JPH0521236A - Radiator self-cooled transformer - Google Patents

Radiator self-cooled transformer

Info

Publication number
JPH0521236A
JPH0521236A JP17214891A JP17214891A JPH0521236A JP H0521236 A JPH0521236 A JP H0521236A JP 17214891 A JP17214891 A JP 17214891A JP 17214891 A JP17214891 A JP 17214891A JP H0521236 A JPH0521236 A JP H0521236A
Authority
JP
Japan
Prior art keywords
radiator
heat transfer
transformer
tube
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17214891A
Other languages
Japanese (ja)
Inventor
Takeshi Sakamoto
健 坂元
Haruyuki Yamazaki
晴幸 山崎
Ryoji Nakatake
良二 中武
Mitsuhiro Hamada
充弘 浜田
Yoshito Ueno
義人 上野
Kiyoto Hiraishi
清登 平石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17214891A priority Critical patent/JPH0521236A/en
Publication of JPH0521236A publication Critical patent/JPH0521236A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transformer Cooling (AREA)

Abstract

PURPOSE:To provide a highly efficient and compact radiator which reduces a use amount of expensive incombustible liquid insulating refrigerant in a self- cooling liquid cooling incombustible transformer. CONSTITUTION:A core 2 and a winding 3 are immersed in liquid insulating refrigerant 4 and contained in a transformer tank 1, and a radiator 9 is connected to a tank 1 through pipings 8a, 8b. A heat transfer tube 11 which constitutes the radiator 9 is molded flat by extrusion method, etc., and provided with a fin 12 which extends outside the heat transfer tube in the tube axial direction. A radiator unit is constituted of a plurality of heat transfer tubes, and upper and lower headers 10a, 10b are tilted with an axis in the flow direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は不燃性の液状絶縁冷媒を
用いた変圧器において大気の自然対流熱伝達で絶縁冷媒
を冷却する放熱器に係り、特に、高価な不燃性液状絶縁
冷媒の使用量を低減した変圧器用放熱器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiator using a nonflammable liquid insulating refrigerant for cooling the insulating refrigerant by natural convection heat transfer of the atmosphere, and particularly to the use of expensive nonflammable liquid insulating refrigerant. The present invention relates to a heat radiator for a transformer having a reduced amount.

【0002】[0002]

【従来の技術】都市部の過密化が進むにつれて、都市に
設置する変圧器には防災上、不燃化の要望が強く、ま
た、大容量化,据付けスペ−スの縮小化,低騒音化,省
力化の要求も強い。従来の不燃変圧器としては、SF6
ガスを絶縁冷媒としたガス絶縁変圧器があるが、SF6
ガスは密度,比熱,熱伝導率などの伝熱性能に関係する
物性値が小さいために冷却性能が悪く、上記諸要求への
対応が困難である。変圧器の冷却性能を上げるには、液
状の絶縁冷媒が必要であり、不燃性の液状絶縁冷媒は現
在のところ、絶縁性や熱安定性,安全性、また冷却性能
を考慮すると、パーフルオロカーボン液(主成分がC8
18O )が最も有望である。しかし、この液は非常に
高価であり、経済性のある変圧器にするには、使用液量
を極力少なくする必要がある。
2. Description of the Related Art As urban areas become denser, there is a strong demand for non-combustible transformers to be installed in cities, as well as a larger capacity, smaller installation space, lower noise, There is also a strong demand for labor saving. As a conventional non-combustible transformer, SF 6
There are gas-insulated transformers that use gas as an insulating refrigerant, but SF 6
Since the physical properties of gas such as density, specific heat, and thermal conductivity that are related to heat transfer performance are small, the cooling performance is poor, and it is difficult to meet the above requirements. In order to improve the cooling performance of the transformer, a liquid insulating refrigerant is required, and currently non-combustible liquid insulating refrigerant is a perfluorocarbon liquid considering the insulation, thermal stability, safety and cooling performance. (Main component is C 8
F 18 O) is the most promising. However, this liquid is very expensive, and it is necessary to minimize the amount of liquid used to make an economical transformer.

【0003】従来、液状の絶縁冷媒として変圧器油(不
燃性ではない)があるが、変圧器油用の自冷式放熱器を
構成する伝熱管あるいは伝熱面は、円滑管か、二枚の平
板を空隙を作って張り合わせた構造のものがほとんどで
あった。このような構造では、変圧器用絶縁冷媒側の伝
熱面積と空気側の伝熱面積とに大差がなく、放熱器の冷
却性能は熱伝達率の小さい空気側の性能によってほとん
ど決まり、放熱器としては大きな構造となる。また、放
熱器の内部容積も大きくなり、このような構造で高価な
パーフルオロカーボン液を絶縁冷媒として使うと、変圧
器が高価となり、経済的でない。さらに、パーフルオロ
カーボン液は比重量も大きく、放熱器の重量も大きなも
のとなり、放熱器の支持能力を高める必要がある。
Conventionally, transformer oil (not incombustible) has been used as a liquid insulating refrigerant, but the heat transfer tube or heat transfer surface constituting the self-cooling radiator for transformer oil is a smooth tube or two sheets. Most of them had a structure in which air gaps were formed on the flat plates. In such a structure, there is no great difference between the heat transfer area on the insulating refrigerant side for transformers and the heat transfer area on the air side, and the cooling performance of the radiator is almost determined by the performance on the air side with a small heat transfer coefficient. Has a large structure. In addition, the internal volume of the radiator becomes large, and if an expensive perfluorocarbon liquid having such a structure is used as an insulating refrigerant, the transformer becomes expensive, which is not economical. Further, the specific weight of the perfluorocarbon liquid is large and the weight of the radiator is also large, and it is necessary to enhance the support ability of the radiator.

【0004】[0004]

【発明が解決しようとする課題】現在、絶縁冷媒として
SF6 ガスを用いている不燃変圧器にパーフルオロカー
ボン液を用いれば、大幅なコンパクト化が図れ、外部動
力を使わないで運転できる自然循環冷却(自冷)容量を
拡大できる可能性がある。
At present, if a perfluorocarbon liquid is used in a non-combustible transformer that uses SF 6 gas as an insulating refrigerant, it can be made significantly compact and can be operated without external power. (Self-cooling) Capacity may be expanded.

【0005】本発明は、高価なパーフルオロカーボン液
量の使用量が少なく、空気による自然対流熱伝達率を小
さくせずに体積を小さくし、経済的な変圧器用放熱器を
提供することを目的としている。また、変圧器本体への
放熱器の取付けを強固な構造とすることを他の目的とし
ている。
It is an object of the present invention to provide an economical radiator for a transformer, which uses a small amount of expensive perfluorocarbon liquid, has a small volume without reducing the natural convection heat transfer coefficient by air. There is. Another purpose is to attach a radiator to the transformer body with a strong structure.

【0006】[0006]

【課題を解決するための手段】放熱器を構成する伝熱管
の構造として内部に支持部材をもった扁平な管とし、そ
の外壁の平坦部に長手管軸方向に伸びる板上のフィンを
複数枚取り付け、このような伝熱管を複数本、上下の箱
状のヘッダ間に鉛直に配設した放熱器構成とする。この
ような放熱器は、取り扱い易いようにユニット状にし、
変圧器本体(タンク)へは複数の放熱器ユニットを適度
な隙間を開けて取り付けるようにする。なお、上下の箱
状のヘッダは、周囲空気の流れを円滑にするため、ヘッ
ダ内の冷媒の流れ方向を軸として傾斜させる。この場
合、伝熱管外面に付けた各フィンの上下端は高さを揃え
る。上下の箱状ヘッダを傾斜させない場合はヘッダの幅
方向にフィンの高さに傾斜を持たせる。また、ヘッダ内
の冷媒流路断面積をタンクから離れるにつれて小さくし
ても良い。伝熱管の製作法は、押出し成型法で製作す
る。この方法で成型するために、管の材料はアルミニウ
ムが適している。なお、押出し成型法で製作する際、フ
ィン付きの状態で押出し成型を行なってもよいし、ま
た、扁平管のみを押出し成型し、後でフィンを付けても
よい。
[Means for Solving the Problems] As a structure of a heat transfer tube constituting a radiator, a flat tube having a supporting member inside is provided, and a plurality of fins on a plate extending in the axial direction of the longitudinal tube are provided in a flat portion of an outer wall thereof. A plurality of such heat transfer tubes are vertically attached between the upper and lower box-shaped headers to form a radiator. Such a radiator is made into a unit for easy handling,
Install multiple radiator units in the transformer body (tank) with appropriate gaps. Note that the upper and lower box-shaped headers are inclined with the flow direction of the refrigerant in the header as an axis in order to smooth the flow of ambient air. In this case, the heights of the upper and lower ends of each fin attached to the outer surface of the heat transfer tube are the same. When the upper and lower box-shaped headers are not tilted, the fin height is tilted in the width direction of the header. Further, the cross-sectional area of the refrigerant flow passage in the header may be reduced as the distance from the tank increases. The heat transfer tube is manufactured by extrusion molding. Aluminum is a suitable material for the tube for molding in this manner. In addition, when manufacturing by the extrusion molding method, the extrusion molding may be performed with the fin attached, or only the flat tube may be extrusion molded and the fin may be attached later.

【0007】[0007]

【作用】伝熱管の外表面に付けたフィンのため、熱伝達
率の悪い空気側の伝熱面積を大きく出来る。このため、
伝熱管内部の体積あるいは伝熱面積当たりの放熱量を多
くすることが出来る。また、伝熱管外表面に付けたフィ
ンが鉛直方向であるため、空気の対流を円滑にし、大き
な熱伝達率を得ることが出来る。また、放熱器ユニット
を複数個変圧器本体に取り付けても、ヘッダが傾斜して
いるため、伝熱管群の下部及び上部での空気の流れを円
滑にできるため、伝熱管を密に配置しても空気側の熱伝
達率が小さくならずに済む。また、傾斜させないヘッダ
の放熱器の場合でも、上下ヘッダ付近のフィンの高さに
傾斜があるので、同様に空気の流れは円滑になる。ま
た、扁平管は押出し成型法で製作するので、溶接作業が
無く、量産に好適であり、内圧に対して強度が確保でき
る。また、材料がアルミニウムのため重量が軽くなる。
さらに、扁平管は周長に対して内部の断面積が小さくで
きるため、液冷媒の体積を少なくでき、経済的な放熱器
を提供できる。
Since the fins are attached to the outer surface of the heat transfer tube, the heat transfer area on the air side, which has a poor heat transfer coefficient, can be increased. For this reason,
It is possible to increase the volume of heat inside the heat transfer tube or the amount of heat released per heat transfer area. Further, since the fins attached to the outer surface of the heat transfer tube are in the vertical direction, it is possible to smooth the air convection and obtain a large heat transfer coefficient. Also, even if multiple radiator units are attached to the transformer body, the header is inclined, so the air flow in the lower and upper parts of the heat transfer tube group can be made smooth. However, the heat transfer coefficient on the air side does not have to be reduced. Further, even in the case of a header radiator that is not inclined, the height of the fins near the upper and lower headers is inclined, so that the air flow is similarly smooth. Further, since the flat tube is manufactured by the extrusion molding method, there is no welding work, it is suitable for mass production, and the strength against internal pressure can be secured. In addition, the weight is light because the material is aluminum.
Further, since the flat tube can have a small internal cross-sectional area with respect to the circumference, the volume of the liquid refrigerant can be reduced, and an economical radiator can be provided.

【0008】[0008]

【実施例】本発明の実施例を図1により説明する。図1
は液状絶縁冷媒を用いた自然循環冷却の不燃変圧器の場
合の縦断面概略図である。タンク1の中には鉄心2,巻
線3等の構造物が収納されている。これらの構造物は液
状絶縁冷媒4に浸されている。また、タンク上方の空隙
部には、タンク内の圧力を適正値に保つため及び避圧空
間をかねてセパレータ6を隔壁として絶縁性ガス5が充
填されている。また、液状絶縁冷媒4は高価であるた
め、使用液量を少なくするための絶縁性節液材7が、タ
ンク内壁面および他の構造物から適正な隙間を設けて、
比較的大きな空隙部に配設されている。また、放熱器9
は、配管8a及び8bによりタンク1に接続されてい
る。放熱器9は上部ヘッダ10a及び下部ヘッダ10b
の間に外部フィン12をもつ複数の伝熱管が配設された
構成となっている。本発明による実施例をさらに詳細に
説明するために、図2に放熱器9を構成する伝熱管の断
面図を示す。伝熱管はアルミニウムの押出し法により製
作されたフィン付きの扁平な管で、その外表面の平坦部
には外部フィン12、内部には内部フィン13が長手管
軸方向に設けられている。さらに図3は、図2に示すフ
ィンの付いた伝熱管を複数本、上下のヘッダ10a,1
0b間に配設した放熱器ユニット14を示す。ここで、
ヘッダ10a,10bは、内部を流れる冷媒の流れ方向
を軸として、傾斜させてある。15はフランジで、変圧
器本体のタンクに取り付けるための手段である。さら
に、図4に放熱器ユニット14が変圧器本体に複数個並
べて取り付けられたときの状況を示す。放熱器ヘッダ1
0a,10bはその傾斜の方向が上部及び下部でそれぞ
れ同一になるように揃えられている。
EXAMPLE An example of the present invention will be described with reference to FIG. Figure 1
FIG. 3 is a schematic vertical cross-sectional view of a natural circulation cooling non-combustion transformer using a liquid insulating refrigerant. Structures such as the iron core 2 and the winding 3 are housed in the tank 1. These structures are immersed in the liquid insulating refrigerant 4. The space above the tank is filled with the insulating gas 5 in order to keep the pressure in the tank at an appropriate value and also as a pressure-reducing space by using the separator 6 as a partition. Further, since the liquid insulating refrigerant 4 is expensive, the insulating liquid-saving material 7 for reducing the amount of liquid used is provided with an appropriate gap from the inner wall surface of the tank and other structures,
It is arranged in a relatively large space. Also, the radiator 9
Are connected to the tank 1 by pipes 8a and 8b. The radiator 9 includes an upper header 10a and a lower header 10b.
A plurality of heat transfer tubes having external fins 12 are arranged between them. In order to explain the embodiment according to the present invention in more detail, FIG. 2 shows a sectional view of a heat transfer tube constituting the radiator 9. The heat transfer tube is a flat tube with fins manufactured by an aluminum extrusion method. External fins 12 are provided on the flat portion of the outer surface of the heat transfer tube, and internal fins 13 are provided inside in the axial direction of the longitudinal tube. Further, FIG. 3 shows a plurality of heat transfer tubes with fins as shown in FIG.
The radiator unit 14 arrange | positioned between 0b is shown. here,
The headers 10a and 10b are inclined with the flow direction of the refrigerant flowing therein as an axis. Reference numeral 15 is a flange, which is a means for attaching to the tank of the transformer body. Further, FIG. 4 shows a situation in which a plurality of radiator units 14 are mounted side by side on the transformer body. Radiator header 1
0a and 10b are aligned such that the directions of inclination are the same in the upper part and the lower part.

【0009】このような構成において、タンク内で発熱
する構造物は液状絶縁冷媒4により冷却される。また、
液状絶縁冷媒4は構造物により加熱されて温度上昇し、
タンク1の上方より配管8aを通って放熱器9へ流れ、
放熱器9で冷却されて下方より配管8bを通ってタンク
1の下部に入る。
In such a structure, the structure generating heat in the tank is cooled by the liquid insulating refrigerant 4. Also,
The liquid insulating refrigerant 4 is heated by the structure and its temperature rises,
Flows from above the tank 1 to the radiator 9 through the pipe 8a,
It is cooled by the radiator 9 and enters the lower part of the tank 1 from below through the pipe 8b.

【0010】本実施例によれば、扁平な伝熱管の外表面
にフィンがあるため、内部の液側の伝熱面積に対して伝
熱特性の悪い空気側の伝熱面積が大きくとれ、内部の液
量当たり、あるいは伝熱面積当たりの伝熱量を増加する
ことが出来る。あるいは、内部の液の温度を下げること
が出来る。すなわち、放熱器の放熱量Q(W)は、液側
の伝熱面積をAi(m2)、空気側の伝熱面積をAo
(m2),液側の熱伝達率をαi(W/m2℃)、空気側
の熱伝達率をαo(W/m2℃)、伝熱面積基準の熱通過
率をK(W/m2℃)、冷媒と周囲空気との温度差をΔ
T(℃)とすると、Qは、 Q=KAiΔT …(数1) ここで、Kは 1/K=1/αi+Ai/(αoAo) …(数2) と表される。従来技術による伝熱管である円滑管や板上
伝熱面を張り合わせた構造のものでは、冷媒側と空気側
の伝熱面積の比(Ai/Ao)が1程度であり、数
(1)は 1/K=1/αi+1/αo …(数3) と表される。例として絶縁冷媒にパーフルオロカーボン
液を用いた変圧器の放熱器ではαiは約100W/m
2℃、αoは約4W/m2℃であり、これらの数値を数3
に代入すると、Kは3.8 W/m2℃となる。本発明に
よれば、Ai/Ao を1/2.5程度には製作できるの
で、数(2)によりKは9.09W/m2℃ 程度にな
る。このため、同じ温度条件では、本発明の場合、従来
のものの二倍強の熱量を処理でき、その分、放熱器をコ
ンパクトにすることができる。一方、上下のヘッダが傾
斜しているので、隣りの放熱器ユニットのヘッダとの隙
間が大きく取れ、放熱器上下端部での空気の流れが容易
であり、自然対流熱伝達を円滑に行える。
According to this embodiment, since there are fins on the outer surface of the flat heat transfer tube, the heat transfer area on the air side, which has poor heat transfer characteristics, can be set large relative to the heat transfer area on the inner liquid side. It is possible to increase the amount of heat transfer per amount of liquid or per heat transfer area. Alternatively, the temperature of the liquid inside can be lowered. That is, the heat radiation amount Q (W) of the radiator is Ai (m 2 ) for the liquid-side heat transfer area and Ao for the air-side heat transfer area.
(M 2 ), the heat transfer coefficient on the liquid side is αi (W / m 2 ℃), the heat transfer coefficient on the air side is α o (W / m 2 ℃), and the heat transfer coefficient based on the heat transfer area is K (W / W / m 2 ℃). m 2 ℃), the temperature difference between the refrigerant and ambient air is Δ
Assuming T (° C.), Q is Q = KAiΔT (Equation 1) where K is expressed as 1 / K = 1 / αi + Ai / (αoAo) (Equation 2). In the case of a smooth tube which is a conventional heat transfer tube or a structure in which heat transfer surfaces on a plate are bonded together, the ratio (Ai / Ao) of the heat transfer area on the refrigerant side to the air side is about 1, and the number (1) is 1 / K = 1 / αi + 1 / αo (Expression 3) As an example, αi is about 100 W / m for a radiator of a transformer that uses perfluorocarbon liquid as an insulating refrigerant.
2 ° C and αo are about 4 W / m 2 ° C.
Substituting in, K becomes 3.8 W / m 2 ° C. According to the present invention, since Ai / Ao can be manufactured to about 1 / 2.5, K becomes about 9.09 W / m 2 ° C according to the equation (2). Therefore, under the same temperature condition, in the case of the present invention, it is possible to process a heat amount which is more than double that of the conventional one, and the radiator can be made compact accordingly. On the other hand, since the upper and lower headers are inclined, a large gap is provided between the headers of the adjacent radiator units, the air flows easily at the upper and lower ends of the radiator, and natural convection heat transfer can be performed smoothly.

【0011】また、ヘッダは平板で製作されるので、内
部の断面積当たり、大きな伝熱面積を提供でき、放熱量
を多くできる。また、従来の放熱器のヘッダはほとんど
が円管であり、平板状の伝熱面を接続する場合は複雑な
形状の絞り管が必要であるが、本発明によれば、その必
要が無く部品要素が単純で、このため液状冷媒の流れも
単純となり圧力損失が小さくなり、冷媒の循環流量を多
くできる。このことは変圧器本体内の構造物を効率良く
冷却できることになる。また、放熱器はアルミニウムで
あるため、放熱器本体の重量が小さくでき、支持構造が
簡略化できる。図5は本発明による他の実施例の場合の
伝熱管断面図を示す。本実施例では内部フィン13を設
けた扁平な伝熱管11′のみを押出し成型法で製作し、
後で外表面に、U字状の外部フィン12′をつけるもの
である。この場合は押出し成型が単純化し、また、外部
フィンの厚さを薄く出来、材料の節約が出来る。
Further, since the header is made of a flat plate, it is possible to provide a large heat transfer area per internal cross-sectional area and increase the amount of heat radiation. Further, the header of the conventional radiator is mostly a circular pipe, and when connecting a flat heat transfer surface, a throttle pipe having a complicated shape is required. Since the elements are simple, the flow of the liquid refrigerant is simple, the pressure loss is small, and the circulation flow rate of the refrigerant can be increased. This means that the structure inside the transformer body can be efficiently cooled. Further, since the radiator is made of aluminum, the weight of the radiator body can be reduced and the support structure can be simplified. FIG. 5 shows a cross-sectional view of a heat transfer tube in the case of another embodiment according to the present invention. In this embodiment, only the flat heat transfer tube 11 'provided with the internal fins 13 is manufactured by the extrusion molding method,
Later, U-shaped external fins 12 'are attached to the outer surface. In this case, extrusion molding is simplified, and the thickness of the external fins can be reduced, which saves material.

【0012】図6(a)に本発明による他の実施例の場合
の放熱器ユニットの縦断面図を示す。本実施例ではヘッ
ダは傾斜させず、ヘッダの幅方向にフィンの高さに傾斜
を持たせたものである。本実施例によれば、下部ヘッダ
の両側から空気が円滑に扁平な伝熱管及びフィンの表面
に流れ込み、空気の自然対流を正常に保持できる。な
お、図6(b)にはフィンの高さの傾斜のさせ方を一方向
にしたもので前記と同様の効果が得られる。
FIG. 6 (a) is a vertical sectional view of a radiator unit according to another embodiment of the present invention. In this embodiment, the header is not inclined, but the fin height is inclined in the width direction of the header. According to this embodiment, air smoothly flows from both sides of the lower header to the surfaces of the flat heat transfer tubes and the fins, and natural convection of air can be normally maintained. In FIG. 6B, the fins are inclined in one direction, and the same effect as described above can be obtained.

【0013】図7は本発明による他の実施例の場合の一
部断面を含む放熱器概略図である。本実施例は上下のヘ
ッダ10a,10bの内部流路16の断面積をフランジ
15から離れるにつれて小さくしてある。本実施例によ
れば、高価な絶縁冷媒の入るヘッダ内の体積を、冷媒の
流れの抵抗を大きくせずに少なくでき、経済性を向上で
きる。
FIG. 7 is a schematic view of a radiator including a partial cross section of another embodiment according to the present invention. In this embodiment, the cross-sectional areas of the internal flow paths 16 of the upper and lower headers 10a and 10b are made smaller as the distance from the flange 15 increases. According to the present embodiment, the volume of the header in which the expensive insulating refrigerant is contained can be reduced without increasing the resistance of the flow of the refrigerant, and the economical efficiency can be improved.

【0014】[0014]

【発明の効果】本発明によれば、放熱器を構成する伝熱
管が扁平なため表面の伝熱面積を大きく取れる一方、内
部の液冷媒量を少なくでき、外表面にフィンを付けるこ
とにより、液側の伝熱面積に対して伝熱特性の悪い空気
側の伝熱面積が大きくとれ、放熱器をコンパクトにする
ことができる。さらに、放熱器全体の重量及び体積の低
減ができ、従って、据付け面積を小さくでき、経済的な
放熱器を提供できる。また、フィンの付いた扁平な伝熱
管の製作法である押出し法は、量産効果が大で、経済的
効果が大きい。さらに、伝熱管の配置が鉛直であるた
め、空気側の熱伝達率を大きく維持できる。一方、上下
のヘッダを傾斜させることにより、あるいはヘッダ幅方
向のフィンの高さに傾斜を与えることにより、ヘッダ近
傍の空気の流れの抵抗を低減でき、円滑な自然対流を確
保できる。また、ヘッダ内の流路断面積をフランジから
離れるにしたがい、小さくすることにより、高価な液冷
媒の量を少なくできる。
According to the present invention, since the heat transfer tube constituting the radiator is flat, a large surface heat transfer area can be obtained, while the amount of the liquid refrigerant inside can be reduced, and the fins are attached to the outer surface. The heat transfer area on the air side, which has poor heat transfer characteristics, can be made larger than the heat transfer area on the liquid side, and the radiator can be made compact. Furthermore, the weight and volume of the entire radiator can be reduced, so that the installation area can be reduced and an economical radiator can be provided. In addition, the extrusion method, which is a method of manufacturing a flat heat transfer tube with fins, has a large mass production effect and a large economic effect. Further, since the heat transfer tubes are arranged vertically, a large heat transfer coefficient on the air side can be maintained. On the other hand, by inclining the upper and lower headers or inclining the height of the fins in the header width direction, the resistance of the air flow near the header can be reduced, and smooth natural convection can be ensured. Further, the amount of the expensive liquid refrigerant can be reduced by reducing the cross-sectional area of the flow path in the header as the distance from the flange increases.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す液冷却不燃変圧器の断
面図。
FIG. 1 is a sectional view of a liquid-cooled incombustible transformer showing an embodiment of the present invention.

【図2】本発明による伝熱管の水平断面図。FIG. 2 is a horizontal sectional view of a heat transfer tube according to the present invention.

【図3】本発明による放熱器の説明図。FIG. 3 is an explanatory diagram of a radiator according to the present invention.

【図4】本発明による放熱器ユニットの変圧器本体への
取付け状況を示す説明図。
FIG. 4 is an explanatory view showing how the radiator unit according to the present invention is attached to the transformer body.

【図5】本発明の他の実施例による伝熱管の水平断面
図。
FIG. 5 is a horizontal sectional view of a heat transfer tube according to another embodiment of the present invention.

【図6】本発明の他の実施例による放熱器ユニットの説
明図。
FIG. 6 is an explanatory view of a radiator unit according to another embodiment of the present invention.

【図7】本発明の他の実施例による放熱器ユニットの説
明図。
FIG. 7 is an explanatory view of a radiator unit according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…タンク、3…巻線、4…液状絶縁冷媒、8a,8b
…配管、9…放熱器、10a…上部ヘッダ、10b…下
部ヘッダ、11…伝熱管、12…外部フィン、13…内
部フィン、14…放熱器ユニット、15…フランジ。
1 ... Tank, 3 ... Winding wire, 4 ... Liquid insulating refrigerant, 8a, 8b
... Piping, 9 ... Radiator, 10a ... Upper header, 10b ... Lower header, 11 ... Heat transfer tube, 12 ... External fin, 13 ... Inner fin, 14 ... Radiator unit, 15 ... Flange.

フロントページの続き (72)発明者 浜田 充弘 茨城県日立市国分町一丁目1番1号 株式 会社日立製作所国分工場内 (72)発明者 上野 義人 茨城県日立市国分町一丁目1番1号 株式 会社日立製作所国分工場内 (72)発明者 平石 清登 茨城県日立市国分町一丁目1番1号 株式 会社日立製作所国分工場内Continued front page    (72) Inventor Mitsuhiro Hamada             1-1-1 Kokubuncho, Hitachi-shi, Ibaraki Stock             Hitachi, Ltd. Kokubu factory (72) Inventor Yoshito Ueno             1-1-1 Kokubuncho, Hitachi-shi, Ibaraki Stock             Hitachi, Ltd. Kokubu factory (72) Inventor Kiyoto Hiraishi             1-1-1 Kokubuncho, Hitachi-shi, Ibaraki Stock             Hitachi, Ltd. Kokubu factory

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】液状絶縁冷媒を使用し大気の自然対流熱伝
達で冷却する変圧器の放熱器において、放熱器を構成す
る伝熱管を、扁平な押出し管とし、その外部の平坦面に
長手管軸方向に伸びる平板状フィンを設け、前記伝熱管
を鉛直配置とし、管内部に前記液状絶縁冷媒を流すよう
にしたことを特徴とする自冷変圧器用放熱器。
1. A radiator of a transformer for cooling by natural convection heat transfer of air using a liquid insulating refrigerant, wherein a heat transfer tube constituting the radiator is a flat extruded tube, and a longitudinal tube is provided on a flat surface outside thereof. A radiator for a self-cooling transformer, characterized in that a flat fin extending in the axial direction is provided, the heat transfer tube is arranged vertically, and the liquid insulating refrigerant is allowed to flow inside the tube.
【請求項2】請求項1において、前記扁平な押出し管の
上下端を平板からなる箱状のヘッダに取付け、前記ヘッ
ダを、その内部を冷媒が流れる方向を軸として傾斜させ
た自冷変圧器用放熱器。
2. The self-cooling transformer according to claim 1, wherein the upper and lower ends of the flat extruded pipe are attached to a box-shaped header made of a flat plate, and the header is inclined with the inside in a direction in which a refrigerant flows. Radiator.
【請求項3】請求項1において、前記伝熱管の材料をア
ルミニウムとした自冷変圧器用放熱器。
3. The radiator for a self-cooling transformer according to claim 1, wherein the material of the heat transfer tube is aluminum.
【請求項4】請求項1において、複数本の前記伝熱管を
上下のヘッダ間に取付けてユニットを構成し、前記ユニ
ットを複数個変圧器本体に取り付ける際、前記ユニット
間に適度な隙間を設けて取り付けた自冷変圧器用放熱
器。
4. The unit according to claim 1, wherein a plurality of the heat transfer tubes are mounted between upper and lower headers to form a unit, and when a plurality of the units are mounted on a transformer body, a proper gap is provided between the units. A radiator for a self-cooling transformer installed.
【請求項5】請求項1において、箱状のヘッダ内の流れ
方向に直角な断面積を、変圧器本体から離れるに従い、
小さくした自冷変圧器用放熱器。
5. The box-shaped header according to claim 1, wherein a cross-sectional area perpendicular to the flow direction is separated from the transformer main body,
A miniaturized radiator for self-cooling transformer.
【請求項6】請求項1において、伝熱管に付けるフィン
を薄い波板状またはU字状にした自冷変圧器用放熱器。
6. The radiator for a self-cooling transformer according to claim 1, wherein the fins attached to the heat transfer tubes are thin corrugated plates or U-shapes.
JP17214891A 1991-07-12 1991-07-12 Radiator self-cooled transformer Pending JPH0521236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17214891A JPH0521236A (en) 1991-07-12 1991-07-12 Radiator self-cooled transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17214891A JPH0521236A (en) 1991-07-12 1991-07-12 Radiator self-cooled transformer

Publications (1)

Publication Number Publication Date
JPH0521236A true JPH0521236A (en) 1993-01-29

Family

ID=15936458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17214891A Pending JPH0521236A (en) 1991-07-12 1991-07-12 Radiator self-cooled transformer

Country Status (1)

Country Link
JP (1) JPH0521236A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185992A (en) * 2012-03-08 2013-09-19 Toshiba Corp Cooling system for spent fuel storage pool
CN113284712A (en) * 2021-02-21 2021-08-20 大连理工大学 Fin type radiator fin
CN114724811A (en) * 2022-03-21 2022-07-08 国网山东省电力公司莒县供电公司 Digital temperature control transformer substation based on overload early warning system
CN116072390A (en) * 2023-03-07 2023-05-05 宁波杰锐智能电气有限公司 Sealed water-cooled dry-type transformer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185992A (en) * 2012-03-08 2013-09-19 Toshiba Corp Cooling system for spent fuel storage pool
CN113284712A (en) * 2021-02-21 2021-08-20 大连理工大学 Fin type radiator fin
CN114724811A (en) * 2022-03-21 2022-07-08 国网山东省电力公司莒县供电公司 Digital temperature control transformer substation based on overload early warning system
CN116072390A (en) * 2023-03-07 2023-05-05 宁波杰锐智能电气有限公司 Sealed water-cooled dry-type transformer
CN116072390B (en) * 2023-03-07 2023-09-26 宁波杰锐智能电气有限公司 Sealed water-cooled dry-type transformer

Similar Documents

Publication Publication Date Title
KR100606283B1 (en) Heat pipe unit and heat pipe type heat exchanger
US20010032718A1 (en) System and method for cooling transformers
JPH0521236A (en) Radiator self-cooled transformer
JP4383174B2 (en) Ultra long-term storage facility for high heat flux radiation materials
JPH09134823A (en) Transformer for vehicle
JP2007173685A (en) Stationary induction electric apparatus
CA1245756A (en) Transformer cooling structure with u-shaped cooling panels
CN111403151B (en) Water circulation cooling dry-type transformer
JPH0771891A (en) Radiator of self-cooling type transformer and manufacture thereof
DK156849B (en) HEAT EXCHANGE
JP3142407B2 (en) Transformer winding cooling structure
JP2000068119A (en) Cooling equipment for transformer
JPS6130196B2 (en)
US4603734A (en) Heat exchange element of the air-tube type
JP2005243666A (en) Power equipment
JP2000223323A (en) Stationary induction apparatus
CN219759335U (en) Primary energy efficiency dry-type transformer
CN219265060U (en) Cold trap adopting H-shaped finned tube
JPS59104108A (en) Self cooled gas insulated transformer
KR102003346B1 (en) Cooling device for dry transformer
CN108633230B (en) Radiator with excellent heat absorption performance
JPH0547962Y2 (en)
JPS63213331A (en) Gas-insulated electric apparatus
CN2506966Y (en) Radiation convection radiator
JP2003109825A (en) Gas insulating transformer