JPS59104108A - Self cooled gas insulated transformer - Google Patents

Self cooled gas insulated transformer

Info

Publication number
JPS59104108A
JPS59104108A JP21429182A JP21429182A JPS59104108A JP S59104108 A JPS59104108 A JP S59104108A JP 21429182 A JP21429182 A JP 21429182A JP 21429182 A JP21429182 A JP 21429182A JP S59104108 A JPS59104108 A JP S59104108A
Authority
JP
Japan
Prior art keywords
pipe
gas
self
tank
pipes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21429182A
Other languages
Japanese (ja)
Inventor
Haruo Ono
春雄 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP21429182A priority Critical patent/JPS59104108A/en
Publication of JPS59104108A publication Critical patent/JPS59104108A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/20Cooling by special gases or non-ambient air

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transformer Cooling (AREA)

Abstract

PURPOSE:To enhance the measure of capacity of the possible limit of self cooling, to reduce the installing floor area, and to reduce the number of installation of the radiators of a self cooled gas insulated transformer by a method wherein cooling efficiency of insulating gas according to a natural convection is enhanced. CONSTITUTION:An upper header pipe 16 is arranged at the centrally upper side of the upper cover 10a of a transformer tank 1, and lower header pipes 32, 34 are arranged at both the sides of right and left of the upper cover 10a. Radiators 50 of the plural number are arranged in parallel and facing mutually on both the sides of right and left between the upper and the lower header pipes. The upper part sending in pipes 51 of the radiators 50 are connected to the upper header pipe 16, and the lower part sending out pipes 52 are connected to the lower header pipes 32, 34. Insulating gas 4 transmitted with heat generated from windings and a core ascends in an ascending gas pipe 14 from the upper branch pipe 11 of the upper cover 10a of the tank to reach the upper header pipe 16, and is conducted into the radiators 50 through the sending in pipes 51.

Description

【発明の詳細な説明】 この発明は、放熱器をタンク上蓋の上方に配設した自冷
式ガス絶縁変圧器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a self-cooling gas insulated transformer in which a heat radiator is disposed above a tank top cover.

一般に、自冷式ガス絶縁変圧器においては、タンク内に
5F6−/ナス等の絶縁ガスを封入して冷却媒体として
いるが、この冷媒ガスの自然対流による度に低下する。
Generally, in a self-cooling type gas insulated transformer, an insulating gas such as 5F6-/eggplant is sealed in a tank as a cooling medium, but the cooling temperature decreases each time due to natural convection of the refrigerant gas.

このため、発熱体である巻線および鉄心と冷媒ガスとの
温度差が規定値金超えないように′電流密度および磁束
密度を低くしなければならず、変圧器容量は1000〜
3000KVAまでが最高限度とされており、この容量
を超えるものについては、プロ了−による強制循環方式
が採用されている。
For this reason, the current density and magnetic flux density must be kept low so that the temperature difference between the windings and iron core, which are heating elements, and the refrigerant gas does not exceed the specified value, and the transformer capacity is 1000~
The maximum capacity is 3000KVA, and for those exceeding this capacity, a forced circulation system is adopted.

従来のこの種の変圧器として、第1図および第2図に示
す構造のものが知られている。同図において、符号1は
変圧器のタンクであり、この中に巻線2および鉄心3を
収納して絶縁ガス4を封入している。符号5は放熱器で
あり、変圧器タンク1の左右両1111の側板に沿って
複数個を配置し、それぞれの放熱器5の送入管6を変圧
器タンク1の側板から分岐した上部分岐管8に、送出管
7を下部分岐管9にそれぞれ連結している。この放熱器
5は、パイプ等により連続したダクトを形成してその表
面から外気に熱を放散する自冷式のものである。
As a conventional transformer of this type, one having the structure shown in FIGS. 1 and 2 is known. In the figure, reference numeral 1 denotes a tank of a transformer, in which a winding 2 and an iron core 3 are housed, and an insulating gas 4 is sealed therein. Reference numeral 5 denotes a radiator, and a plurality of radiators are arranged along the left and right side plates 1111 of the transformer tank 1, and the feed pipe 6 of each radiator 5 is an upper branch pipe branched from the side plate of the transformer tank 1. 8, the delivery pipes 7 are connected to the lower branch pipes 9, respectively. The heat radiator 5 is of a self-cooling type that forms a continuous duct using a pipe or the like and radiates heat to the outside air from the surface of the duct.

巻線2および鉄心3から発生した熱は、タンク1内の絶
縁ガス4に伝達され、温度差による自然対流によって上
昇した絶縁ガス4は、矢印で示すようにタンク1の上部
分岐管8に接読する送入管6から放熱器5内に導かれ、
放熱器5の表面から熱を放散して冷却されたのち、送出
管7に接続する下部分岐管9からタンク1内に戻る循環
作用を繰り返す。
The heat generated from the winding 2 and the iron core 3 is transferred to the insulating gas 4 in the tank 1, and the insulating gas 4, which rises due to natural convection due to the temperature difference, contacts the upper branch pipe 8 of the tank 1 as shown by the arrow. is led into the radiator 5 from the inlet pipe 6 to be read,
After being cooled by dissipating heat from the surface of the radiator 5, the circulation action of returning to the tank 1 from the lower branch pipe 9 connected to the delivery pipe 7 is repeated.

ところで、変圧器タンク1の外形寸法は、巻線2および
鉄心乙の大きさによって決捷り、このタンクの大きさに
対して必要とする放熱器5の外形寸法が決めらね、てい
るが、絶縁ガスが自然対流するときの速度は、放熱器5
の中心高さく冷却中心高さ)と巻線2および鉄心乙の中
心高さく発熱中心高さ)との差りによって左右される。
By the way, the external dimensions of the transformer tank 1 are determined by the sizes of the winding 2 and the iron core B, and the external dimensions of the necessary radiator 5 cannot be determined for the size of this tank. , the speed at which the insulating gas naturally convects is the radiator 5
It depends on the difference between the center height (cooling center height) of the winding 2 and the center height of the core A (heating center height).

寸た、巻線および鉄心の一衣面の熱伝達率αは絶縁ガス
の自然対流速度に比例する。そして、この熱伝達率αは
次式で表わされる。
In other words, the uniform heat transfer coefficient α of the winding and the iron core is proportional to the natural convection velocity of the insulating gas. This heat transfer coefficient α is expressed by the following equation.

± αにK(1+ h ’ ) ここに、K:冷却係数、 n :冷却系によって異なる
常数(n≧1゜O)である。
K for ±α (1+h') where K: cooling coefficient, n: constant (n≧1°O) that varies depending on the cooling system.

上式から明らかなように、絶縁ガスの自然対流速度を犬
きくして巻線および鉄心の次面の熱伝達率αを向上させ
冷却効率を高くするKは、冷却中心高さと発熱中心高さ
との差11を太きくしなければならないことが判る。
As is clear from the above equation, K, which increases the natural convection velocity of the insulating gas to improve the heat transfer coefficient α of the next surface of the windings and iron core, thereby increasing the cooling efficiency, is determined by the difference between the cooling center height and the heat generation center height. It turns out that the difference 11 must be made thicker.

3− しかしながら、従来の自冷式ガス絶縁変圧器では、放熱
器を変圧器タンクの側板に沿って配置する構造であるた
め、放熱器の外形寸法の基本となる高さには限度があっ
て必要以上に高くすることはできず、したがって、冷却
中心高さと発熱中心高さとの差りは比較的小さくなって
いる。このため、絶縁ガスの自然対流速度が減少して、
巻線および鉄心の冷却効果が十分に発揮されないことに
なり、自冷可能な変圧器容量も従来の最高限度以内に抑
制されるという欠点があった。
3- However, in conventional self-cooling gas insulated transformers, the radiator is placed along the side plate of the transformer tank, so there is a limit to the height, which is the basic external dimension of the radiator. It cannot be made higher than necessary, and therefore the difference between the cooling center height and the heating center height is relatively small. This reduces the natural convection speed of the insulating gas,
There was a drawback that the cooling effect of the windings and the iron core was not sufficiently exhibited, and the capacity of the transformer that could be self-cooled was also suppressed to within the conventional maximum limit.

また、従来の自冷式ガス絶縁変圧器では、冷却効果を十
分に発揮させるには、単位の放熱器の外形寸法を大きく
するか、あるいはその配設数を増加する必要があるため
、変圧器全体としての重量が増加するだけでなく、変圧
器全体の幅寸法が大きくなってビル内や地下室等に設置
する場合は、床面積の制約2受けることが多く、必要と
する占有床面積が大きくなることは建築費の高騰にもつ
ながるという欠点があった。
In addition, in conventional self-cooling gas insulated transformers, in order to fully demonstrate the cooling effect, it is necessary to increase the external dimensions of the unit heat radiator or increase the number of radiators installed. Not only does the overall weight increase, but the width of the entire transformer also increases, and when installed inside a building or basement, it is often subject to floor space constraints2, requiring a large occupied floor space. This had the disadvantage of leading to a rise in construction costs.

この発明は、上記の欠点を除去して、絶縁ガス4− の自然対流による冷却効率を向」−シて自冷可能限度の
容量を高くすることができ、設置床面積が小ざく、さら
に放熱器の配設数を減少することができて、小型、軽量
な自冷式ガス絶縁変圧器を提供することを目的とする。
This invention eliminates the above-mentioned drawbacks, improves the cooling efficiency by natural convection of the insulating gas, increases the capacity of the self-cooling limit, requires a small installation floor area, and furthermore allows heat dissipation. The purpose of the present invention is to provide a self-cooling type gas insulated transformer that is small and lightweight and can reduce the number of installed transformers.

以下、この発明の実施例について、図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

第3図および第4図は、この発明の実施例である。変圧
器のタンク1の上蓋10aの長さ方向中心線上に上部分
岐管11を分岐させて2箇所に設け、該上部分岐管11
の上端のフランジ12に上昇ガス管14の下端の7ラン
ジ15を接会させてボルト、ナツトで締着し、−1−昇
ガス管14を鉛直方向に立設する。該上昇ガス管14の
上端には、上部ヘッダー管16を水平方向にして接続す
る。
3 and 4 are examples of the present invention. An upper branch pipe 11 is branched at two locations on the longitudinal center line of the upper lid 10a of the transformer tank 1, and the upper branch pipe 11 is provided at two locations.
The 7 flange 15 at the lower end of the rising gas pipe 14 is brought into contact with the flange 12 at the upper end and tightened with bolts and nuts, and the -1- rising gas pipe 14 is vertically installed. An upper header pipe 16 is connected to the upper end of the rising gas pipe 14 in a horizontal direction.

変圧器のタンク1の対向する側板10b、10cの下端
部には前記上部分岐管11を中心として対称位置にそれ
ぞれ下部分岐管18.20を分岐させて設け、該下部分
岐管18.20の先端のフラ  ゛フジ19,21に、
それぞれ下降ガス管24.26の下端屈折部のフランジ
25.27を接合させてボルト、ナツトで締着し、下降
ガス管24 、26を鉛直方向に立設する。下降ガス管
24.26には、その」二端にフランジ29.30が取
り付けてあり、前記変圧器タンク1の上部分岐管11の
」二端と同一高さとしている。この下降ガス管24゜2
6の上端(では、それぞ力、下部ヘッダー管62゜64
を水平方向にして取り付ける。下降ガス管24.26の
上端のフランジ29.30に下部ヘッダー管32.34
から分岐した接続部33.35のフランジ36.37を
接合させて、ボルト、ナツトで締着して接続しである。
At the lower ends of the opposing side plates 10b and 10c of the tank 1 of the transformer, lower branch pipes 18.20 are branched at symmetrical positions with respect to the upper branch pipe 11, and the tips of the lower branch pipes 18.20 are provided. On the fly Fuji 19, 21,
The flanges 25 and 27 at the bent portions of the lower ends of the descending gas pipes 24 and 26 are joined together and tightened with bolts and nuts, so that the descending gas pipes 24 and 26 are erected vertically. The descending gas pipe 24.26 is fitted with a flange 29.30 at its two ends, which is flush with the two ends of the upper branch pipe 11 of the transformer tank 1. This descending gas pipe 24゜2
6 upper end (respectively, force, lower header pipe 62° 64
Install it horizontally. The lower header pipe 32.34 is attached to the flange 29.30 at the upper end of the descending gas pipe 24.26.
The flanges 36, 37 of the connecting portions 33, 35 branched from the flange 33, 35 are joined, and the connection is made by tightening with bolts and nuts.

上記のようにして、変圧器タンク1の上蓋10aの中央
上方に上部へラダー管16を、上蓋10aの左右両側に
下部ヘソグー管:り2.34を、それぞれ変圧器の長さ
方向と平行に配置して、上部ヘッダー管16と下部ヘッ
ダー管62.34との間((は、複数の放熱器50を左
右両側に対向させて並列に配設する。該放熱器50の上
部の送入管51を上部ヘッダー管16に、下部の送出管
52を下部ヘッダー管32.34にそれぞれ図示しない
フランジを接合させて接続する。
As described above, the upper ladder pipe 16 is installed above the center of the upper lid 10a of the transformer tank 1, and the lower ladder pipe 2.34 is installed on both left and right sides of the upper lid 10a, parallel to the length direction of the transformer. between the upper header pipe 16 and the lower header pipe 62. 51 is connected to the upper header pipe 16, and the lower delivery pipe 52 is connected to the lower header pipes 32 and 34 by joining flanges (not shown), respectively.

このようにして、変圧器タンク1の上蓋10aの上方に
放熱器50が架設され、ることになるが、必要に応じて
、」二蓋10.+との間に支持台を載置してもよく、寸
だ、上昇ガス管14・との間に適宜の固定部材を介在さ
せて、該固定部材を放熱器50と一ト昇ガス管16とに
溶接して支持してもよい。
In this way, the radiator 50 is installed above the upper cover 10a of the transformer tank 1, and if necessary, the radiator 50 is installed above the upper cover 10a of the transformer tank 1. A support stand may be placed between the radiator 50 and the rising gas pipe 16 by interposing an appropriate fixing member between the radiator 50 and the rising gas pipe 16. It may also be supported by welding to the

放熱器50を一1=記のように配設すると、巻線2およ
び鉄心6から発生した熱が伝達された絶縁ガス4は、矢
印で示すようにタンク上蓋10aの上部分岐管11から
」二昇ガス菅14内ケ」二昇して上部ヘッダー管16に
至り、−に部ヘッダー管16から送入管51を介して放
熱’A汁50に導かれる。放熱器50によって冷却され
た絶縁ガスは、送出管52から下部ヘッダー管62.6
4に入り、接続管33.3りを経て下降ガス管24.2
6内を下降して、タンク側板10b、10cの下部分岐
管18.20からタンク1内に戻る。
When the heat radiator 50 is arranged as shown in 11, the insulating gas 4, to which the heat generated from the winding 2 and the iron core 6 is transferred, flows from the upper branch pipe 11 of the tank top lid 10a to the upper branch pipe 11 of the tank top lid 10a as shown by the arrow. The rising gas rises inside the tube 14 and reaches the upper header pipe 16, and is guided from the lower header pipe 16 to the heat radiation 'A' juice 50 via the feed pipe 51. The insulating gas cooled by the radiator 50 is transferred from the delivery pipe 52 to the lower header pipe 62.6.
4, descending gas pipe 24.2 via connecting pipe 33.3
6 and returns to the tank 1 through the lower branch pipes 18, 20 of the tank side plates 10b, 10c.

上記実施例のように、この発明においては、放7− 熱器50をタンク1の上方に配設して、冷却中心高さと
発熱中心高さとの差りけ従来よりも太きくしているから
、絶縁ガスの自然対流速度が増大し、このため巻線およ
び鉄心の表面の熱伝達率を向上させることが可能となる
As in the above embodiment, in this invention, the heat sink 50 is disposed above the tank 1, and the difference between the height of the cooling center and the height of the heat generating center is made larger than in the conventional case. The natural convection velocity of the insulating gas is increased, which makes it possible to improve the heat transfer coefficient on the surfaces of the windings and core.

また、この発明では、放熱器を変圧器タンクの上方に架
設しているから、変圧器全体の幅寸法を変圧器単体とそ
の両側の下降ガス管との幅寸法以内に止めることができ
、変圧器全体の設置床面積を大幅に減縮することが可能
となる。
In addition, in this invention, since the radiator is installed above the transformer tank, the width of the entire transformer can be kept within the width of the transformer itself and the descending gas pipes on both sides. It becomes possible to significantly reduce the installation floor space of the entire device.

また、この発明の放熱器は、その上部ヘッダー管の上昇
ガス管を変圧器タンクの上部分岐管にフランジによって
着脱口イモに接続し、下部ヘッダー管の接続管をフラン
ジによって下降ガス管と着脱自在に接続してあり、また
下降ガス管も変圧器タンクの下部分岐管にフランジによ
って着脱自在に接続されているから、これらの7ランジ
の部分から各部品を分離することができ、放熱器と変圧
器単体とを分解輸送して現地組立することも可能である
In addition, in the radiator of the present invention, the rising gas pipe of the upper header pipe is connected to the upper branch pipe of the transformer tank by a flange to the attachment/detachment port, and the connecting pipe of the lower header pipe is detachably connected to the descending gas pipe by the flange. Since the descending gas pipe is also removably connected to the lower branch pipe of the transformer tank by a flange, each part can be separated from these 7 lunges, and the radiator and transformer can be separated from each other. It is also possible to disassemble and transport the single unit and assemble it on site.

8− 第5図は、この発明の他の実施例である。この実施例で
は、変圧器タンク1の上蓋10aを上向きに適宜の曲率
半径でわん曲した半円筒形状に成形しである。寸だ、上
昇ガス管14は、下端部から上端部(C至る間に漸次断
面積を縮少させて上向き先細り形状に成形する。
8- FIG. 5 is another embodiment of the present invention. In this embodiment, the upper cover 10a of the transformer tank 1 is formed into a semi-cylindrical shape which is curved upward with a suitable radius of curvature. The rising gas pipe 14 is formed into an upwardly tapered shape by gradually reducing its cross-sectional area from the lower end to the upper end (C).

」二記の変圧器タンクの上蓋と」二屏ガス管との形状を
除くその余の構成は、第3図および第4図の実施例と同
一であるから、同一部分には同一符号をもって示し、詳
細な説明は省略する。
The rest of the structure except for the shape of the transformer tank upper cover and the two-fold gas pipe shown in "2" is the same as the embodiment shown in FIGS. 3 and 4, so the same parts are designated by the same reference numerals. , detailed explanation will be omitted.

この実施例のように構成すると、自然対流によって上昇
した絶縁ガス4の流体抵抗が減少するから、自然対流速
度は、冷却中心高さと発熱中心高さとの差りの増加によ
る増大効果を超えてさらに増大することになる。
With the configuration of this embodiment, the fluid resistance of the insulating gas 4 raised by natural convection is reduced, so that the natural convection velocity is further increased beyond the increasing effect of the increase in the difference between the cooling center height and the heat generation center height. It will increase.

第6図および第7図は、この発明のさらに他の実施例で
ある。この実施例では、変圧器タンク1の上蓋10aの
幅寸法を側板1 ob 、 10cよりも小さくして、
方形断面の下降ガス管24.26の側面を変圧器タンク
1の側板101) 、 10 cの外面に密着させて溶
接している。下降ガス管24゜26は、その下端の一部
側面を切り欠いて、変圧器タンク1の側板10b、10
cに設けた開口部60に連通させている。
FIGS. 6 and 7 show still other embodiments of the invention. In this embodiment, the width dimension of the upper cover 10a of the transformer tank 1 is made smaller than the side plates 1 ob and 10 c.
The side surfaces of the descending gas pipes 24 and 26 having a rectangular cross section are closely welded to the outer surfaces of the side plates 101) and 10c of the transformer tank 1. The descending gas pipes 24 and 26 have a part of the lower end side surface cut out and are attached to the side plates 10b and 10 of the transformer tank 1.
It communicates with an opening 60 provided at c.

この実施例によると、下降ガス管24.26と変圧器タ
ンク1の側板10b、、10cとが一体に結合するから
、下降ガス管24.26が変圧器タンク1の側板10b
、10cの補強部材としての機能をも併せて兼備するこ
とになり、別途に補強部材を設ける必要がなくなるため
、変圧器全体の重量を軽減することが可能となる。
According to this embodiment, the descending gas pipes 24.26 and the side plates 10b, 10c of the transformer tank 1 are integrally connected, so that the descending gas pipes 24.26 are connected to the side plates 10b, 10b of the transformer tank 1.
, 10c, and there is no need to provide a separate reinforcing member, making it possible to reduce the weight of the entire transformer.

才だ、下降ガス管24.26と変圧器タンク1の側板1
0h 、 10cとの間の空間部がなくなるから、変圧
器全体の幅寸法は、第3図々いし第5図の実施例よりも
さらに縮少する。
Good, descending gas pipe 24, 26 and side plate 1 of transformer tank 1
Since the space between 0h and 10c is eliminated, the width of the entire transformer is further reduced than in the embodiments shown in FIGS. 3 to 5.

タンク上蓋10aと上昇ガス管14は、第5図のように
成形してもよい。
The tank top lid 10a and the rising gas pipe 14 may be formed as shown in FIG.

第8図は、第6図および第7図の実施例の変形例であり
、円形断面の下降ガス管24を変圧器タンクの側板10
bとの間に添板28を挿入して、該添板28の長さ方向
の両側端面を下降ガス管24と変圧器タンクの側板10
1]に溶接したものである。添板28と変圧器タンクの
側板101)との固定は、ボルト締着してもよい。
FIG. 8 shows a modification of the embodiment shown in FIGS. 6 and 7, in which a descending gas pipe 24 with a circular cross section is connected to a side plate 10 of a transformer tank.
A splint 28 is inserted between the splint 28 and the end surfaces of the splint 28 in the length direction between the gas pipe 24 and the side plate 10 of the transformer tank.
1]. The splint 28 and the side plate 101) of the transformer tank may be fixed with bolts.

この発明は、上述のように、放熱器を変圧器タンクの上
蓋の上方に配設して冷却中心高さと発熱中心高さの差を
犬きくする構成としている。したがって、この発明によ
れば、絶縁ガスの自然対流速度が大きくなり、冷却効率
が大幅に向上するから、自冷可能な変圧器容量の最高限
度を従来よりも高くすることができる。
As described above, the present invention has a configuration in which the radiator is disposed above the upper lid of the transformer tank to minimize the difference between the height of the cooling center and the height of the heating center. Therefore, according to the present invention, the natural convection speed of the insulating gas is increased, and the cooling efficiency is greatly improved, so that the maximum capacity of the transformer that can be self-cooled can be made higher than before.

捷た、この発明によれば、絶縁ガスの自然対流による冷
却性能が高くなるから、放熱器は小形のものとするか、
あるいは配設数を低減することができる。
According to this invention, the cooling performance due to natural convection of the insulating gas is improved, so the radiator should be small.
Alternatively, the number of devices installed can be reduced.

また、この発明によれば、変圧器全体の設置床面積が組
手するから、ビル内や地下室等でも特別の占有床面積を
設けることなく設置することができ、変圧器全体の形状
が小形で、かつ軽量となることと相寸って、設備費およ
び建築費を安価にす11− ることか可能となる。
Further, according to the present invention, since the installation floor area of the entire transformer is reduced, it can be installed in buildings, basements, etc. without requiring special occupied floor space, and the overall shape of the transformer is small. In addition to being lightweight, it is possible to reduce equipment costs and construction costs11-.

さらに、この発明のガス絶縁変圧器は、ブロアーを用い
ずに自冷式によって容量を高くすることができるから、
同一容量の強制循環方式のガス絶縁変圧器に比べ、電力
消費険が少なく、省エネルギーの要請にも寄与するとい
う効果も併せて得られる。
Furthermore, since the gas insulated transformer of the present invention can increase the capacity by self-cooling without using a blower,
Compared to a forced circulation gas insulated transformer of the same capacity, it consumes less electricity and contributes to energy conservation requirements.

この発明は、い捷まで説明したガス絶縁変圧器に限らず
ガス絶縁リアクトルに適用することができるほか、油入
変圧器や油入りアクドルについても応用することができ
る。
The present invention can be applied not only to gas insulated transformers as described in detail, but also to gas insulated reactors, and can also be applied to oil-immersed transformers and oil-filled axles.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の自冷式ガス絶縁変圧器の断面図、第2図
はその平面図、第3図はこの発明の実施例を示す断面図
、第4図はその平面図、第5図はこの発明の他の実施例
を示す断面図、第6図はこの発明のさらに他の実施例を
示す断面図、第7図はその平面図、第8図は下降ガス管
の変形例を示す一部水平断面図である。 10a:タンク上蓋 10b 、 10c :タンク側
板12− 11:上部分岐管 12:上部4ト岐管のフランジ14
:上昇ガス管 15:l−f’tガス管のフランジ16
:上部ヘッダー管 24,26:下降ガス管29.30
:下降ガス管のフランジ 32 、34 :下部へラダー管 33.35:下部ヘッダー管の接続管 36 、37 :下部ヘッダー管の接続管のフランジ5
0:放熱器   51:放熱器の送入管52:放熱器の
送出管 特許出願人   富士電機製造株式会社代理人 弁理士
   森     哲  也弁理士   内  藤  
嘉  昭 弁理士   清  水     正 弁理士   梶  山  拮  是 第3図 6t、5す 特開昭59−104108  (6)
Fig. 1 is a sectional view of a conventional self-cooling gas insulated transformer, Fig. 2 is a plan view thereof, Fig. 3 is a sectional view showing an embodiment of the present invention, Fig. 4 is a plan view thereof, and Fig. 5 6 is a sectional view showing another embodiment of the invention, FIG. 7 is a plan view thereof, and FIG. 8 is a modified example of the descending gas pipe. It is a partial horizontal sectional view. 10a: Tank top lid 10b, 10c: Tank side plate 12-11: Upper branch pipe 12: Flange 14 of upper 4-way branch pipe
:Rising gas pipe 15:L-f't gas pipe flange 16
: Upper header pipe 24, 26: Downward gas pipe 29.30
: Flanges 32, 34 of descending gas pipes: Ladder pipes to the bottom 33.35: Connecting pipes 36, 37 of lower header pipes: Flanges 5 of connecting pipes of lower header pipes
0: Heat radiator 51: Heat radiator inlet pipe 52: Heat radiator outlet pipe Patent applicant Fuji Electric Manufacturing Co., Ltd. Agent Patent attorney Tetsuya Mori Patent attorney Fuji Nai
Yoshiaki, Patent Attorney, Shimizu, Patent Attorney, Kajiyama Kyore Figure 3 6t, 5S JP-A-59-104108 (6)

Claims (1)

【特許請求の範囲】 (])  ガス絶縁変圧器のタンク上蓋の中央部から分
岐して立設した上昇ガス管の上端に上部ヘッダー管を接
続し、タンク左右両側の側板の下端から分岐して立設し
た下降ガス管の上端KT部へラダー管を接続し、該上部
ヘッダー管と下部ヘッダー管との間のタンク上蓋の上方
に複数の自冷式放熱器を並列させて配設し、該放熱器の
送入管を上部ヘッダー管に接続し、放熱器の送出管を下
部ヘソグー管に接続したことを特徴とする自冷式ガス絶
縁変圧器。 (2、特許請求の範囲第1項記載の自冷式ガス絶縁変圧
器において、上昇ガス管がタンク上蓋の上部分岐管に着
脱自在に接合され、下降ガス管が下部へラダー管のW続
管に着脱自在に接合されている自冷式ガス絶縁変圧器。 (3)特許請求の範囲第1項または第2項記載の自冷式
ガス絶縁変圧器において、タンク上蓋が上向きにわん曲
した断面形状に成形され、上昇ガス管が」二向き先細り
の断面形状に成形されている自冷式ガス絶縁変圧器。 (4)特許請求の範囲第1項ないし第3項記載のいずれ
かに記載の自冷式ガス絶縁変圧器において、下降ノrス
管の側面がタンク1111+板の外面に密着している自
冷式ガス絶縁変圧器。
[Scope of Claims] (]) An upper header pipe is connected to the upper end of a rising gas pipe branched from the center of the tank top cover of the gas insulated transformer, and the upper header pipe is connected to the upper end of the rising gas pipe that branches from the lower end of the side panels on both the left and right sides of the tank. A ladder pipe is connected to the upper end KT section of the descending gas pipe installed upright, and a plurality of self-cooling radiators are arranged in parallel above the tank top cover between the upper header pipe and the lower header pipe. A self-cooled gas insulated transformer characterized in that the inlet pipe of the radiator is connected to the upper header pipe, and the outlet pipe of the radiator is connected to the lower header pipe. (2. In the self-cooling gas insulated transformer according to claim 1, the ascending gas pipe is removably connected to the upper branch pipe of the tank top cover, and the descending gas pipe is connected to the lower part of the W-continuation pipe of the ladder pipe. (3) In the self-cooled gas insulated transformer according to claim 1 or 2, the cross section of the tank top is curved upward. A self-cooling type gas insulated transformer in which the rising gas pipe is formed into a cross-sectional shape tapering in two directions. (4) A self-cooling gas insulated transformer according to any one of claims 1 to 3. A self-cooled gas insulated transformer in which the side surface of the down-north pipe is in close contact with the outer surface of the tank 1111+ plate.
JP21429182A 1982-12-07 1982-12-07 Self cooled gas insulated transformer Pending JPS59104108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21429182A JPS59104108A (en) 1982-12-07 1982-12-07 Self cooled gas insulated transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21429182A JPS59104108A (en) 1982-12-07 1982-12-07 Self cooled gas insulated transformer

Publications (1)

Publication Number Publication Date
JPS59104108A true JPS59104108A (en) 1984-06-15

Family

ID=16653290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21429182A Pending JPS59104108A (en) 1982-12-07 1982-12-07 Self cooled gas insulated transformer

Country Status (1)

Country Link
JP (1) JPS59104108A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6263915U (en) * 1985-10-14 1987-04-21
JPH0463625U (en) * 1990-10-08 1992-05-29
US20100133284A1 (en) * 2008-09-17 2010-06-03 Green Michael S Rupture resistant tank system
US8710946B2 (en) 2008-09-17 2014-04-29 General Electric Company Rupture resistant system
US8717134B2 (en) 2008-09-17 2014-05-06 General Electric Company System with directional pressure venting

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6263915U (en) * 1985-10-14 1987-04-21
JPH0463625U (en) * 1990-10-08 1992-05-29
US20100133284A1 (en) * 2008-09-17 2010-06-03 Green Michael S Rupture resistant tank system
US8710946B2 (en) 2008-09-17 2014-04-29 General Electric Company Rupture resistant system
US8717134B2 (en) 2008-09-17 2014-05-06 General Electric Company System with directional pressure venting
US20140218148A1 (en) * 2008-09-17 2014-08-07 General Electric Company Rupture resistant system
US9159482B2 (en) 2008-09-17 2015-10-13 General Electric Company Rupture resistant tank system
US9672968B2 (en) 2008-09-17 2017-06-06 General Electric Company Rupture resistant system
US20170271069A1 (en) * 2008-09-17 2017-09-21 General Electric Company Rupture resistant system
US11056264B2 (en) * 2008-09-17 2021-07-06 General Electric Company Rupture resistant system

Similar Documents

Publication Publication Date Title
KR840001976B1 (en) Electrical power apparatus
CN101325118B (en) Dry-type transformer with vapour-liquid two phase heat-radiation loop
CN201259816Y (en) Dry transformer having gas-liquid dual phase heat radiation loop
JPS59104108A (en) Self cooled gas insulated transformer
JP2006050742A (en) Forced air-cooling power converter and electric motor car
JP3138852B2 (en) Transformer
JPH09120917A (en) Transformer device
WO2023201642A1 (en) Novel dry-type transformer
EP4120295A1 (en) Heat dissipation structure for reactor and inverter
JPH08162333A (en) Panel type radiator
CN206602010U (en) A kind of radiating device for dry-type transformer
CN111403151B (en) Water circulation cooling dry-type transformer
JPS6130196B2 (en)
CN212625013U (en) Heat dissipation shell for transformer
CN210668018U (en) High-efficient heat dissipation oil tank of transformer
WO2015033854A1 (en) Transformer and transformer system
CN117672673B (en) Heat radiation structure of dry-type transformer
JP2539534B2 (en) Cooling device for electromagnetic induction equipment
CN216212803U (en) Low-noise energy-saving dry-type transformer
JP2005243666A (en) Power equipment
CN218730261U (en) Energy-saving dry-type power transformer
CN218214876U (en) High-efficient radiating dry-type transformer
CN220857759U (en) Generator combining air cooling and water cooling
CN220232877U (en) Transformer heat abstractor
CN220491704U (en) Dry-type transformer heat sink