JPH05211880A - Production of optically active compound by enzymatic technique - Google Patents

Production of optically active compound by enzymatic technique

Info

Publication number
JPH05211880A
JPH05211880A JP1700792A JP1700792A JPH05211880A JP H05211880 A JPH05211880 A JP H05211880A JP 1700792 A JP1700792 A JP 1700792A JP 1700792 A JP1700792 A JP 1700792A JP H05211880 A JPH05211880 A JP H05211880A
Authority
JP
Japan
Prior art keywords
general formula
optically active
compound represented
group
enzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1700792A
Other languages
Japanese (ja)
Inventor
Takuma Miki
卓磨 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOYAKU BIO TECHNOL KAIHATSU GIJUTSU KENKYU KUMIAI
Original Assignee
NOYAKU BIO TECHNOL KAIHATSU GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOYAKU BIO TECHNOL KAIHATSU GIJUTSU KENKYU KUMIAI filed Critical NOYAKU BIO TECHNOL KAIHATSU GIJUTSU KENKYU KUMIAI
Priority to JP1700792A priority Critical patent/JPH05211880A/en
Publication of JPH05211880A publication Critical patent/JPH05211880A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To obtain an optically active compound useful as an intermediate for synthesizing medicines, pesticides, etc., by asymmetrically reducing the carbonyl group of an isonicotinic acid anilide derivative using a specific enzyme. CONSTITUTION:An enzyme obtained from microorganisms belonging to Pseudoplea having ability to synthesize a compound of formula II (A and A' are each H or OH; X is halogen or lower alkyl; R is phenyl or lower alkyl; (m) is 0-3) by asymmetrically reducing the carbonyl group of an isonicotinic acid anilide derivative of formula I is brought into contact with the compound of the formula I to produce the compound of the formula II, which is then collected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】本発明は、一般式(I)The present invention has the general formula (I)

【化6】 (式中、Xは同一又は異なってハロゲン原子又は低級ア
ルキル基を、Rはフェニル基又は低級アルキル基を、m
は0から3の整数を示す。)で示されるイソニコチン酸
アニリド誘導体のカルボニル基を不斉的に還元して一般
式(II)
[Chemical 6] (In the formula, X is the same or different and is a halogen atom or a lower alkyl group; R is a phenyl group or a lower alkyl group;
Represents an integer of 0 to 3. ) Asymmetrically reduces the carbonyl group of the isonicotinic acid anilide derivative to give the general formula (II)

【化7】 (式中、AおよびA’は互いに異なって水素原子または
水酸基を、X,R及びmは前記と同一の意味を示す)で
示される化合物を合成する能力を有すシュードプレア属
に属する微生物から調製した酵素を一般式(I)で示さ
れる化合物に接触させて一般式(II)で示される化合物
に変換し、次いでこの一般式(II)で示される化合物を
採取することを特徴とする一般式(II)で示される光学
活性化合物の製造方法に関する。
[Chemical 7] (In the formula, A and A ′ are different from each other to represent a hydrogen atom or a hydroxyl group, and X, R and m have the same meanings as described above) From a microorganism belonging to the genus Pseudoprea having the ability to synthesize The prepared enzyme is contacted with the compound represented by the general formula (I) to convert it into the compound represented by the general formula (II), and then the compound represented by the general formula (II) is collected. The present invention relates to a method for producing an optically active compound represented by formula (II).

【0002】また、本発明は一般式(III)The present invention also has the general formula (III)

【化8】 (式中、X’は同一又は異なってハロゲン原子、水酸
基、アミノ基、低級アルキル基又はニトロ基を、R’は
フェニル基、ハロゲン置換フェニル基、低級アルキル
基、またはシクロプロパン基を、nは0から3の整数を
示し、
[Chemical 8] (In the formula, X ′ is the same or different and is a halogen atom, a hydroxyl group, an amino group, a lower alkyl group or a nitro group, R ′ is a phenyl group, a halogen-substituted phenyl group, a lower alkyl group or a cyclopropane group, and n is Indicates an integer from 0 to 3,

【化9】 と基R’との組合せは、一般式(III)の化合物を還元
したときに、O=<の炭素原子が不斉炭素となる組合せ
に限るものとする。)で示されるベンゾフェノン誘導体
のカルボニル基を不斉的に還元して一般式(IV)
[Chemical 9] And the group R ′ are limited to those in which the carbon atom of O═ <is asymmetric carbon when the compound of the general formula (III) is reduced. ) Is asymmetrically reduced to the carbonyl group of the benzophenone derivative represented by the general formula (IV)

【化10】 (式中、AおよびA’は互いに異なって水素原子または
水酸基を、X’,R’及びnは前記と同一の意味を示
す。)で示されるベンゾヒドロール誘導体を合成する能
力を有すシュードプレア属に属する微生物から調製した
酵素を一般式(III)で示される化合物に接触させて一
般式(IV)で示される化合物に変換し、次いでこの一般
式(IV)で示される化合物を採取することを特徴とする
一般式(IV)で示される光学活性化合物の製造方法に関
する。
[Chemical 10] (In the formula, A and A'are different from each other to represent a hydrogen atom or a hydroxyl group, and X ', R'and n have the same meanings as described above.) Pseudo having the ability to synthesize a benzohydrol derivative An enzyme prepared from a microorganism belonging to the genus Pleia is contacted with a compound represented by the general formula (III) to convert it into a compound represented by the general formula (IV), and then the compound represented by the general formula (IV) is collected. And a method for producing an optically active compound represented by the general formula (IV).

【0003】更に、本発明は1−アセトナフトンのカル
ボニル基を不斉的に還元して光学活性α−ヒドロキシエ
チルナフタレンを合成する能力を有するシュードプレア
属に属する微生物から調製した酵素を1−アセトナフト
ンに接触させて、光学活性α−ヒドロキシエチルナフタ
レンに変換し、次いでこれを採取することを特徴とする
光学活性α−ヒドロキシエチルナフタレンの製造方法に
関するものである。
Furthermore, the present invention provides 1-acetonaphthone with an enzyme prepared from a microorganism belonging to the genus Pseudoprea having the ability to asymmetrically reduce the carbonyl group of 1-acetonaphthone to synthesize optically active α-hydroxyethylnaphthalene. The present invention relates to a method for producing optically active α-hydroxyethylnaphthalene, which comprises contacting to convert to optically active α-hydroxyethylnaphthalene, and then collecting this.

【0004】一般式(V)General formula (V)

【化11】 (式中、Xは同一又は異なってハロゲン原子又は低級ア
ルキル基を、Rはフェニル基又は低級アルキル基を、m
は0から3の整数を示す。)で示される化合物は、優れ
た植物生長調節作用を示し、殊に一般式(II)で示され
る光学活性体は、植物生長調節剤とする際、活性本体と
して利用され得る有用な物質である。
[Chemical 11] (In the formula, X is the same or different and is a halogen atom or a lower alkyl group; R is a phenyl group or a lower alkyl group;
Represents an integer of 0 to 3. The compound represented by the formula () shows an excellent plant growth regulating action, and in particular, the optically active substance represented by the general formula (II) is a useful substance which can be used as an active substance when used as a plant growth regulator. ..

【0005】また、一般式(IV)で示される光学活性ベ
ンゾヒドロール誘導体、及び光学活性α−ヒドロキシエ
チルナフタレンは光学活性を必要とする医薬、農薬(例
えば植物生長調節剤)等の合成中間体として利用され得
る極めて有用な物質である。
Further, the optically active benzohydrol derivative represented by the general formula (IV) and the optically active α-hydroxyethylnaphthalene are synthetic intermediates for pharmaceuticals and agricultural chemicals (eg plant growth regulators) which require optical activity. It is an extremely useful substance that can be used as

【0006】[0006]

【従来の技術】これまで、一般式(II),(IV)で示さ
れる光学活性化合物、あるいは光学活性α−ヒドロキシ
エチルナフタレンの製造法としては、対応するラセミ化
合物から、L−酒石酸等を用いて光学分割する方法が行
われていた。
2. Description of the Related Art Hitherto, as a method for producing an optically active compound represented by the general formula (II) or (IV) or an optically active α-hydroxyethylnaphthalene, L-tartaric acid or the like was used from a corresponding racemic compound. The method of optical division was performed.

【0007】一般式(II)で示される光学活性化合物及
びそれらのラセミ体のうち、例えば、4’−クロロ−
2’−(α−ヒドロキトベンジル)イソニコチン酸アニ
リド(以下イナベンフィドと略す。)は、優れた植物生
長調節作用を示し、殊にその光学活性S体は、植物生長
調節剤とする際、活性本体として利用され得る有用な物
質である。(特開平2−28156号公報参照)また、
一般式(IV)で示される光学活性化合物及びそれらのラ
セミ体のうち、例えば、2−アミノ−5−クロロベンゾ
ヒドロールはイナベンフィドの合成中間体として利用す
ることのできる有用な物質である。
Among the optically active compounds represented by the general formula (II) and their racemates, for example, 4'-chloro-
2 ′-(α-hydrochitobenzyl) isonicotinic acid anilide (hereinafter abbreviated as inabenfide) exhibits an excellent plant growth regulating action, and in particular, its optically active S-form is active when used as a plant growth regulator. It is a useful substance that can be used as the main body. (See JP-A-2-28156)
Among the optically active compounds represented by the general formula (IV) and their racemates, for example, 2-amino-5-chlorobenzohydrol is a useful substance that can be used as a synthetic intermediate for inabenfide.

【0008】これまで、光学活性イナベンフィドの製造
法としては、ラセミ体の2−アミノ−5−クロロベンゾ
ヒドロールからL−酒石酸を用いて、光学活性2−アミ
ノ−5−クロロベンゾヒドロールを得た後、これとイソ
ニコチン酸とを反応させる方法が行われていたが、酵素
を用いた不斉合成法により光学活性2−アミノ−5−ク
ロロベンゾヒドロールを製造する方法は固より、光学活
性イナベンフィドを酵素によって製造する方法も一般に
知られていない。もちろん、上記両化合物以外の、一般
式(II),(IV)で示される光学活性化合物、あるいは
光学活性α−ヒドロキシエチルナフタレンの製造法とし
て、酵素を用いた不斉的合成法により、これらの化合物
を得る製造方法は知られていない。
Heretofore, as a method for producing optically active inabenfide, optically active 2-amino-5-chlorobenzohydrol was obtained from racemic 2-amino-5-chlorobenzohydrol using L-tartaric acid. After that, a method of reacting this with isonicotinic acid was performed, but the method for producing optically active 2-amino-5-chlorobenzohydrol by an asymmetric synthesis method using an enzyme is more The method for enzymatically producing active inabenfide is not generally known. Of course, other than the above compounds, as a method for producing an optically active compound represented by the general formulas (II) and (IV) or an optically active α-hydroxyethylnaphthalene, these compounds are prepared by an asymmetric synthesis method using an enzyme. The production method for obtaining the compound is not known.

【0009】[0009]

【発明が解決しようとする課題】一般式(II),(IV)
で示される化合物、あるいは光学活性α−ヒドロキシエ
チルナフタレンを得るために、酒石酸等を用いる従来の
光学分割法を用いると、光学純度や収率がいずれも低
く、また工程数も多く、さらに再結晶操作を2回行わな
ければならない等の煩雑な操作が必要となるため、設
備、コスト面からみても工業的に不利であった。
[Problems to be Solved by the Invention] General formulas (II) and (IV)
When a conventional optical resolution method using tartaric acid or the like is used to obtain the compound represented by, or optically active α-hydroxyethylnaphthalene, both the optical purity and the yield are low, and the number of steps is large, and further recrystallization is performed. Since a complicated operation such as having to perform the operation twice is required, it is industrially disadvantageous in terms of equipment and cost.

【0010】[0010]

【課題を解決するための手段】本発明者等は、これらの
事情に鑑み、植物生長調節剤として特に優れた光学活性
イナベンフィドを含む一般式(II)で示される化合物、
光学活性イナベンフィドの合成中間体として利用できる
光学活性2−アミノ−5−クロロベンゾヒドロールを含
む一般式(IV)で示される化合物、あるいは光学活性α
−ヒドロキシエチルナフタレンを工業的に優れた方法で
得るべく鋭意研究を重ねた結果、一般式(I)で示され
る化合物のカルボニル基を不斉的に還元して、一般式
(II)で示される化合物を合成する能力を有するシュー
ドプレア(Pseudoplea)属に属する微生物か
ら調製した酵素を、一般式(I)で示される化合物に接
触させることにより、高光学純度、短工程で一般式(I
I)で示される光学活性化合物を得る方法を見出した。
また、本発明者等は、一般式(III)で示される化合物
を不斉的に還元して一般式(IV)で示される化合物を合
成する能力を有するシュードプレア(Pseudopl
ea)属に属する微生物から調製した酵素を、一般式
(III)で示される化合物に接触させることにより、高
光学純度、短工程で一般式(IV)で示される光学活性化
合物を得る方法を見出した。更に、本発明者等は、1−
アセトナフトンのカルボニル基を不斉的に還元して、光
学活性α−ヒドロキシエチルナフタレンを合成する能力
を有するシュードプレア(Pseudoplea)属に
属する微生物から調製した酵素を、1−アセトナフトン
に接触させることにより、高光学純度、短工程で光学活
性α−ヒドロキシエチルナフタレンを得る方法を見出し
た。本発明はこれらの知見に基づいて完成されたもので
ある。
SUMMARY OF THE INVENTION In view of these circumstances, the present inventors have considered a compound represented by the general formula (II) containing an optically active inabenfide which is particularly excellent as a plant growth regulator,
A compound represented by the general formula (IV) containing an optically active 2-amino-5-chlorobenzohydrol that can be used as a synthetic intermediate for an optically active inabenfide, or an optically active α
As a result of earnest studies to obtain -hydroxyethylnaphthalene by an industrially excellent method, the carbonyl group of the compound represented by the general formula (I) is asymmetrically reduced to give the compound represented by the general formula (II). By contacting an enzyme prepared from a microorganism belonging to the genus Pseudoplea capable of synthesizing a compound with a compound represented by the general formula (I), the compound represented by the general formula (I
A method for obtaining an optically active compound represented by I) was found.
In addition, the present inventors have obtained a pseudopread (Pseudopl having the ability to asymmetrically reduce a compound represented by the general formula (III) to synthesize a compound represented by the general formula (IV).
ea) A method for obtaining an optically active compound represented by the general formula (IV) with high optical purity and a short process by contacting an enzyme prepared from a microorganism belonging to the genus ea) with a compound represented by the general formula (III) It was Furthermore, the present inventors
Asymmetrically reducing the carbonyl group of acetonaphthone, an enzyme prepared from a microorganism belonging to the genus Pseudoplea having the ability to synthesize optically active α-hydroxyethylnaphthalene, by contacting with 1-acetonaphthone, A method for obtaining optically active α-hydroxyethylnaphthalene with high optical purity and a short process has been found. The present invention has been completed based on these findings.

【0011】次に本発明の内容について説明する。Next, the content of the present invention will be described.

【0012】一般式(II)で示される化合物は公知の植
物生長調節剤であり、例えば特開昭58−4767号、
特開昭58−41869号、特開昭59−122402
号、又は特開昭59−122469号等に記載された方
法で得ることができる。
The compound represented by the general formula (II) is a known plant growth regulator, for example, JP-A-58-4767,
JP-A-58-41869, JP-A-59-122402
Or the method described in JP-A-59-122469 or the like.

【0013】本発明による一般式(II)で示される化合
物の製造に用いられる酵素は、一般式(I)で示される
化合物を不斉的に還元する能力を有するシュードプレア
(Pseudoplea)属に属する微生物由来の酵素
であり、これらの微生物のうち酵素調製にはPseud
oplea trifolii,IFO 6691から
調製した約5×104KDa、等電点が5.5から6.
0の酵素が特に好ましい。
The enzyme used in the production of the compound represented by the general formula (II) according to the present invention belongs to the genus Pseudoplea having the ability to asymmetrically reduce the compound represented by the general formula (I). It is an enzyme derived from microorganisms. Of these microorganisms, Pseud is used for enzyme preparation.
olea trifolii, about 5 × 10 4 KDa prepared from IFO 6691, isoelectric point 5.5 to 6.
0 enzymes are particularly preferred.

【0014】これらの酵素を調製するための微生物の培
養には、通常これらの微生物が資化しうる栄養源であれ
ば何でも使用しうる。例えばグルコース、スクロース、
フルクトース等の炭水化物、エタノール、グリセロール
等のアルコール類、パラフィン等の炭化水素、酢酸、プ
ロピオン酸等の有機酸、大豆油等の炭素源またはこれら
の混合物、酵母エキス、ペプトン、肉エキス、コーンス
チープリカー、硫安、アンモニア等の含窒素無機もしく
は有機栄養源、リン酸塩、マグネシウム、鉄、マンガ
ン、カリウム、等の無機栄養源およびビオチン、チアミ
ン等のビタミン類を適宜混合した通常の培地を用いるこ
とができる。培養方法としては、pHを6前後に調整し
た液体培地で好気的に、20から30℃、好ましくは2
7℃前後で3日間程度振とう培養する。微生物は3日ご
とに継代したものを用いるのが好ましい。
For culturing the microorganisms for preparing these enzymes, any nutrient source that can normally be utilized by these microorganisms can be used. For example glucose, sucrose,
Carbohydrates such as fructose, alcohols such as ethanol and glycerol, hydrocarbons such as paraffin, organic acids such as acetic acid and propionic acid, carbon sources such as soybean oil, or mixtures thereof, yeast extract, peptone, meat extract, corn steep liquor It is possible to use a normal medium in which nitrogen-containing inorganic or organic nutrient sources such as ammonium sulfate and ammonia, inorganic nutrient sources such as phosphate, magnesium, iron, manganese, potassium and vitamins such as biotin and thiamine are appropriately mixed. it can. As a culture method, a liquid medium having a pH adjusted to around 6 is aerobically aerated at 20 to 30 ° C., preferably 2
Culture with shaking at around 7 ° C for about 3 days. It is preferable to use a microorganism that has been passaged every 3 days.

【0015】酵素の調製は、この培養液を濾過し菌体を
超音波等で破砕した後、超遠心分離により得られた上澄
み液を硫安等による塩析やイオン交換クロマトグラフィ
ーで精製することにより行う。
The enzyme is prepared by filtering the culture solution, disrupting the cells with ultrasonic waves, and then purifying the supernatant obtained by ultracentrifugation by salting out with ammonium sulfate or by ion exchange chromatography. To do.

【0016】一般式(II)で示される光学活性化合物の
不斉合成反応は、酵素液をpHが6から8程度の緩衝液
に希釈し、一般式(I)で示される基質およびNADP
Hを補酵素として添加した後、20℃から60℃(イナ
ベンフィドの場合は30℃前後)で緩やかに一晩振とう
することにより進行する。
In the asymmetric synthesis reaction of the optically active compound represented by the general formula (II), the enzyme solution is diluted with a buffer solution having a pH of about 6 to 8 to prepare the substrate represented by the general formula (I) and NADP.
After H is added as a coenzyme, the process proceeds by gently shaking overnight at 20 ° C to 60 ° C (about 30 ° C in the case of inabenfide).

【0017】反応によって生成した一般式(II)で示さ
れる光学活性イソニコチン酸アニリド誘導体の採取は、
反応液を酢酸エチル、ジクロロメタン等の溶剤で抽出
し、シリカゲルクロマトグラフィーを行うことにより化
学的、光学的に高純度の目的化合物が得られる。
The optically active isonicotinic acid anilide derivative represented by the general formula (II) produced by the reaction is collected as follows.
The reaction solution is extracted with a solvent such as ethyl acetate and dichloromethane and subjected to silica gel chromatography to obtain a chemically and optically pure target compound.

【0018】また、得られた一般式(II)で示される化
合物の光学純度は光学異性体分割カラムを装着した高速
液体クロマトグラフィーにより決定することができる。
The optical purity of the obtained compound represented by the general formula (II) can be determined by high performance liquid chromatography equipped with an optical isomer resolution column.

【0019】一方、本発明による一般式(IV)で示され
る光学活性化合物の製造に用いられる酵素は、一般式
(III)で示される化合物のカルボニル基を不斉的に還
元する能力を有するシュードプレア(Pseudopl
ea)属に属する微生物から精製した酵素であり、とり
わけPseudoplea trifoliiから調製
した酵素が好ましい。この微生物は前記のように、IF
O 6691の番号で寄託されている。
On the other hand, the enzyme used in the production of the optically active compound represented by the general formula (IV) according to the present invention has a pseudo ability to asymmetrically reduce the carbonyl group of the compound represented by the general formula (III). Pleasure (Pseudopl
It is an enzyme purified from a microorganism belonging to genus ea), and an enzyme prepared from Pseudoplea trifolii is particularly preferable. This microorganism, as described above,
It has been deposited under the number O 6691.

【0020】Pseudoplea属の微生物の培養に
は、上記と同様の培養方法を用いることができる。
For culturing the microorganism of the genus Pseudoplea, the same culture method as described above can be used.

【0021】酵素の調製も上述した方法と同様にして行
うことができ、また、一般式(IV)で示される化合物の
不斉合成反応も上記の一般式(II)で示される化合物の
不斉合成反応の場合と全く同様にして行うことができ
る。
The enzyme can be prepared in the same manner as the above-mentioned method, and the asymmetric synthesis reaction of the compound represented by the general formula (IV) can also be carried out by the asymmetric synthesis reaction of the compound represented by the general formula (II). It can be carried out in exactly the same manner as in the case of the synthetic reaction.

【0022】反応によって生成した一般式(IV)で示さ
れる光学活性ベンゾヒドロール誘導体の採取は、反応液
を酢酸エチル、ジクロロメタン等の溶剤で抽出し、シリ
カゲルクロマトグラフィーを行うことにより化学的、光
学的に高純度の目的化合物が得られる。また、得られた
一般式(IV)で示されるベンゾヒドロール誘導体の光学
純度は光学異性体分割カラムを装着した高速液体クロマ
トグラフィーにより決定することができる。
The optically active benzohydrol derivative represented by the general formula (IV) produced by the reaction is collected by extracting the reaction solution with a solvent such as ethyl acetate or dichloromethane and performing silica gel chromatography to obtain the chemical and optical properties. A highly pure target compound is obtained. The optical purity of the obtained benzohydrol derivative represented by the general formula (IV) can be determined by high performance liquid chromatography equipped with an optical isomer resolution column.

【0023】また、本発明による光学活性α−ヒドロキ
シエチルナフタレンの製造に用いられる酵素は、1−ア
セトナフトンのカルボニル基を不斉的に還元する能力を
有するシュードプレア(Pseudoplea)属に属
する微生物から精製した酵素であり、とりわけPseu
doplea trifoliiから調製した酵素が好
ましい。この微生物は前記のように、IFO 6691
の番号で寄託されている。
The enzyme used for the production of the optically active α-hydroxyethylnaphthalene according to the present invention is purified from a microorganism belonging to the genus Pseudoplea having the ability to asymmetrically reduce the carbonyl group of 1-acetonaphthone. Enzymes, especially Pseu
Enzymes prepared from doplea trifolii are preferred. This microorganism is, as described above, IFO 6691.
Have been deposited.

【0024】Pseudoplea属の微生物の培養に
は、上記と同様の培養方法を用いることができる。
For culturing the microorganism of the genus Pseudoplea, the same culture method as described above can be used.

【0025】酵素の調製も上述した方法と同様にして行
うことができ、また、光学活性α−ヒドロキシエチルナ
フタレンの不斉合成反応も上記の一般式(II)示される
化合物の不斉合成反応の場合と全く同様にして行うこと
ができる。
The enzyme can be prepared in the same manner as described above, and the asymmetric synthesis reaction of optically active α-hydroxyethylnaphthalene can be performed by the asymmetric synthesis reaction of the compound represented by the general formula (II). It can be performed exactly as in the case.

【0026】反応によって生成した光学活性α−ヒドロ
キシエチルナフタレンの採取は、反応液を酢酸エチル、
ジクロロメタン等の溶剤で抽出し、シリカゲルクロマト
グラフィーを行うことにより化学的、光学的に高純度の
目的化合物が得られる。また、得られた光学活性α−ヒ
ドロキシエチルナフタレンの光学純度は光学異性体分割
カラムを装着した高速液体クロマトグラフィーにより決
定することができる。以下に、実施例を挙げて本発明を
さらに詳細に説明するが、本発明はこれらによって何ら
限定されるものではない。
To collect the optically active α-hydroxyethylnaphthalene produced by the reaction, the reaction solution was diluted with ethyl acetate,
By extracting with a solvent such as dichloromethane and performing silica gel chromatography, a chemically and optically pure target compound can be obtained. The optical purity of the obtained optically active α-hydroxyethylnaphthalene can be determined by high performance liquid chromatography equipped with an optical isomer resolution column. Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.

【0027】実施例1 蒸留水1L中にグルコース40g、ポリペプトン10
g、酵母エキス5g、KH2PO4 5g、MgSO4・7
2O 2gを加えた液体培地を100mlの三角フラ
スコに20mlづつ入れて滅菌した後、Pseudop
lea trifoliiを植菌し、27℃で3日毎に
継代培養を行った。次にこれを500mlの三角フラス
コに入れた200mlの上記培地25本に植菌して3日
間振とう培養した。培養は27℃、振とう回転数200
rpmの好気条件で行った。培養後、濾紙を用いて菌体
を集め、約1Lの100mMリン酸緩衝液(pH=7.
0)に懸濁して超音波破砕し、超遠心分離して上澄み液
を得た。これを70%飽和濃度の硫安で塩析し、塩析さ
れた酵素をDEAEイオン交換クロマトグラフィーによ
り精製して約100mlの酵素液を調製した。この酵素
液を900mLの100mMトリス緩衝液(pH=8.
0)に希釈し、ここに2gのNADPHと1gの4’−
クロロ−2’−ベンゾイルイソニコチン酸アニリドを添
加し、30℃で緩やかに一晩振とうして反応を行った。
次にこの反応液を酢酸エチルで抽出した後、溶媒を溜去
した。ダイセル社製CHIRALCEL−OGカラムを
装着した高速液体クロマトグラフィー(溶出溶媒=ヘキ
サン:エタノール{4:1}、流速=1.0ml/mi
n)によりイナベンフィドを分析すると、R体は10.
4分、S体は15.3分の保持時間に溶出し、また基質
である4’−クロロ−2’−ベンゾイルイソニコチン酸
アニリドは17.6分の保持時間に溶出した。この条件
の高速液体クロマトグラフィーにより上記反応物を分析
したところ、0.618gのイナベンフィドが得られ、
光学純度はS体が99%e.e.以上であった。
Example 1 Glucose 40 g and polypeptone 10 in 1 L of distilled water
g, yeast extract 5g, KH 2 PO 4 5g, MgSO 4 · 7
The liquid medium containing 2 g of H 2 O was put in a 100 ml Erlenmeyer flask in an amount of 20 ml and sterilized, and then Pseudop
Lea trifolii was inoculated and subcultured at 27 ° C. every 3 days. Next, this was inoculated into 25 of 200 ml of the above medium placed in a 500 ml Erlenmeyer flask and cultured with shaking for 3 days. Culture at 27 ° C, shaking speed 200
It was performed under aerobic conditions of rpm. After culturing, the cells were collected using a filter paper, and about 1 L of 100 mM phosphate buffer (pH = 7.
0), ultrasonically disrupted, and ultracentrifuged to obtain a supernatant. This was salted out with 70% saturated ammonium sulfate and the salted out enzyme was purified by DEAE ion exchange chromatography to prepare about 100 ml of enzyme solution. This enzyme solution was added to 900 mL of 100 mM Tris buffer (pH = 8.
0), where 2 g of NADPH and 1 g of 4'-
Chloro-2′-benzoylisonicotinic acid anilide was added, and the reaction was carried out by gently shaking at 30 ° C. overnight.
Next, this reaction solution was extracted with ethyl acetate, and then the solvent was distilled off. High performance liquid chromatography equipped with a Daicel CHIRALCEL-OG column (elution solvent = hexane: ethanol {4: 1}, flow rate = 1.0 ml / mi)
When the inabenfide was analyzed according to (n), the R-form was 10.
After 4 minutes, the S form was eluted at a retention time of 15.3 minutes, and the substrate 4'-chloro-2'-benzoylisonicotinic acid anilide was eluted at a retention time of 17.6 minutes. When the above reaction product was analyzed by high performance liquid chromatography under these conditions, 0.618 g of inabenfide was obtained,
The optical purity of the S form is 99% e. e. That was all.

【0028】実施例2 蒸留水1L中にグルコース40g、ポリペプトン10
g、酵母エキス5g、KH2PO4 5g、MgSO4
7H2O 2gを加えた液体培地を100mlの三角フ
ラスコに20mlづつ入れて滅菌した後、Pseudo
plea trifoliiを植菌し、27℃で3日毎
に継代培養を行った。次にこれを500mlの三角フラ
スコに入れた200mlの上記培地25本に植菌して3
日間振とう培養した。培養は27℃、振とう回転数20
0rpmの好気条件で行った。培養後、濾紙を用いて菌
体を集め、約1Lの100mMリン酸緩衝液(pH=
7.0)に懸濁して超音波破砕し、超遠心分離して上澄
み液を得た。これを70%飽和濃度の硫安で塩析し、塩
析された酵素をDEAEイオン交換クロマトグラフィー
により精製して約100mlの酵素液を調製した。
Example 2 Glucose 40 g and polypeptone 10 in 1 L of distilled water
g, yeast extract 5g, KH 2 PO 4 5g, MgSO 4 ·
Liquid medium containing 2 g of 7H 2 O was sterilized by putting 20 ml in a 100 ml Erlenmeyer flask and sterilizing it.
Pleia trifolii was inoculated and subcultured at 27 ° C. every 3 days. Then, this was inoculated into 25 of 200 ml of the above medium placed in a 500 ml Erlenmeyer flask, and 3
The cells were shake-cultured for one day. Culture at 27 ° C, shaking speed 20
It was performed under aerobic conditions of 0 rpm. After culturing, the bacterial cells were collected using a filter paper, and about 1 L of 100 mM phosphate buffer solution (pH =
It was suspended in 7.0), sonicated, and ultracentrifuged to obtain a supernatant. This was salted out with 70% saturated ammonium sulfate and the salted out enzyme was purified by DEAE ion exchange chromatography to prepare about 100 ml of enzyme solution.

【0029】この酵素液10mlを990mLの100
mMトリス緩衝液(pH=8.0)に希釈し、ここに2
00mgのNADPHと下記の化学式一覧表のNo.1
に示した化合物100mgを添加し、30℃で緩やかに
一晩振とうして反応を行った。次にこの反応液を酢酸エ
チルで抽出した後、溶媒を溜去した。得られた反応混合
物をシリカゲルクロマトグラフィーで分離することによ
り化学式一覧表のNo.2に示した化合物61.2mg
を得た。ダイセル社製CHIRALCEL−OGカラム
を装着した高速液体クロマトグラフィー(溶出溶媒=ヘ
キサン:エタノール{8:1}、流速=1.0ml/m
in)により別紙のNo.2に示した化合物を分析する
と、光学異性体が6.3分と7.3分の保持時間に溶出
した。この条件の高速液体クロマトグラフィーにより上
記反応物を分析したところ、7.3分に化学式一覧表の
No.2に示した化合物の光学活性体が検出され、光学
純度は99%e.e.以上であった。
10 ml of this enzyme solution was added to 990 ml of 100
Dilute in mM Tris buffer (pH = 8.0) and add 2
00 mg of NADPH and No. in the chemical formula list below. 1
100 mg of the compound shown in 1 was added, and the reaction was carried out by gently shaking at 30 ° C. overnight. Next, this reaction solution was extracted with ethyl acetate, and then the solvent was distilled off. The obtained reaction mixture was separated by silica gel chromatography to obtain No. 61.2 mg of the compound shown in 2
Got High performance liquid chromatography equipped with a Daicel CHIRALCEL-OG column (elution solvent = hexane: ethanol {8: 1}, flow rate = 1.0 ml / m).
No. in the attached sheet. When the compound shown in 2 was analyzed, the optical isomers were eluted at retention times of 6.3 minutes and 7.3 minutes. When the above reaction product was analyzed by high performance liquid chromatography under these conditions, No. 1 in the chemical formula list was found at 7.3 minutes. The optically active substance of the compound shown in 2 was detected, and the optical purity was 99% e. e. That was all.

【0030】実施例3 実施例1と同様にして調製した酵素液を900mLの1
00mMトリス緩衝液(pH=8.0)に希釈し、ここ
に2gのNADPHと1gの2−アミノ−5−クロロベ
ンゾフェノンを添加し、30℃で緩やかに一晩振とうし
て反応を行った。次にこの反応液を酢酸エチルで抽出し
た後、溶媒を溜去した。ダイセル社製CHIRALPA
C−OPカラムを装着した高速液体クロマトグラフィー
(溶出溶媒=ヘキサン:エタノール{10:1}、流速
=1.0ml/min)により2−アミノ−5−クロロ
ベンゾヒドロールを分析すると、R体は15.1分、S
体は13.7分の保持時間に溶出し、また基質である2
−アミノ−5−クロロベンゾフェノンは9.7分の保持
時間に溶出した。この条件の高速液体クロマトグラフィ
ーにより上記反応物を分析したところ、0.324gの
2−アミノ−5−クロロベンゾヒドロールが得られ、光
学純度はS体が99%e.e.以上であった。
Example 3 900 mL of the enzyme solution prepared in the same manner as in Example 1 was used.
It was diluted with 00 mM Tris buffer (pH = 8.0), 2 g of NADPH and 1 g of 2-amino-5-chlorobenzophenone were added thereto, and the reaction was carried out by gently shaking at 30 ° C. overnight. .. Next, this reaction solution was extracted with ethyl acetate, and then the solvent was distilled off. Daicel CHIRALPA
When 2-amino-5-chlorobenzohydrol was analyzed by high performance liquid chromatography equipped with a C-OP column (elution solvent = hexane: ethanol {10: 1}, flow rate = 1.0 ml / min), the R-form was found to be 15.1 minutes, S
The body elutes at a retention time of 13.7 minutes and is the substrate 2
-Amino-5-chlorobenzophenone eluted at a retention time of 9.7 minutes. When the above reaction product was analyzed by high performance liquid chromatography under these conditions, 0.324 g of 2-amino-5-chlorobenzohydrol was obtained, and the optical purity was 99% e. e. That was all.

【0031】実施例4 実施例2と同様にして調製した酵素液1mlを999m
Lの100mMトリス緩衝液(pH=8.0)に希釈
し、ここに200mgのNADPHと化学式一覧表のN
o.3に示した化合物100mgを添加し、30℃で緩
やかに一晩振とうして反応を行った。実施例2と同様に
反応液を抽出した後、シリカゲルクロマトグラフィーで
分離することにより化学式一覧表No.4に示した化合
物25.2mgを得た。ダイセル社製CHIRALCE
L−OGカラムを装着した高速液体クロマトグラフィー
(溶出溶媒=ヘキサン:エタノール{40:1}、流速
=1.0ml/min)により化学式一覧表No.4に
示した化合物を分析すると、光学異性体が20.9分と
22.2分の保持時間に溶出した。この条件の高速液体
クロマトグラフィーにより上記反応物を分析したとこ
ろ、22.2分に化学式一覧表No.4に示した化合物
の光学活性体が検出され、光学純度は99%e.e.以
上であった。
Example 4 1 ml of the enzyme solution prepared in the same manner as in Example 2 was 999 m
L in 100 mM Tris buffer (pH = 8.0) and diluted with 200 mg NADPH and N in the chemical formula table.
o. 100 mg of the compound shown in 3 was added, and the reaction was carried out by gently shaking at 30 ° C. overnight. After the reaction solution was extracted in the same manner as in Example 2, it was separated by silica gel chromatography to obtain the chemical formula no. 25.2 mg of the compound shown in 4 was obtained. Daicel CHIRALCE
Chemical formula list No. by high performance liquid chromatography equipped with an L-OG column (eluting solvent = hexane: ethanol {40: 1}, flow rate = 1.0 ml / min). When the compound shown in 4 was analyzed, the optical isomers were eluted at the retention times of 20.9 minutes and 22.2 minutes. When the above reaction product was analyzed by high performance liquid chromatography under these conditions, the chemical formula no. The optically active substance of the compound shown in 4 was detected, and the optical purity was 99% e. e. That was all.

【0032】実施例5 実施例2と同様にして調製した酵素液5mlを995m
Lの100mMトリス緩衝液(pH=8.0)に希釈
し、ここに200mgのNADPHと化学式一覧表のN
o.5に示した化合物100mgを添加し、30℃で緩
やかに一晩振とうして反応を行った。実施例2と同様に
反応液を抽出した後、シリカゲルクロマトグラフィーで
分離することにより化学式一覧表のNo.6に示した化
合物29.6mgが得られた。ダイセル社製CHIRA
LCEL−ODカラムを装着した高速液体クロマトグラ
フィー(溶出溶媒=ヘキサン:エタノール{4:1}、
流速=1.0ml/min)により化学式一覧表のN
o.6に示した化合物を分析すると、光学異性体が7.
8分と8.1分の保持時間に溶出した。この条件の高速
液体クロマトグラフィーにより上記で得た化合物を分析
したところ、7.8分に化学式一覧表のNo.6に示し
た化合物の光学活性体が検出され、光学純度は99%
e.e.以上であった。
Example 5 5 ml of the enzyme solution prepared in the same manner as in Example 2 was added to 995 m
L in 100 mM Tris buffer (pH = 8.0) and diluted with 200 mg NADPH and N in the chemical formula table.
o. 100 mg of the compound shown in 5 was added, and the reaction was carried out by gently shaking at 30 ° C. overnight. After the reaction solution was extracted in the same manner as in Example 2, it was separated by silica gel chromatography to obtain No. 1 in the chemical formula list. 29.6 mg of the compound shown in 6 was obtained. Daicel CHIRA
High performance liquid chromatography equipped with an LCEL-OD column (elution solvent = hexane: ethanol {4: 1},
Flow rate = 1.0 ml / min) N in the chemical formula list
o. When the compound shown in 6 was analyzed, the optical isomer was found to be 7.
Elution occurred at retention times of 8 minutes and 8.1 minutes. When the compound obtained above was analyzed by high performance liquid chromatography under these conditions, No. 1 in the chemical formula list was found at 7.8 minutes. The optically active substance of the compound shown in 6 was detected, and the optical purity was 99%.
e. e. That was all.

【0033】実施例6 実施例2と同様にして調製した酵素液10mlを990
mLの100mMトリス緩衝液(pH=8.0)に希釈
し、ここに200mgのNADPHと化学式一覧表のN
o.7に示した化合物100mgを添加し、30℃で緩
やかに一晩振とうして反応を行った。実施例2と同様に
反応液を抽出した後、シリカゲルクロマトグラフィーで
分離することにより化学式一覧表のNo.8に示した化
合物29.4mgが得られた。ダイセル社製CHIRA
LCEL−OGカラムを装着した高速液体クロマトグラ
フィー(溶出溶媒=ヘキサン:エタノール{10:
1}、流速=1.0ml/min)により化学式一覧表
のNo.6に示した化合物を分析すると、光学異性体が
8.7分と9.5分の保持時間に溶出した。この条件の
高速液体クロマトグラフィーにより上記で得た化合物を
分析したところ、8.7分に化学式一覧表のNo.6に
示した化合物の光学活性体が検出され、光学純度は99
%e.e.以上であった。
Example 6 10 ml of the enzyme solution prepared in the same manner as in Example 2 was used for 990
Dilute to 100 mL of Tris buffer (pH = 8.0) with 200 mg of NADPH and N in the chemical formula table.
o. 100 mg of the compound shown in 7 was added, and the reaction was carried out by gently shaking at 30 ° C. overnight. After the reaction solution was extracted in the same manner as in Example 2, it was separated by silica gel chromatography to obtain No. 1 in the chemical formula list. 29.4 mg of the compound shown in 8 was obtained. Daicel CHIRA
High performance liquid chromatography equipped with an LCEL-OG column (elution solvent = hexane: ethanol {10:
1}, flow rate = 1.0 ml / min). When the compound shown in 6 was analyzed, the optical isomers were eluted at the retention times of 8.7 minutes and 9.5 minutes. When the compound obtained above was analyzed by high performance liquid chromatography under these conditions, No. 1 in the chemical formula list was found at 8.7 minutes. The optically active substance of the compound shown in 6 was detected, and the optical purity was 99.
% E. e. That was all.

【0034】実施例7 実施例2と同様にして調製した酵素液5mlを995m
Lの100mMトリス緩衝液(pH=8.0)に希釈
し、ここに200mgのNADPHと化学式一覧表のN
o.9に示した1−アセトナフトン100mgを添加
し、30℃で緩やかに一晩振とうして反応を行った。実
施例2と同様に反応液を抽出した後、シリカゲルクロマ
トグラフィーで分離することにより化学式一覧表のN
o.10に示したα−ヒドロキシエチルナフタレン4
5.3mgが得られた。ダイセル社製CHIRALCE
L−ODカラムを装着した高速液体クロマトグラフィー
(溶出溶媒=ヘキサン:エタノール{10:1}、流速
=1.0ml/min)により化学式一覧表のNo.1
0に示したα−ヒドロキシエチルナフタレンを分析する
と、光学異性体が5.4分と7.5分の保持時間に溶出
した。この条件の高速液体クロマトグラフィーにより上
記で得た化合物を分析したところ、5.4分に化学式一
覧表のNo.10に示したα−ヒドロキシエチルナフタ
レンの光学活性体が検出され、光学純度は99%e.
e.以上であった。
Example 7 5 ml of the enzyme solution prepared in the same manner as in Example 2 was 995 m
L in 100 mM Tris buffer (pH = 8.0) and diluted with 200 mg NADPH and N in the chemical formula table.
o. 100 mg of 1-acetonaphthone shown in 9 was added, and the reaction was carried out by gently shaking at 30 ° C. overnight. The reaction solution was extracted in the same manner as in Example 2 and then separated by silica gel chromatography to obtain N in the chemical formula list.
o. Α-hydroxyethylnaphthalene 4 shown in 10
5.3 mg was obtained. Daicel CHIRALCE
By high performance liquid chromatography equipped with an L-OD column (elution solvent = hexane: ethanol {10: 1}, flow rate = 1.0 ml / min), No. 1
When α-hydroxyethylnaphthalene shown in 0 was analyzed, optical isomers were eluted at retention times of 5.4 minutes and 7.5 minutes. When the compound obtained above was analyzed by high performance liquid chromatography under these conditions, No. 1 in the chemical formula list was found at 5.4 minutes. The optically active substance of α-hydroxyethylnaphthalene shown in 10 was detected, and the optical purity was 99% e.
e. That was all.

【0035】[0035]

【発明の効果】本発明によれば、植物生長調節剤として
有用な一般式(II)で示される光学活性イソニコチン酸
アニリド誘導体さらに医薬、農薬(例えば、植物生長調
節剤)等の合成中間体として広く利用し得る一般式(I
V)及びα−ヒドロキシエチルナフタレンを極めて高光
学純度で製造でき、その上精製工程数も少ないことか
ら、工業的に優れた光学活性体の製造が可能となった。
INDUSTRIAL APPLICABILITY According to the present invention, an optically active isonicotinic acid anilide derivative represented by the general formula (II), which is useful as a plant growth regulator, and synthetic intermediates such as pharmaceuticals and agricultural chemicals (eg, plant growth regulator) The general formula (I
Since V) and α-hydroxyethylnaphthalene can be produced with extremely high optical purity and the number of purification steps is small, it has become possible to produce an industrially excellent optically active substance.

【0036】[0036]

【化12】 [Chemical 12]

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 一般式(I) 【化1】 (式中、Xは同一又は異なってハロゲン原子又は低級ア
ルキル基を、Rはフェニル基又は低級アルキル基を、m
は0から3の整数を示す。)で示されるイソニコチン酸
アニリド誘導体のカルボニル基を不斉的に還元して一般
式(II) 【化2】 (式中、AおよびA’は互いに異なって水素原子または
水酸基を、X,R及びmは前記と同一の意味を示す)で
示される化合物を合成する能力を有すシュードプレア
(Pseudoplea)属に属する微生物から調製し
た酵素を一般式(I)で示される化合物に接触させて一
般式(II)で示される化合物に変換し、次いでこの一般
式(II)で示される化合物を採取することを特徴とする
一般式(II)で示される光学活性化合物の製造方法。
1. A compound represented by the general formula (I): (In the formula, X is the same or different and is a halogen atom or a lower alkyl group; R is a phenyl group or a lower alkyl group;
Represents an integer of 0 to 3. ) Is asymmetrically reduced by the carbonyl group of the isonicotinic acid anilide derivative represented by the general formula (II): (In the formula, A and A'are different from each other to represent a hydrogen atom or a hydroxyl group, and X, R and m have the same meanings as described above.) In the genus Pseudoplea having the ability to synthesize a compound represented by An enzyme prepared from a microorganism belonging to the microorganism is contacted with a compound represented by the general formula (I) to convert it into a compound represented by the general formula (II), and then the compound represented by the general formula (II) is collected. And a method for producing an optically active compound represented by the general formula (II).
【請求項2】 4’−クロロ−2’−ベンゾイルイソニ
コチン酸アニリドを基質として、これを光学活性4’−
クロロ−2’−(α−ヒドロキシベンジル)イソニコチ
ン酸アニリドに不斉的に合成する能力を有するシュード
プレア属に属する微生物から調製した酵素を、4’−ク
ロロ−2’−ベンゾイルイソニコチン酸アニリドに接触
させて、光学活性4’−クロロ−2’−(α−ヒドロキ
シベンジル)イソニコチン酸アニリドに変換し、次い
で、これを採取することを特徴とする請求項1記載の製
造方法。
2. An optically active 4′-chloro-4′-benzoylisonicotinic acid anilide is used as a substrate.
An enzyme prepared from a microorganism belonging to the genus Pseudoprea having the ability to asymmetrically synthesize chloro-2 '-(α-hydroxybenzyl) isonicotinic acid anilide was prepared as 4'-chloro-2'-benzoylisonicotinic acid anilide. 2. The production method according to claim 1, wherein the optically active 4′-chloro-2 ′-(α-hydroxybenzyl) isonicotinic acid anilide is converted into an optically active 4′-chloro-2′-anilide, and then this is collected.
【請求項3】 一般式(III) 【化3】 (式中、X’は同一又は異なってハロゲン原子、水酸
基、アミノ基、低級アルキル基又はニトロ基を、R’は
フェニル基、ハロゲン置換フェニル基、低級アルキル
基、またはシクロプロパン基を、nは0から3の整数を
示し、 【化4】 と基R’との組合せは、一般式(III)の化合物を還元
したときに、O=<の炭素原子が不斉炭素となる組合せ
に限るものとする。)で示されるベンゾフェノン誘導体
のカルボニル基を不斉的に還元して一般式(IV) 【化5】 (式中、AおよびA’は互いに異なって水素原子または
水酸基を、X’,R’及びnは前記と同一の意味を示
す。)で示されるベンゾヒドロール誘導体を合成する能
力を有すシュードプレア属に属する微生物から調製した
酵素を一般式(III)で示される化合物に接触させて一
般式(IV)で示される化合物に変換し、次いでこの一般
式(IV)で示される化合物を採取することを特徴とする
一般式(IV)で示される光学活性化合物の製造方法。
3. A compound represented by the general formula (III): (In the formula, X ′ is the same or different and is a halogen atom, a hydroxyl group, an amino group, a lower alkyl group or a nitro group, R ′ is a phenyl group, a halogen-substituted phenyl group, a lower alkyl group or a cyclopropane group, and n is Indicates an integer from 0 to 3, And the group R ′ are limited to those in which the carbon atom of O═ <is asymmetric carbon when the compound of the general formula (III) is reduced. ), The carbonyl group of the benzophenone derivative is asymmetrically reduced to give a compound represented by the general formula (IV): (In the formula, A and A'are different from each other to represent a hydrogen atom or a hydroxyl group, and X ', R'and n have the same meanings as described above.) Pseudo having the ability to synthesize a benzohydrol derivative An enzyme prepared from a microorganism belonging to the genus Pleia is contacted with a compound represented by the general formula (III) to convert it into a compound represented by the general formula (IV), and then the compound represented by the general formula (IV) is collected. A process for producing an optically active compound represented by the general formula (IV), which comprises:
【請求項4】 2−アミノ−5−クロロベンゾフェノン
を基質として、これを光学活性2−アミノ−5−クロロ
ベンゾヒドロールに不斉的に還元する能力を有するシュ
ードプレア属に属する微生物から調製した酵素を、2−
アミノ−5−クロロベンゾフェノンに接触させて、光学
活性2−アミノ−5−クロロベンゾヒドロールに変換
し、次いで、これを採取することを特徴とする請求項3
記載の製造方法。
4. Prepared from a microorganism belonging to the genus Pseudoprea having the ability to asymmetrically reduce 2-amino-5-chlorobenzophenone as a substrate to optically active 2-amino-5-chlorobenzohydrol. Enzyme, 2-
4. Contact with amino-5-chlorobenzophenone to convert to optically active 2-amino-5-chlorobenzohydrol, which is then collected.
The manufacturing method described.
【請求項5】 1−アセトナフトンのカルボニル基を不
斉的に還元して光学活性α−ヒドロキシエチルナフタレ
ンを合成する能力を有するシュードプレア属に属する微
生物から調製した酵素を1−アセトナフトンに接触させ
て、光学活性α−ヒドロキシエチルナフタレンに変換
し、次いでこれを採取することを特徴とする光学活性α
−ヒドロキシエチルナフタレンの製造方法。
5. An enzyme prepared from a microorganism belonging to the genus Pseudoprea having the ability to asymmetrically reduce the carbonyl group of 1-acetonaphthone to synthesize optically active α-hydroxyethylnaphthalene is contacted with 1-acetonaphthone. , Optically active α-hydroxyethylnaphthalene, and then collected.
-A method for producing hydroxyethylnaphthalene.
【請求項6】 酵素がシュードプレア・トリフォリイ
(Pseudopleatrifolii)から調製し
た約5×104KDa、等電点が5.5から6.0の酵
素である請求項1ないし5のいずれか1項に記載の製造
方法。
6. The enzyme according to claim 1, wherein the enzyme is about 5 × 10 4 KDa prepared from Pseudoplea trifolii and has an isoelectric point of 5.5 to 6.0. The manufacturing method described.
JP1700792A 1992-01-31 1992-01-31 Production of optically active compound by enzymatic technique Pending JPH05211880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1700792A JPH05211880A (en) 1992-01-31 1992-01-31 Production of optically active compound by enzymatic technique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1700792A JPH05211880A (en) 1992-01-31 1992-01-31 Production of optically active compound by enzymatic technique

Publications (1)

Publication Number Publication Date
JPH05211880A true JPH05211880A (en) 1993-08-24

Family

ID=11931948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1700792A Pending JPH05211880A (en) 1992-01-31 1992-01-31 Production of optically active compound by enzymatic technique

Country Status (1)

Country Link
JP (1) JPH05211880A (en)

Similar Documents

Publication Publication Date Title
JP4394647B2 (en) Method for producing optically active tetrahydrothiophene derivative and method for crystallizing optically active tetrahydrothiophene-3-ol
JPS59113896A (en) Preparation of pyrroloquinolinequinone
JPH0775589A (en) Production of protocatechuic acid
JPH0568578A (en) Production of theanine
JP3845912B2 (en) Method for producing erythritol
JP3703928B2 (en) Process for producing optically active N-benzyl-3-pyrrolidinol
JPH05211880A (en) Production of optically active compound by enzymatic technique
JPH06141888A (en) Production of d-mandelic acid
JP2977885B2 (en) Method for producing optically active substance using microorganism
JPS5923794B2 (en) Manufacturing method of dihydroxyacetone
JP2972318B2 (en) Method for producing optically active benzohydrol derivative using microorganism
JPH03191795A (en) Production of s-(+)-3-halogeno-1,2-propanediol by microorganismic treatment
JP2000175693A (en) Production of (r)-2-hydroxy-1-phenoxypropane derivaive
JPS58201992A (en) Preparation of beta-substituted propionic acid or amide thereof by microorganism
JPH0569512B2 (en)
JP2981250B2 (en) Method for producing D-pantothenonitrile
JP3217301B2 (en) Method for producing optically active glycidic acid ester and optically active glyceric acid ester
JP2624296B2 (en) Method for producing γ-halo-β-hydroxybutyrate
JPH0379996B2 (en)
JPS6316119B2 (en)
JPH1042860A (en) Production of inositol and acquirement of hexachlorocyclohexane-resistant strain
JP3163388B2 (en) Method for producing (S) -1-phenyl-1,3-propanediol
JP2693536B2 (en) Process for producing (7R) -cyclopenta [d] pyrimidine derivative
JPS60153797A (en) Fermentative production of mevalonic acid
JPH078291A (en) Production of optically active 2-hydroxy-3-nitropropionic acid and its antipodal ester