JPH05212266A - Heater of molten zinc vessel - Google Patents

Heater of molten zinc vessel

Info

Publication number
JPH05212266A
JPH05212266A JP4784592A JP4784592A JPH05212266A JP H05212266 A JPH05212266 A JP H05212266A JP 4784592 A JP4784592 A JP 4784592A JP 4784592 A JP4784592 A JP 4784592A JP H05212266 A JPH05212266 A JP H05212266A
Authority
JP
Japan
Prior art keywords
zinc
molten zinc
passage
heating
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4784592A
Other languages
Japanese (ja)
Inventor
Gensuke Muta
源助 牟田
Nobuyoshi Hiroki
伸好 広木
Toshihiro Hara
利弘 原
Atsuyuki Kubota
淳之 窪田
Masanori Kayama
誠規 加山
Kenji Imae
憲司 井前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IMAE KOGYO KK
Nippon Steel Corp
Original Assignee
IMAE KOGYO KK
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IMAE KOGYO KK, Sumitomo Metal Industries Ltd filed Critical IMAE KOGYO KK
Priority to JP4784592A priority Critical patent/JPH05212266A/en
Publication of JPH05212266A publication Critical patent/JPH05212266A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

PURPOSE:To reduce the microcracks resulting from thermal expansion and infiltration of zinc by forming the convection passage of molten zinc flowing in an induction field with aluminum titanate. CONSTITUTION:A coil 2 is provided close to a convection passage 4 through an iron core 3. The passage 4 is provided with a water-cooled jacket 5 and fixed to a molten zinc vessel by a flange 6. A current flows in the zinc in the passage 4 to generate Joule heat, the zinc is heated, whereas the passage itself as a sintered article is not heated since it does not transmit heat. The passage 4 of molten zinc flowing in an induction field is made with a U-tube in this way, hence the passage is not eroded by zinc or broken and has strength, and backup mortar is not needed. Further, when the heater is exchanged, a fresh one is connected to the vessel, and molten zinc can be immediately filled because the heater is resistant to rapid heating and cooling.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、亜鉛の溶融炉等の溶融
亜鉛槽における誘電加熱方式の溶融亜鉛対流流路の加熱
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an induction heating type molten zinc convection flow channel heating device in a molten zinc tank such as a zinc melting furnace.

【0002】[0002]

【従来の技術】溶融亜鉛槽は、その内部に溶融亜鉛を加
熱保持するものであり、溶融亜鉛中に鋼板や鋼管を浸漬
し、その表面に亜鉛を被覆する溶融亜鉛メッキ装置等に
使用されている。溶融亜鉛の加熱手段として、以前はバ
ーナによる槽外表面よりの燃焼加熱(間接加熱)が行な
われていたが、槽壁が鋼板製のため、亜鉛による侵食が
あり定期的な槽交換が必要なこと、溶融亜鉛中に鉄分の
溶出が多く、メッキ被覆製品の被膜品質が悪いことによ
り、電磁誘導加熱方式が近年導入された。この加熱方式
は、溶融亜鉛が誘導磁界内で直接加熱されるものであ
り、溶融亜鉛自身が発熱することにより加熱体等と直接
接する必要がなく、槽壁に断熱性の良く耐食性の高い無
機物質が使用でき、熱損失が低減できメッキ被覆品質も
良好となった。この加熱装置は、一般的に槽外壁にU字
状の流路を突設し、このU字状流路の一部に誘導コイル
を巻回して、又は誘導コイルを巻回した鉄芯を設け、U
字状流路内を溶融亜鉛が加熱による自然対流により溶融
亜鉛槽との間で流動させるものである。溶融亜鉛は、通
常400〜500℃程度であるが、U字状流路内の加熱
部分では、700℃程度にまで昇温する。
2. Description of the Related Art A molten zinc bath is used for heating and holding molten zinc inside, and is used in a hot dip galvanizing device for immersing a steel plate or steel pipe in molten zinc and coating the surface with zinc. There is. As a means for heating molten zinc, combustion heating (indirect heating) from the outer surface of the tank was previously performed by a burner, but since the tank wall is made of steel plate, it is eroded by zinc and periodical tank replacement is required. In particular, the electromagnetic induction heating method has been introduced in recent years due to the fact that a large amount of iron is dissolved in molten zinc and the coating quality of plated coating products is poor. In this heating method, the molten zinc is directly heated in the induction magnetic field, and the molten zinc itself does not have to be in direct contact with the heating body due to heat generation, and the inorganic material with good heat insulation and high corrosion resistance is attached to the tank wall. Can be used, the heat loss can be reduced, and the plating quality is good. In this heating device, a U-shaped flow path is generally provided on the outer wall of the tank so as to project, and an induction coil is wound around a part of the U-shaped flow path, or an iron core around which the induction coil is wound is provided. , U
Molten zinc flows between the molten zinc tank and the molten zinc tank by natural convection due to heating in the character-shaped channel. Molten zinc is usually about 400 to 500 ° C., but in the heating portion in the U-shaped channel, the temperature rises to about 700 ° C.

【0003】このU字状流路の材質は、溶融亜鉛に対す
る耐食性が良く、誘導磁界の影響(磁界損失等)を受け
ない材質であればよく、従来は実開平3−6299号公
報に開示した黒鉛を主体とした無機材が使用されてい
た。なお、溶銅に対しては、特開昭49−106901
号公報に、MgOとSiC等を粘結剤で成型したものを
用いることが提案されているが、このような粘結剤を用
いた流し込み成形品では溶融亜鉛での実験の結果、Zn
の浸透がみられ、Zn漏れの危険があることを確認し
た。
The material of the U-shaped flow path may be any material as long as it has good corrosion resistance to molten zinc and is not affected by the induced magnetic field (magnetic field loss, etc.), and is conventionally disclosed in Japanese Utility Model Publication No. 3-6299. An inorganic material mainly composed of graphite was used. For molten copper, Japanese Patent Laid-Open No. 49-106901
In the publication, it is proposed to use a product obtained by molding MgO and SiC with a binder. However, in a cast product using such a binder, as a result of an experiment with molten zinc,
It was confirmed that there was a risk of Zn leakage.

【0004】溶融亜鉛槽の壁面には、このような粘結剤
を用いた流し込み成形品が使用されているが、この場合
は浸透Znが壁面中で外面よりの冷却により凝固し、Z
n漏れには至らないが、誘導加熱部位では浸透Znが凝
固せず流出となる。
On the wall surface of the molten zinc tank, a cast product using such a binder is used. In this case, the permeated Zn solidifies in the wall surface by cooling from the outer surface, and Z
Although leakage does not occur, the permeated Zn does not solidify at the induction heating site and flows out.

【0005】このため、先に開示したような黒鉛を主体
とした無機材を使用してU字状流路を形成していたが、
黒鉛は強度的に弱く、更に導電性がある(その他の無機
剤等を混合するため抵抗は大きくなるが)ため、誘導電
流が発生し自己発熱の可能性もあり、混合が不均一の場
合には局部偏熱となり、熱応力に起因する割損事故等が
しばしば発生する。一方、溶融亜鉛のぬれ性及び浸透性
等に優れたセラミックス焼成品を加熱体保護壁として使
用することが、特開平3−125898号公報に開示さ
れている。しかし、このようなセラミックス焼成品は、
高圧力下での焼成が必要であることより、金型成形とな
り複雑な形状、特にU字状等の形状品は一体で製造する
ことが困難なため、その形状を円筒状の単純形状とし、
且つ底部等の接続部の漏洩を常時監視する必要がある。
なお、誘導加熱の特性より、磁界の中に被加熱物がある
方が加熱効率が良いため、上部よりの浸漬式加熱は一般
の溶融槽には採用されていない。
For this reason, the U-shaped flow path has been formed by using the inorganic material mainly composed of graphite as disclosed above.
Since graphite is weak in strength and conductive (although resistance increases due to mixing with other inorganic agents, etc.), an induced current may be generated and self-heating may occur. Causes local unbalanced heat, which often causes breakage accidents and the like due to thermal stress. On the other hand, use of a fired ceramic article having excellent wettability and permeability of molten zinc as a heating body protective wall is disclosed in Japanese Patent Laid-Open No. 125898/1993. However, such a ceramic fired product
Since baking under high pressure is necessary, it becomes difficult to manufacture a complicated shape, especially a U-shaped product with a mold, so that the shape should be a cylindrical simple shape.
In addition, it is necessary to constantly monitor the leakage of the connecting portion such as the bottom.
Since the heating efficiency is better when the object to be heated is in the magnetic field due to the characteristic of induction heating, the immersion heating from the upper part is not adopted in a general melting tank.

【0006】U字状にする理由は、炉外に加熱装置を配
置できコイル等の冷却が容易となるためであり、更に、
加熱に伴う自然流体しやすいU字型(流入部と流出部が
それぞれ槽内に開口している形状であり、多数の加熱装
置を連設する場合は、隣接流入部を共有したW字型でも
よい)とし、槽への取付は、槽内への開口部を少々上と
した傾斜とする。
The reason for forming the U-shape is that a heating device can be arranged outside the furnace to facilitate cooling of the coil and the like.
U-shaped that allows natural fluid to easily accompany heating (inlet and outlet are each open in the tank, and when a number of heating devices are connected in series, even a W-shaped inlet that shares an adjacent inlet) Good), and the mounting on the tank should be done with a slight upward slope to the inside of the tank.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、従来の
このU字状流路では、次のような問題点があった。運
転中のタップ切替による電力差から温度変化をたえず受
ける。誘導加熱効率の関係より、誘導コイルと被加熱
物の距離を小さくしたいため、十分な厚みを確保できな
い。高温度のZnによる侵食がある。流路の内外面
での温度勾配が大きく、熱膨張に起因するマイクロクラ
ックが発生して亜鉛が侵入し、結果的に2次電流のロス
になり、又侵入した亜鉛が発熱するため、誘導加熱装置
の昇温化につながる。又、クラック成長による漏れや破
損は、検知する方法がなく(設置空間及び強磁界のた
め)操業上も取り替え計画が立てられない状態であっ
た。更に装置自体も脆弱な黒鉛等を使用した場合、U字
管の外周囲を耐火モルタル等を流し込み固化する必要が
あり(強度的な補強)、誘導加熱効率低下、及び施工が
煩雑となる問題があった。よって、このような欠点のな
い加熱装置、即ち長寿命で高強度の対流流路が要望され
ていた。
However, the conventional U-shaped channel has the following problems. It constantly receives temperature changes due to the power difference caused by tap switching during operation. Since it is desired to reduce the distance between the induction coil and the object to be heated because of the induction heating efficiency, a sufficient thickness cannot be secured. There is erosion due to high temperature Zn. There is a large temperature gradient on the inner and outer surfaces of the flow path, microcracks are generated due to thermal expansion, and zinc invades, resulting in a loss of secondary current, and the invading zinc generates heat. This will lead to an increase in the temperature of the device. In addition, there was no way to detect leakage or damage due to crack growth (due to the installation space and strong magnetic field), and it was impossible to make a replacement plan during operation. Further, when the apparatus itself uses fragile graphite or the like, it is necessary to pour the refractory mortar or the like into the outer periphery of the U-shaped tube to solidify it (strength reinforcement), and there is a problem that induction heating efficiency decreases and construction becomes complicated. there were. Therefore, there has been a demand for a heating device without such a defect, that is, a convection channel having a long life and high strength.

【0008】[0008]

【課題を解決するための手段】以上のような現状に鑑
み、本発明者等は鋭意実験研究の結果本発明加熱装置を
完成させたものであり、その特徴とするところは、溶融
亜鉛槽に設ける誘導加熱方式による加熱装置であって、
誘導磁界内を流れる溶融亜鉛対流流路をチタン酸アルミ
で構成した点にある。
In view of the above circumstances, the inventors of the present invention have completed the heating device of the present invention as a result of diligent experimental research. A heating device provided by an induction heating method,
The point is that the molten zinc convection flow channel that flows in the induction magnetic field is made of aluminum titanate.

【0009】ここで、対流流路とは、溶融亜鉛が加熱の
ために通過する管をいい、溶融亜鉛槽に対して、通常複
数設けられているものである。本発明は、この流路をチ
タン酸アルミで構成した点にあり、形状やサイズは特に
限定はしない。本発明では、チタン酸アルミ製U字管に
することにより、亜鉛による侵食や破壊がなく強度もあ
る為、バックアップのモルタルが不要となる。又、取り
替え作業も、急熱急冷に強いため本体槽へ接続した後、
速やかに溶融亜鉛を充填することができる。
Here, the convection flow passage means a pipe through which molten zinc passes for heating, and a plurality of convection passages are usually provided in a molten zinc bath. The present invention lies in the point that this flow path is made of aluminum titanate, and the shape and size are not particularly limited. In the present invention, the U-shaped tube made of aluminum titanate eliminates the need for mortar for backup because it has no corrosion or destruction by zinc and has strength. Also, since replacement work is resistant to rapid heating and cooling, after connecting to the main tank,
Molten zinc can be quickly filled.

【0010】チタン酸アルミとは、二酸化チタンと酸化
アルミニウムの粉体を混合し、高温で焼結させたものを
いう。二酸化チタンと酸化アルミとの混合比や、製法は
特別のものである必要はなく、通常のものでよい。チタ
ン酸アルミは、この焼成時に比較的低温の圧力で成形可
能なため、従来のファインセラミックス等のような、金
型を用いる必要はなく、石膏等による中子が使用でき、
U字状の複雑な形状でも成形可能である。
The aluminum titanate is obtained by mixing powders of titanium dioxide and aluminum oxide and sintering them at a high temperature. The mixing ratio of titanium dioxide and aluminum oxide and the manufacturing method do not need to be special and may be ordinary ones. Since aluminum titanate can be molded at a relatively low temperature during this firing, it is not necessary to use a mold like conventional fine ceramics, and a core made of gypsum or the like can be used.
It is possible to mold even a complicated U-shaped shape.

【0011】[0011]

【実施例】以下図面に示す実施例に基づき、本発明をよ
り詳細に説明する。図1は、本発明加熱装置1の概略を
示す斜視図である。コイル2を、鉄芯3を介して、対流
流路4近傍に設ける。対流流路4は冷却のための水冷ジ
ャケット5を有し、フランジ6によって溶融亜鉛槽に取
付けられている。これ自体は従来の加熱装置と同様であ
る。コイル2からの電磁誘導により、対流流路中の亜鉛
に電流が流れ、ジュール熱が発生し亜鉛が加熱される。
勿論、焼結物である流路自体は伝導性がないため加熱さ
れない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in more detail based on the embodiments shown in the drawings. FIG. 1 is a perspective view showing an outline of a heating device 1 of the present invention. The coil 2 is provided in the vicinity of the convection flow path 4 via the iron core 3. The convection channel 4 has a water cooling jacket 5 for cooling and is attached to the molten zinc bath by a flange 6. This itself is similar to the conventional heating device. The electromagnetic induction from the coil 2 causes a current to flow in the zinc in the convection flow path to generate Joule heat and heat the zinc.
Of course, the flow path itself, which is a sintered product, is not conductive and is not heated.

【0012】実施例1 誘導コイル内に有底円筒状の表1に示す材質により実験
用ルツボを製作し、内部に亜鉛粉末を充填後、700℃
まで昇温溶融し、一定時間保持後亜鉛を除去し内面目視
観察した。Aは本発明実施例、B、C、D、Eはそれぞ
れ比較例である。次に、同様の手順により700℃まで
昇熱溶融後、450℃まで自然放冷し、再び700℃ま
で昇熱を繰り返し、24時間耐久試験を行なった。ま
た、試験用内筒の上部に、同材質の内筒を接続し、接続
強度の確認も行なった。この結果を表2に示す。
Example 1 A crucible for experiments was manufactured from the material shown in Table 1 having a cylindrical shape with a bottom inside an induction coil. After filling the inside with zinc powder, 700 ° C.
After heating and melting until the temperature was maintained for a certain period of time, zinc was removed and the inner surface was visually observed. A is an example of the present invention, and B, C, D and E are comparative examples. Next, after heating and melting to 700 ° C. by the same procedure, the temperature was naturally cooled to 450 ° C., and the temperature was raised to 700 ° C. again, and a 24-hour durability test was performed. Further, an inner cylinder of the same material was connected to the upper part of the test inner cylinder, and the connection strength was also checked. The results are shown in Table 2.

【表1】 [Table 1]

【表2】 [Table 2]

【0013】表2において、昇熱試験での○は異常な
し、×は亀裂発生を示す。耐久試験では○は異常なし、
×は亀裂発生、△は組織内に亜鉛が侵入していることを
示す。また、接続強度では、○は異常なし、△は接続強
度の劣化あり、×は接続強度がほとんどなく亜鉛漏れが
発生すると考えられる状態を示す。
In Table 2, ◯ in the heat-up test indicates no abnormality, and X indicates crack generation. In the durability test, ○ indicates no abnormality,
X indicates cracking, and Δ indicates that zinc penetrates into the structure. Regarding the connection strength, ◯ indicates that there is no abnormality, Δ indicates that the connection strength has deteriorated, and x indicates that there is almost no connection strength and zinc leakage may occur.

【0014】BとCは、ファインセラミックス製であ
り、良好な結果であったが接続部の加熱後の接着強度は
まったくなかった。なお、本願のチタン酸アルミは、接
着剤強度はまったくなかったが、接続部の面を機械加工
で仕上げたため、機械的な結合は保たれていた。また、
Dは従来から使用しているものであるが、急熱(試験装
置は容量が小さいため実機以上に温度変化が急激とな
る)により亀裂が発生した。なお、Eは比較確認のた
め、槽内壁面に用いられているキャスタブル(不定形耐
火材)であるが、耐久試験後の断面部観察結果、内部へ
の亜鉛侵入が認められた。この試験品と別の試験片(矩
形断面)での急熱後水冷試験では、Eのみ割損し、A〜
Dは異常がなかった。
B and C were made of fine ceramics and had good results, but there was no adhesive strength after heating of the connection part. The aluminum titanate of the present application had no adhesive strength at all, but mechanical bonding was maintained because the surface of the connecting portion was machined. Also,
Although D is used conventionally, a crack was generated due to rapid heat (the test device has a small capacity, so the temperature changes more rapidly than the actual device). In addition, E is a castable (unshaped refractory material) used for the inner wall surface of the tank for the purpose of comparison and confirmation, but as a result of observing the cross-section after the durability test, zinc intrusion was recognized. In a water cooling test after rapid heating with a test piece (rectangular cross section) different from this test product, only E was broken and A to
D was normal.

【0015】実施例2 薄板鋼板用溶融亜鉛メッキ設備のインダクター加熱装置
に本発明のチタン酸アルミ製U字管を取付け、耐久性を
試験した。設備仕様は、亜鉛量250トン、生産量35
T/Hrの溶融亜鉛槽で、300Kwの加熱能力のインダ
クター内亜鉛流路(U字管)であり、成分は先の実施例
1のAと同様のもので、内径100mm、厚み35mmの管
路を形成した。実験は、約3ヶ月間実機使用後、詳細点
検を行なったが、損傷等の異常は全くみられなかった。
なお、比較のために、同時に取り替えた黒鉛製のU字管
が3ヶ月で破損した。
Example 2 A U-shaped tube made of the aluminum titanate of the present invention was attached to an inductor heating device of a hot dip galvanizing facility for thin steel sheets, and durability was tested. The equipment specifications are 250 tons of zinc and 35 of production.
A T / Hr molten zinc bath, which is a zinc flow path (U-shaped tube) in an inductor with a heating capacity of 300 Kw, and the components are the same as those in A of Example 1 above, and a pipeline with an inner diameter of 100 mm and a thickness of 35 mm. Formed. In the experiment, after using the actual machine for about 3 months, detailed inspection was conducted, but no abnormality such as damage was found at all.
For comparison, the graphite U-shaped tube, which was replaced at the same time, was damaged in 3 months.

【0016】[0016]

【発明の効果】以上詳細に説明した本発明によると、次
のような大きな利点がある。 耐熱衝撃に優れており、急激な温度変化でもクラッ
クの発生がほとんどない。このため、クラックに起因す
る各種トラブルの発生がない。 黒鉛に比べて、強度が高く、耐熱性もあることによ
り、管路壁面厚みを薄くでき、誘導加熱効率が良くな
る。また、補強用キャスタブルが不要となりU字管路と
コイルとの組立作業が容易となる。 黒鉛のような、大気中での酸化損傷がないため、溶
融開始時の雰囲気調整が不要となり、作業が簡単とな
る。 寿命が長くなり、取り替えによる時間ロスが削減で
きる。
The present invention described in detail above has the following great advantages. It has excellent thermal shock resistance and almost no cracks even when the temperature changes suddenly. Therefore, various troubles caused by cracks do not occur. Since it has higher strength and heat resistance than graphite, the wall thickness of the conduit can be reduced, and the induction heating efficiency can be improved. Further, no castable reinforcement is required, and the work of assembling the U-shaped conduit and the coil is facilitated. Since there is no oxidative damage such as graphite in the atmosphere, it is not necessary to adjust the atmosphere at the start of melting, which simplifies the work. The life is extended and the time loss due to replacement can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明加熱装置の概略斜視図である。FIG. 1 is a schematic perspective view of a heating device of the present invention.

【符号の説明】[Explanation of symbols]

1 誘導加熱装置 2 コイル 3 鉄芯 4 対流流路 5 水冷ジャケット 6 フランジ 1 Induction heating device 2 Coil 3 Iron core 4 Convection flow path 5 Water cooling jacket 6 Flange

───────────────────────────────────────────────────── フロントページの続き (72)発明者 原 利弘 大阪市中央区北浜4丁目5番33号 住友金 属工業株式会社内 (72)発明者 窪田 淳之 大阪市中央区北浜4丁目5番33号 住友金 属工業株式会社内 (72)発明者 加山 誠規 大阪市中央区北浜4丁目5番33号 住友金 属工業株式会社内 (72)発明者 井前 憲司 大阪府高槻市富田町1丁目7番12号 井前 工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Toshihiro Hara 4-53 Kitahama, Chuo-ku, Osaka City Sumitomo Metal Industries, Ltd. (72) Inventor Atsushi Kubota 4-53 Kitahama, Chuo-ku, Osaka Sumitomo Metal Industries Co., Ltd. (72) Inventor Seiki Kayama 4-53-3 Kitahama, Chuo-ku, Osaka City Sumitomo Metal Industries Co., Ltd. (72) Inventor Kenji Imae 1-7 Tomita-cho, Takatsuki-shi, Osaka Prefecture No. 12 Inmae Industrial Co., Ltd.

Claims (1)

【整理番号】 P92020302 【特許請求の範囲】[Reference number] P92020302 [Claims] 【請求項1】 溶融亜鉛槽に設ける誘電加熱方式による
加熱装置であって、誘導磁界内を流れる溶融亜鉛対流流
路をチタン酸アルミで形成したことを特徴とする溶融亜
鉛槽の加熱装置。
1. A heating device for a molten zinc tank, wherein the heating device is provided in a molten zinc tank by a dielectric heating method, and a convection channel of molten zinc flowing in an induction magnetic field is formed of aluminum titanate.
JP4784592A 1992-02-03 1992-02-03 Heater of molten zinc vessel Pending JPH05212266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4784592A JPH05212266A (en) 1992-02-03 1992-02-03 Heater of molten zinc vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4784592A JPH05212266A (en) 1992-02-03 1992-02-03 Heater of molten zinc vessel

Publications (1)

Publication Number Publication Date
JPH05212266A true JPH05212266A (en) 1993-08-24

Family

ID=12786709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4784592A Pending JPH05212266A (en) 1992-02-03 1992-02-03 Heater of molten zinc vessel

Country Status (1)

Country Link
JP (1) JPH05212266A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02258670A (en) * 1989-03-31 1990-10-19 Kurosaki Refract Co Ltd Low temperature expandable ceramics

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02258670A (en) * 1989-03-31 1990-10-19 Kurosaki Refract Co Ltd Low temperature expandable ceramics

Similar Documents

Publication Publication Date Title
US8735783B2 (en) Electric induction heating and stirring of an electrically conductive material in a containment vessel
RU2259529C2 (en) Cooling device
CN106862534A (en) One kind manufacture metallurgical binding ply-metal Processes and apparatus
CA1076629A (en) Furnace wall structure capable of tolerating high heat load for use in electric arc furnace
EP2380680A1 (en) Continuous casting method and nozzle heating device
CN112210676A (en) Electromagnetic induction heating composite crucible
KR101277112B1 (en) Cooling element and method for manufacturing the same
EP1466021B1 (en) Cooling plate for a metallurgical furnace and method for manufacturing such a cooling plate
JPS60187459A (en) Induction heating ladle
JPH0813111A (en) Hot dip galvanizing equipment
US5533258A (en) Process for the manufacturing of a cooling unit
JPH0365847B2 (en)
EA003117B1 (en) Casting mould for manufacturing a cooling element and cooling element made in said mould
US3350494A (en) Induction furnace
JP2003126945A (en) Device for supplying molten steel for continuous casting and method for continuous casting using the same
JPH05212266A (en) Heater of molten zinc vessel
KR102208382B1 (en) Channel inductor
JP3150143B2 (en) Induction heating crucible
JPH0741922A (en) Zinc heater of molten zinc bath
JP4764008B2 (en) COOLING ELEMENT AND MANUFACTURING METHOD THEREOF
RU2181777C2 (en) Method for making and heat treatment of parts of magnetically soft steels of magnetic systems of electric small-thrust jet propellers
JPH10310856A (en) Heating device of molten metal vessel
US11898251B2 (en) Snout for use in a hot dip coating line
SU1747543A1 (en) Crucible for electrolytic boriding
JPS63168258A (en) Channel refractory for intermediate channel type induction heating tundish