧延を行い、アスペクト比を1.5〜2
8.5まで変化させてバネ限界値、繰り返曲げ(90
°)および導電率について圧延方向と平行(L)、圧延
方向と直角(C)の各方向の結果を得た。これを表5〜
表7に示す。アスペクト比の評価は光学顕微鏡により圧
延方向断面での板厚1/4層での100倍の組織観察に
よる、10視野での圧延方向と板厚方向での結晶組織長
さ比の平均値を用いた。特性評価は実施例1と同様にバ
ネ限界値・強度と導電率について測定を行い、繰り返曲
げは90°の往復曲げ回数(曲げ回数の絶対値は板厚ご
との補正は行っていない)によった。以下の結果より本
法によるアスペクト比20以下にすることで、特性異方
性の小さく優れたバネ限界値と強度ならびに優れた繰り
返し曲げ性・導電性を有する材料の提供を可能にするこ
とは明らかである。
(2) After heating at a heating rate of 10 ° C./S in a continuous annealing furnace, two types of holding were performed: D: 750 ° C. × 60 seconds, E: 950 ° C. × 60 seconds, and then air-cooled to room temperature. .. Next, each of the metal plates is subjected to secondary cold rolling at a rolling rate of 10, 25, 60 or 75%, and an aspect ratio of 1.5 to 2 is obtained.
Spring limit value, repeated bending (90
(.Degree.) And electrical conductivity were obtained in the directions parallel to the rolling direction (L) and perpendicular to the rolling direction (C). Table 5
It shows in Table 7. For the evaluation of the aspect ratio, the average value of the crystal structure length ratios in the rolling direction and the plate thickness direction in 10 fields of view was used by observing the structure 100 times in the plate thickness 1/4 layer in the rolling direction cross section with an optical microscope. I was there. For the characteristic evaluation, the spring limit value / strength and conductivity were measured in the same manner as in Example 1, and the repeated bending was performed at a reciprocating bending number of 90 ° (the absolute value of the bending number was not corrected for each plate thickness). Yes From the following results, it is clear that by setting the aspect ratio to 20 or less by this method, it is possible to provide a material having a small characteristic anisotropy, an excellent spring limit value and strength, and excellent repetitive bendability and conductivity. Is.

【0030】[0030]

【表5】 [Table 5]

【0031】[0031]

【表6】 [Table 6]

【0032】[0032]

【表7】 [Table 7]

【0033】[0033]

【発明の効果】本発明は上述したように、バネ用材料と
して特性異方性が小さく、バネ限界値、強度及び導電性
に優れ、かつ高ヤング率・高信頼性を兼ね備えた従来不
可能だった材料を提供するもので、その工業的効果は絶
大である。
As described above, the present invention, as a spring material, has a small characteristic anisotropy, is excellent in the spring limit value, strength and conductivity, and has both a high Young's modulus and a high reliability, which has been impossible in the past. The material has a great industrial effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】Cu含有量とバネ限界値、強度及び導電性との
関係を示す図である。
FIG. 1 is a diagram showing a relationship between a Cu content and a spring limit value, strength and conductivity.

【図2】溶融金属の凝固冷却速度と結晶粒度番号との関
係を示す図である。
FIG. 2 is a diagram showing a relationship between a solidification cooling rate of molten metal and a grain size number.

【図3】アスペクト比と特性異方性指数との関係を示す
図である。
FIG. 3 is a diagram showing a relationship between an aspect ratio and a characteristic anisotropy index.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 植森 龍治 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 溝口 利明 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ryuji Uemori 20-1 Shintomi, Futtsu City, Chiba Prefecture Nippon Steel Co., Ltd. Technology Development Division (72) Inventor Toshiaki Mizoguchi 20-1 Shintomi, Futtsu City, Chiba Prefecture Steel Engineering Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、Cu:20〜85%,Co:
0.0005〜1.0%,Ti:0.005〜3.5
%,Cr:0.1〜10%,Mo:0.001〜1.5
%を含有し、残部が不可避的不純物およびFeからなる
合金であって、その結晶粒のアスペクト比が20以下で
あることを特徴とする特性異方性の小さいバネ限界値と
強度に優れた金属薄板。
1. By weight%, Cu: 20-85%, Co:
0.0005-1.0%, Ti: 0.005-3.5
%, Cr: 0.1 to 10%, Mo: 0.001 to 1.5
%, With the balance being unavoidable impurities and Fe, and having an aspect ratio of the crystal grains of 20 or less, a metal having excellent spring limit value and strength with small characteristic anisotropy Thin plate.
【請求項2】 Fe含有量に対するCr含有量の重量比
が6.0〜13.5%である請求項1記載の金属薄板。
2. The thin metal sheet according to claim 1, wherein the weight ratio of the Cr content to the Fe content is 6.0 to 13.5%.
【請求項3】 合金成分として、更に、Zr,Si,A
l,Ni,Zn,Sn,Nb,P,La,Ce,Y,
V,Ca,Be,Mg及びHfの1種又は2種以上を合
計で0.005〜8重量%,C及びBの1種又は2種を
合計で0.005〜2重量%含有する請求項1又は2記
載の金属薄板。
3. Zr, Si, A as an alloy component
l, Ni, Zn, Sn, Nb, P, La, Ce, Y,
A total of 0.005 to 8% by weight of one or more of V, Ca, Be, Mg and Hf, and 0.005 to 2% by weight of one or two of C and B. The thin metal plate according to 1 or 2.
【請求項4】 前記金属薄板の表面に、Ni,Cu,A
g又はAu或いはそれらの合金の金属メッキ、半田又は
Snメッキが単層又は複層で0.01〜10μm施され
てなる請求項1,2又は3記載の金属薄板。
4. Ni, Cu, A on the surface of the thin metal plate
The metal thin plate according to claim 1, 2 or 3, wherein the metal plating of g or Au or an alloy thereof, solder or Sn plating is applied in a single layer or a multilayer of 0.01 to 10 µm.
【請求項5】 重量%で、Cu:20〜85%,Co:
0.0005〜1.0%,Ti:0.005〜3.5
%,Cr:0.1〜10%,Mo:0.001〜1.5
%を含有し、残部が不可避的不純物およびFeからなる
溶融金属を100〜50000℃/秒の凝固冷却速度で
板厚0.5〜8mmの金属板に鋳造し、該金属板を圧下率
50〜95%で一次冷間圧延し、次いで450〜100
0℃の温度範囲で焼鈍した後圧下率5〜70%で二次冷
間圧延し、続いて150〜650℃の温度範囲で時効処
理を施すことを特徴とする特性異方性の小さいバネ限界
値と強度に優れた金属薄板の製造方法。
5. By weight%, Cu: 20-85%, Co:
0.0005-1.0%, Ti: 0.005-3.5
%, Cr: 0.1 to 10%, Mo: 0.001 to 1.5
%, With the balance being inevitable impurities and Fe, cast at a solidification cooling rate of 100 to 50000 ° C./sec into a metal plate having a plate thickness of 0.5 to 8 mm, and the metal plate having a reduction ratio of 50 to Primary cold rolling at 95%, then 450-100
A spring limit with small characteristic anisotropy, characterized in that after annealing in the temperature range of 0 ° C, secondary cold rolling is performed at a reduction rate of 5 to 70%, and then aging treatment is performed in the temperature range of 150 to 650 ° C. A method for manufacturing a thin metal plate having excellent value and strength.
【請求項6】 Fe含有量に対するCr含有量の重量比
が6.0〜13.5%である請求項5記載の製造方法。
6. The method according to claim 5, wherein the weight ratio of the Cr content to the Fe content is 6.0 to 13.5%.
【請求項7】 合金成分として、更に、Zr,Si,A
l,Ni,Zn,Sn,Nb,P,La,Ce,Y,
V,Ca,Be,Mg及びHfの1種又は2種以上を合
計で0.005〜8重量%,C及びBの1種又は2種を
合計で0.005〜2重量%含有する請求項5又は6記
載の製造方法。
7. An alloy component further comprising Zr, Si, A
l, Ni, Zn, Sn, Nb, P, La, Ce, Y,
A total of 0.005 to 8% by weight of one or more of V, Ca, Be, Mg and Hf, and 0.005 to 2% by weight of one or two of C and B. The manufacturing method according to 5 or 6.
【請求項8】 前記時効処理を施した後で金属薄板表面
にNi,Cu,Ag又はAu或いはそれらの合金の金属
メッキ、半田又はSnメッキを厚さ0.01〜10μm
の単層又は複層で施す請求項5,6又は7記載の製造方
法。
8. After the aging treatment, a metal plating of Ni, Cu, Ag or Au or their alloys, solder or Sn plating on the surface of the thin metal plate is applied in a thickness of 0.01 to 10 μm.
8. The method according to claim 5, 6 or 7, wherein the single layer or multiple layers are used.
JP4017796A 1992-02-03 1992-02-03 Copper-iron-based metal sheet excellent in spring limit value and strength with small characteristic anisotropy and method for producing the same Expired - Lifetime JP2599526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4017796A JP2599526B2 (en) 1992-02-03 1992-02-03 Copper-iron-based metal sheet excellent in spring limit value and strength with small characteristic anisotropy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4017796A JP2599526B2 (en) 1992-02-03 1992-02-03 Copper-iron-based metal sheet excellent in spring limit value and strength with small characteristic anisotropy and method for producing the same

Publications (2)

Publication Number Publication Date
JPH05214465A true JPH05214465A (en) 1993-08-24
JP2599526B2 JP2599526B2 (en) 1997-04-09

Family

ID=11953680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4017796A Expired - Lifetime JP2599526B2 (en) 1992-02-03 1992-02-03 Copper-iron-based metal sheet excellent in spring limit value and strength with small characteristic anisotropy and method for producing the same

Country Status (1)

Country Link
JP (1) JP2599526B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998048068A1 (en) * 1997-04-18 1998-10-29 Olin Corporation Grain refined tin brass
US5853505A (en) * 1997-04-18 1998-12-29 Olin Corporation Iron modified tin brass
US6132528A (en) * 1997-04-18 2000-10-17 Olin Corporation Iron modified tin brass

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5215524A (en) * 1975-07-25 1977-02-05 Hoechst Ag Process for producing waterrsoluble copper complex dyes
JPS62199743A (en) * 1986-02-27 1987-09-03 Ngk Insulators Ltd High strength copper alloy and its manufacture
JPS63270436A (en) * 1987-04-28 1988-11-08 Mitsubishi Metal Corp High strength high toughness cu alloy having less characteristic anisotropy
JPH03229843A (en) * 1990-02-05 1991-10-11 Nippon Steel Corp Manufacture of metallic sheet for high strength lead frame

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5215524A (en) * 1975-07-25 1977-02-05 Hoechst Ag Process for producing waterrsoluble copper complex dyes
JPS62199743A (en) * 1986-02-27 1987-09-03 Ngk Insulators Ltd High strength copper alloy and its manufacture
JPS63270436A (en) * 1987-04-28 1988-11-08 Mitsubishi Metal Corp High strength high toughness cu alloy having less characteristic anisotropy
JPH03229843A (en) * 1990-02-05 1991-10-11 Nippon Steel Corp Manufacture of metallic sheet for high strength lead frame

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998048068A1 (en) * 1997-04-18 1998-10-29 Olin Corporation Grain refined tin brass
US5853505A (en) * 1997-04-18 1998-12-29 Olin Corporation Iron modified tin brass
US6132528A (en) * 1997-04-18 2000-10-17 Olin Corporation Iron modified tin brass
CN1086207C (en) * 1997-04-18 2002-06-12 奥林公司 Grain refined tin brass

Also Published As

Publication number Publication date
JP2599526B2 (en) 1997-04-09

Similar Documents

Publication Publication Date Title
TWI502086B (en) Copper alloy sheet and method for producing same
JP3962751B2 (en) Copper alloy sheet for electric and electronic parts with bending workability
EP2641983A1 (en) Cu-Ni-Si-Co COPPER ALLOY FOR ELECTRON MATERIAL AND METHOD FOR PRODUCING SAME
WO2009122869A1 (en) Cu-Ni-Si-Co COPPER ALLOY FOR ELECTRONIC MATERIAL AND PROCESS FOR PRODUCING THE SAME
WO2011036804A1 (en) Cu-Ni-Si-Co COPPER ALLOY FOR ELECTRONIC MATERIAL AND PROCESS FOR PRODUCING SAME
CN101946014A (en) Copper alloy material
WO2011105686A2 (en) High-strength and highly conductive copper alloy, and method for manufacturing same
JP2000328157A (en) Copper alloy sheet excellent in bending workability
JPH0790520A (en) Production of high-strength cu alloy sheet bar
JP3374037B2 (en) Copper alloy for semiconductor lead frame
JPH06100983A (en) Metal foil for tab tape having high young&#39;s modulus and high yield strength and its production
JPS61272339A (en) Lead material for electronic parts excelled in repeated bendability and its production
JP2599526B2 (en) Copper-iron-based metal sheet excellent in spring limit value and strength with small characteristic anisotropy and method for producing the same
JPS58113334A (en) Phosphor bronze with superior hot workability
JPH05214489A (en) Steel sheet for spring excellent in spring limit value and shape freezability and its production
JPH06100984A (en) Spring material excellent in shape freezability and spring limit value and its production
JPH10287939A (en) Copper alloy for electric and electronic equipment, excellent in punchability
JPH0424420B2 (en)
JPS5864339A (en) Al alloy for fin material of heat exchanger with superior sacrificial anode effect and drooping resistance
JPH09316569A (en) Copper alloy for lead frame and its production
JP5623960B2 (en) Cu-Ni-Si based copper alloy strip for electronic materials and method for producing the same
JP2597773B2 (en) Method for producing high-strength copper alloy with low anisotropy
JP3519863B2 (en) Phosphor bronze with low surface cracking susceptibility and method for producing the same
JPH06145862A (en) Heat exchanger made of al alloy constituted of high strength fin material
JPH0551712A (en) Production of copper-iron alloy

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19961112