JPH05211776A - Inverter - Google Patents

Inverter

Info

Publication number
JPH05211776A
JPH05211776A JP4015614A JP1561492A JPH05211776A JP H05211776 A JPH05211776 A JP H05211776A JP 4015614 A JP4015614 A JP 4015614A JP 1561492 A JP1561492 A JP 1561492A JP H05211776 A JPH05211776 A JP H05211776A
Authority
JP
Japan
Prior art keywords
lower arm
inverter
transistors
output
turned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4015614A
Other languages
Japanese (ja)
Inventor
Makoto Tanitsu
誠 谷津
Kazuo Kuroki
一男 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP4015614A priority Critical patent/JPH05211776A/en
Publication of JPH05211776A publication Critical patent/JPH05211776A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters

Abstract

PURPOSE:To make an inexpensive low-speed switching element which is less in steady-state loss usable by switching two of three up-down arm circuits by using the basic frequency of the output of an inverter and controlling the remaining up-down arm circuit by using a frequency higher than the basic frequency of the inverter output. CONSTITUTION:Transistors 1, 3, 8, and 10 are turned on and transistors 2, 4, 7, and 9 are turned off when the output voltage of an inverter is in a positive half-period. On the contrary, the transistors 1, 3, 8, and 10 are turned off and transistors 2, 4, 7, and 9 are turned on when the output voltage of the inverter is in a negative half-period. When transistors 5, 6, 11, and 12 are modulated in pulse width in such a state, an AC output is obtained. Therefore, even when pulse width modulation is performed at a high frequency, no expensive high- speed switching element having a large steady-state conducting loss is required for the semiconductor switching elements of this inverter.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高調波成分の低減や出
力容量の増大等を目的として、正極, 負極のほかに、こ
の両極の中点電位の電極をもつ直流電源を用い、交流出
力側に正極レベル,負極レベル,中点電極レベルの3レ
ベルの出力を可能とした、いわゆる3レベルインバータ
に関する。なお以下各図において同一の符号は同一もし
くは相当部分を示す。
BACKGROUND OF THE INVENTION The present invention uses a direct current power source having positive and negative electrodes and a midpoint potential electrode of both electrodes for the purpose of reducing harmonic components and increasing output capacity. The present invention relates to a so-called three-level inverter capable of outputting three levels of positive electrode level, negative electrode level, and midpoint electrode level on the side. In the following figures, the same reference numerals indicate the same or corresponding parts.

【0002】[0002]

【従来の技術】図4は従来の単相3レベルインバータの
主回路構成を示す。同図においては、同じ出力電圧Ed
を持つ直流電源25,26が直列に接続されており、こ
こで一方の直流電源25の正極側をP点、他方の直流電
源26の負極側をN点、そして、この2つの直流電源2
5と26の接続点(中点)をM点とする。そのP点N点
との間にトランジスタ1,5,6,4が順次直列に接続
され、ダイオード13,17,18,16が順次この各
々のトランジスタに逆並列接続されている。同様にトラ
ンジスタ7,11,12,10がP点とN点の間に順次
直列に接続され、ダイオード19,23,24,22が
順次この各々のトランジスタに逆並列接続されている。
またさらにトランジスタ1,5の相互接続点とM点との
間にダイオード14が、トランジスタ7,11の相互の
接続点とM点との間にダイオード20が、M点とトラン
ジスタ6,4の相互の接続点との間にダイオード15
が、M点とトランジスタ12,10の相互の接続点との
間にダイオード21が各々接続されて主回路が構成され
ている。そしてトランジスタ5,6の相互の接続点と、
トランジスタ11,12の相互の接続点とがこのインバ
ータの出力端子となり、LCフィルタを27を介し負荷
28に接続されている。
2. Description of the Related Art FIG. 4 shows a main circuit configuration of a conventional single-phase three-level inverter. In the figure, the same output voltage Ed
Are connected in series, where the positive side of one DC power source 25 is at the P point, the negative side of the other DC power source 26 is at the N point, and these two DC power sources 2 are connected.
The connection point (middle point) between 5 and 26 is set as M point. Transistors 1, 5, 6, and 4 are sequentially connected in series between the P point and the N point, and diodes 13, 17, 18, and 16 are sequentially connected in antiparallel to the respective transistors. Similarly, transistors 7, 11, 12, and 10 are sequentially connected in series between points P and N, and diodes 19, 23, 24, and 22 are sequentially connected in antiparallel to the respective transistors.
Furthermore, a diode 14 is provided between the mutual connection point of the transistors 1 and 5 and the M point, a diode 20 is provided between the mutual connection point of the transistors 7 and 11 and the M point, and a mutual connection between the M point and the transistors 6 and 4. Diode 15 between the connection point
However, the diode 21 is connected between the point M and the connection point of the transistors 12 and 10 to form a main circuit. And the mutual connection point of the transistors 5 and 6,
The connection point between the transistors 11 and 12 serves as the output terminal of this inverter, and is connected to the load 28 via the LC filter 27.

【0003】次に図4の動作について説明する。図5は
図4の動作波形を示す。ここで図5(A)は搬送波3
3,34と、出力波形信号35,36との相互の切り合
いの関係を示し、図5(B)は上から順にトランジスタ
1,4,5,6,7,10,11,12の夫々のオン/
オフ信号44,45,46,47,48,49,50,
51、およびインバータ出力電圧Voの各波形を示す。
Next, the operation of FIG. 4 will be described. FIG. 5 shows the operation waveforms of FIG. Here, FIG. 5A shows the carrier wave 3.
3, 34 and the output waveform signals 35, 36 are shown in relation to each other, and FIG. 5B shows the transistors 1, 4, 5, 6, 7, 10, 11, 12 in order from the top. on/
Off signals 44, 45, 46, 47, 48, 49, 50,
51 and each waveform of the inverter output voltage Vo are shown.

【0004】即ちインバータ出力電圧Voが正、つまり
出力波形信号35が正、同信号36が負の場合は、(出
力波形信号35)>(搬送波33)の区間でトランジス
タ1がオン、該区間を除く区間でトランジスタ6がオン
となり、そして(出力波形信号36)<(搬送波34)
の区間でトランジスタ10がオン、該区間を除く区間で
トランジスタ11がオンとなる。またこの場合、トラン
ジスタ5,12はオンのままとなり、トランジスタ4,
7はオフとなる。
That is, when the inverter output voltage Vo is positive, that is, the output waveform signal 35 is positive and the same signal 36 is negative, the transistor 1 is turned on in the section of (output waveform signal 35)> (carrier wave 33), The transistor 6 is turned on in the excluding section, and (output waveform signal 36) <(carrier wave 34)
The transistor 10 is turned on in the section of 1, and the transistor 11 is turned on in the section other than the section. In this case, the transistors 5 and 12 remain on, and the transistor 4 and
7 is off.

【0005】次にインバータ出力電圧Voが負、つまり
出力波形信号35が負、同信号36が正の場合は、(出
力波形信号35)<(搬送波34)の区間でトランジス
タ4がオン、該区間を除く区間でトランジスタ5がオン
となり、そして(出力波形信号36)>(搬送波33)
の区間でトランジスタ7がオン、該区間を除く区間でト
ランジスタ12がオンとなる。またこの場合、トランジ
スタ6,11はオンのままとなり、トランジスタ1,1
0はオフのままとなる。
Next, if the inverter output voltage Vo is negative, that is, the output waveform signal 35 is negative and the same signal 36 is positive, the transistor 4 is turned on in the section of (output waveform signal 35) <(carrier wave 34), and the section is in the section. The transistor 5 is turned on in the section other than, and (output waveform signal 36)> (carrier wave 33)
The transistor 7 is turned on in the section of, and the transistor 12 is turned on in the section other than the section. Also in this case, the transistors 6 and 11 remain on, and the transistors 1 and 1
0 remains off.

【0006】換言すればインバータ出力Voが正の時
は、トランジスタ5と12をオンし、さらにトランジス
タ1と6、11と10をパルス幅変調によりオン/オフ
制御することで、インバータ出力VoをO,+Ed,+
2Edの3レベルに調節することが可能となる。またイ
ンバータ出力Voが負の時は、トランジスタ6と11を
オンし、さらにトランジスタ5と4、7と12をパルス
幅変調によりオン/オフ制御することで、インバータ出
力VoをO,−Ed,−2Edの3レベルに調節するこ
とが可能となる。この様に単相3レベルインバータで
は、出力として+2Ed,+E.O,-Ed,-2Edの5レベルの出力を
得ることができ、通常のフルブリッジインバータと比較
して、低いスイッチング周波数で、出力高調波の低減が
可能となる。
In other words, when the inverter output Vo is positive, the transistors 5 and 12 are turned on, and the transistors 1 and 6, 11 and 10 are on / off controlled by pulse width modulation, so that the inverter output Vo becomes 0. , + Ed, +
It becomes possible to adjust to 3 levels of 2 Ed. When the inverter output Vo is negative, the transistors 6 and 11 are turned on, and the transistors 5 and 4, 7 and 12 are on / off controlled by pulse width modulation, so that the inverter output Vo is O, -Ed,-. It becomes possible to adjust to 3 levels of 2 Ed. In this way, the single-phase three-level inverter can obtain 5 levels of output of + 2Ed, + EO, -Ed, -2Ed as the output, and output at a lower switching frequency than the normal full bridge inverter. It is possible to reduce harmonics.

【0007】[0007]

【発明が解決しようとする課題】図4に示す従来の3レ
ベルインバータを正弦波出力のインバータとして用い、
出力電圧Voに含まれる低次の高調波成分を低減するた
めに、半導体素子のスイッチング周波数を高くしようと
すると、この主回路構成の方法では、図5に示したよう
に全ての半導体素子(トランジスタ1,4,5,6,
7,10,11,12,ダイオード13〜24)のスイ
ッチング周波数が高くなってしまい、全ての半導体素子
に高周波でのスイッチングが可能な高速スイッチングデ
バイスが必要となる。しかし一般的に高速スイッチング
デバイスは値段が高く、さらに定常導通損失が大きいた
め、インバータ全体のコストが上がり、また効率が下が
るという問題がある。
The conventional three-level inverter shown in FIG. 4 is used as a sine wave output inverter,
If an attempt is made to increase the switching frequency of the semiconductor elements in order to reduce the low-order harmonic components included in the output voltage Vo, in this method of the main circuit configuration, as shown in FIG. 1, 4, 5, 6,
The switching frequency of 7, 10, 11, 12 and the diodes 13 to 24) becomes high, and a high-speed switching device capable of switching at a high frequency is required for all semiconductor elements. However, since a high-speed switching device is generally expensive and has a large steady conduction loss, there are problems that the cost of the whole inverter increases and the efficiency decreases.

【0008】また、半導体素子は、そのスイッチング時
に生じる飛躍電圧から素子を保護するためにスバナ回路
を一般的には必要とするが、図4の主回路方式では、特
にインバータの交流出力線に直接接続されている上下ア
ーム対(トランジスタ5と6、11と12)に印加され
る電圧は一定値ではなくOまたはEdに変化してしま
い、さらに、それら各アームの両端とも電位が変動する
ため一般的な放電阻止形のRCDスナバ回路を用いるこ
とができない。そのため充放電形のRCスナバ回路を用
いると、特に高周波スイッチングを行う場合は大きな損
失を発生するという問題がある。そこで本発明はいわゆ
る3レベルインバータであって前記の問題を解消できる
インバータを提供することを課題とする。
Further, the semiconductor device generally requires a subvane circuit in order to protect the device from a jumping voltage generated at the time of its switching, but in the main circuit system of FIG. 4, in particular, it is directly connected to the AC output line of the inverter. The voltage applied to the connected upper and lower arm pairs (transistors 5 and 6, 11 and 12) is not a constant value but changes to O or Ed, and the potential at both ends of each arm also fluctuates. A conventional discharge blocking RCD snubber circuit cannot be used. Therefore, when the charge / discharge type RC snubber circuit is used, there is a problem that a large loss occurs particularly when high frequency switching is performed. Therefore, an object of the present invention is to provide an inverter which is a so-called three-level inverter and which can solve the above problems.

【0009】[0009]

【課題を解決するための手段】前記の課題を解決するた
めに、請求項1のインバータは正極(P点), 負極(N
点)およびこの両極間に中点電位極(M点)のある直流
電源(25,26など)を備え、スイッチング素子とダ
イオードとを逆並列接続してなるアームを二つ直列接続
して上下アーム回路を構成し、この上下アーム回路を三
つ設け、この三つの上下アーム回路のうち(トランジス
タ1,2、ダイオード13,14などからなる)第一の
上下アーム回路を前記直流電源の正極と中点電位極との
間に接続し、同じく(トランジスタ3,4、ダイオード
15,16などからなる)第二の上下アーム回路を前記
直流電源の中点電位極と負極との間に接続し、同じく
(トランジスタ5,6、ダイオード17,18などから
なる)第三の上下アーム回路を前記第一の上下アーム回
路内のアームの直列接続点と前記第二の上下アーム回路
内のアームの直列接続点との間に接続し、前記第三の上
下アーム回路内のアームの直列接続点を交流出力端子と
した上下アーム回路群をN(Nは2以上の整数とする)
個備えたN相出力のインバータであって、この各々の上
下アーム回路群の第一と第二の上下アーム回路はインバ
ータ出力の基本波周波数でスイッチングを行い、第三の
上下アーム回路は、この基本波周波数より高い周波数
で、パルス幅制御されたスイッチングを行うものである
ようにする。
In order to solve the above-mentioned problems, an inverter according to claim 1 has a positive electrode (point P) and a negative electrode (N).
Point) and a DC power supply (25, 26, etc.) having a midpoint potential pole (M point) between these two poles, and two upper and lower arms in which switching elements and diodes are connected in antiparallel are connected in series. A circuit is provided, and three upper and lower arm circuits are provided, and a first upper and lower arm circuit (comprising transistors 1 and 2 and diodes 13 and 14) of the three upper and lower arm circuits serves as the positive electrode of the DC power source. Similarly, the second upper and lower arm circuits (comprising transistors 3, 4, diodes 15, 16 etc.) are connected between the midpoint potential pole and the negative pole of the DC power source, and A third upper and lower arm circuit (comprising transistors 5 and 6, diodes 17 and 18) is connected in series between the serial connection point of the arms in the first upper and lower arm circuits and the arm in the second upper and lower arm circuits. Connected between points, the third upper and lower arm circuits N to the series connection point and the AC output terminal of the arms of the upper and lower arm circuits (N is an integer of 2 or more)
In the N-phase output inverter provided individually, the first and second upper and lower arm circuits of each upper and lower arm circuit group perform switching at the fundamental frequency of the inverter output, and the third upper and lower arm circuits Pulse width controlled switching is performed at a frequency higher than the fundamental frequency.

【0010】また請求項2のインバータは、請求項1に
記載のインバータにおいて、N個の前記上下アーム回路
群の第三の上下アーム回路を構成するスイッチング素子
を、同じくN個の該上下アーム回路群の第一、第二の上
下アーム回路を構成するスイッチング素子よりもスイッ
チング損失の少ない高速スイッチング素子(MOSFE
T29〜32など)とする。
According to a second aspect of the present invention, there is provided an inverter according to the first aspect, wherein the switching elements constituting the third upper and lower arm circuits of the N upper and lower arm circuit groups are the same as the N upper and lower arm circuits. A high-speed switching element (MOSFE) with less switching loss than the switching elements forming the first and second upper and lower arm circuits of the group.
T29-32).

【0011】[0011]

【作用】図4のM点に接続されているダイオードだけで
構成されているアームにも、他のアームと同様に自励ス
イッチング可能な半導体(トランジスタ等)を逆並列に
付加する。そしてそのインバータの動作として、直流電
源のP点,M点,N点に直接接続されているアームの半
導体(トランジスタ)はインバータ出力の基本波と同じ
周波数でオン/オフ制御を行い、また交流出力線に直接
接続されているアームの半導体(トランジスタ)は基本
波より高い周波数のパルス幅変調によりオン/オフ制御
を行う。従って、インバータの出力に高調波低減のため
に高周波でパルス幅変調された5レベルの電圧が得られ
るにもかかわらず、全ての半導体素子を高周波でスイッ
チングする必要がなく、直流電源のP点,M点,N点に
直接接続されているアームの半導体素子は、交流出力の
基本波と同じ周波数でスイッチングさせることができ
る。さらに、インバータの交流出力線に直接接続された
アーム対に印加される電圧値が常にEdとなり、このア
ームのスイッチング素子にも充放電スナバ回路に比べ発
生損失の少ない一般的なPN一括放電阻止形のスナバ回
路が使用できる。その結果、インバータの低損失高効率
化が可能となる。
The semiconductor (transistor or the like) capable of self-excited switching is added in antiparallel to the arm composed of only the diode connected to the point M in FIG. 4, like the other arms. As the operation of the inverter, the semiconductor (transistor) of the arm directly connected to the points P, M and N of the DC power supply performs on / off control at the same frequency as the fundamental wave of the inverter output, and also the AC output. The arm semiconductor (transistor) directly connected to the line performs on / off control by pulse width modulation of a frequency higher than the fundamental wave. Therefore, it is not necessary to switch all the semiconductor elements at a high frequency even though a 5-level voltage pulse-modulated at a high frequency is obtained at the output of the inverter for reducing the harmonics, and the P point of the DC power supply, The semiconductor element of the arm directly connected to the points M and N can be switched at the same frequency as the fundamental wave of the AC output. Furthermore, the voltage value applied to the arm pair directly connected to the AC output line of the inverter is always Ed, and the switching element of this arm is a general PN collective discharge prevention type with less generated loss than the charge / discharge snubber circuit. The snubber circuit of can be used. As a result, low loss and high efficiency of the inverter can be achieved.

【0012】[0012]

【実施例】以下図1ないし図3を用いて本発明の実施例
を説明する。図1は請求項1に関わる発明の一実施例と
しての単相3レベルインバータの構成図で、図4に対応
するものである。図1では図4に対し、M点に接続され
たダイオード14,15,20,21と夫々逆並列にト
ランジスタ2,3,8,9が接続されている点が異な
る。
Embodiments of the present invention will be described below with reference to FIGS. FIG. 1 is a configuration diagram of a single-phase three-level inverter as an embodiment of the invention according to claim 1, and corresponds to FIG. 1 differs from FIG. 4 in that transistors 2, 3, 8 and 9 are respectively connected in antiparallel with diodes 14, 15, 20, and 21 connected to point M.

【0013】次に図1の動作について説明する。図2は
図1の動作波形を示す。ここで図2(A)は図5(A)
と同様、搬送波33,34と出力波形信号35,36と
の相互の切り合いの関係を示し、図2(B)は上から順
にトランジスタ(1,3,8,10),(2,4,7,
9),5,6,11,12の夫々のオン/オフ信号3
7,38,39,40,41,42、およびインバータ
出力電圧Voの各波形を示す。
Next, the operation of FIG. 1 will be described. FIG. 2 shows the operation waveforms of FIG. Here, FIG. 2A is shown in FIG.
Similarly, the relationship between the carrier waves 33, 34 and the output waveform signals 35, 36 is shown in FIG. 2B. Transistors (1, 3, 8, 10), (2, 4, 7,
9), 5, 6, 11, 12 on / off signals 3 respectively
7, 38, 39, 40, 41, 42 and the waveforms of the inverter output voltage Vo are shown.

【0014】即ちインバータ出力電圧Voが正、つまり
出力波形信号35が正、同信号36が負の場合は、トラ
ンジスタ1,3,8,10はオンのまま、2,4,7,
9はオフのままとなる。そして(出力波形信号35)>
(搬送波33)の区間でトランジスタ5がオン、該区間
を除く区間でトランジスタ6がオンとなり、また(出力
波形信号36)>(搬送波34)の区間でトランジスタ
11がオン、該区間を除く区間でトランジスタ12がオ
ンとなる。
That is, when the inverter output voltage Vo is positive, that is, when the output waveform signal 35 is positive and the same signal 36 is negative, the transistors 1, 3, 8 and 10 are kept on, 2, 4, 7 ,.
9 remains off. And (output waveform signal 35)>
The transistor 5 is turned on in the section of (carrier wave 33), the transistor 6 is turned on in the section other than the section, and the transistor 11 is turned on in the section of (output waveform signal 36)> (carrier wave 34) and in the section other than the section. The transistor 12 is turned on.

【0015】またインバータ出力電圧Voが負、つまり
出力波形信号35が負、同信号36が正の場合は、トラ
ンジスタ1,3,8,10はオフのまま、2,4,7,
9はオンのままとなる。そして(出力波形信号35)>
(搬送波34)の区間でトランジスタ5がオン、該区間
を除く区間でトランジスタ6がオンとなり、また(出力
波形信号36)>(搬送波33)の区間でトランジスタ
11がオン、該区間を除く区間でトランジスタ12がオ
ンとなる。
When the inverter output voltage Vo is negative, that is, when the output waveform signal 35 is negative and the signal 36 is positive, the transistors 1, 3, 8, 10 remain off, 2, 4, 7 ,.
9 remains on. And (output waveform signal 35)>
The transistor 5 is turned on in the section of (carrier wave 34), the transistor 6 is turned on in the section other than the section, and the transistor 11 is turned on in the section of (output waveform signal 36)> (carrier wave 33) and in the section other than the section. The transistor 12 is turned on.

【0016】換言すればインバータを正弦出力のインバ
ータとして動作させる場合、インバータ出力電圧Voが
正の半周期にはトランジスタ1,3,8,10は波形3
7に示すようにオンとし、トランジスタ2,4,7,9
は波形38に示すようにオフとする。この時、トランジ
スタ5,6から成る上下アーム対には、直流電源のP点
とM点間の電圧が印加される。また、トランジスタ1
1,12から成る上下アーム対にはMとN点間の電圧が
印加される。また、インバータ出力電圧Voが負の半周
期には逆にトランジスタ1,3,8,10はオフとし、
トランジスタ2,4,7,9はオンとする。この時、ト
ランジスタ5,6から成る上下アーム対には、直流電源
のM点とN点間の電圧が印加され、トランジスタ11,
12から成る上下アーム対には、直流電源のP点とM点
間の電圧が印加される。このような状態で、トランジス
タ5,6,11,12を各々波形39,40,41,4
2に示すようにパルス幅変調によるオン/オフ制御を行
うことで図2(B)のインバータ出力電圧Voの波形に
示すように図5(B)と同様な交流出力電圧波形が得ら
れる。
In other words, when the inverter is operated as a sine output inverter, the transistors 1, 3, 8 and 10 have the waveform 3 during the positive half cycle of the inverter output voltage Vo.
The transistors 2, 4, 7, 9 are turned on as shown in FIG.
Turns off as shown in waveform 38. At this time, a voltage between points P and M of the DC power supply is applied to the pair of upper and lower arms composed of the transistors 5 and 6. Also, the transistor 1
A voltage between points M and N is applied to the pair of upper and lower arms composed of 1 and 12. In the negative half cycle of the inverter output voltage Vo, on the contrary, the transistors 1, 3, 8 and 10 are turned off,
The transistors 2, 4, 7, 9 are turned on. At this time, a voltage between points M and N of the DC power supply is applied to the upper and lower arm pairs composed of the transistors 5 and 6, and the transistors 11 and
A voltage between points P and M of the DC power supply is applied to the pair of upper and lower arms composed of 12. In this state, the transistors 5, 6, 11 and 12 are connected to the waveforms 39, 40, 41 and 4 respectively.
By performing on / off control by pulse width modulation as shown in Fig. 2, an AC output voltage waveform similar to that in Fig. 5B is obtained as shown in the waveform of the inverter output voltage Vo in Fig. 2B.

【0017】図3は請求項2に関わる発明の一実施例を
示す。図3と図1との相違点は図1におけるトランジス
タ5,6,11,12の代わりにこのトランジスタに比
べスイッチング損失の少ないMOSFET29,30,
31,32を用いている点である。図3に示すインバー
タの動作については、図1のインバータと同様である。
FIG. 3 shows an embodiment of the invention according to claim 2. The difference between FIG. 3 and FIG. 1 is that instead of the transistors 5, 6, 11, 12 in FIG. 1, MOSFETs 29, 30,
31 and 32 are used. The operation of the inverter shown in FIG. 3 is the same as that of the inverter shown in FIG.

【0018】[0018]

【発明の効果】請求項1に関わる発明によれば中点電極
を持つ直流電源を用いる3レベルインバータの全てのア
ームを半導体スイッチング素子とダイオードとの逆並列
回路で構成し、この各アームの半導体スイッチング素子
のうち、直流電源の電極に接続された半導体スイッチン
グ素子を交流出力電圧の基本波の周波数で開閉し、交流
出力端子に接続された半導体スイッチング素子を上記基
本波より高いPWM変調の周波数で開閉するようにした
ので、交流出力線に接続された半導体スイッチング素子
に対しても、発生損失の少ないPN一括放電阻止形スナ
バ回路を用いることができ、さらに装置の高性能化(高
速応答性、低次高調波の低減、等)を図るために、高周
波でのパルス幅変調を行う場合でも、全ての半導体スイ
ッチング素子に高価で定常通電損失の大きな高速スイッ
チング素子を必要としない。
According to the invention of claim 1, all the arms of the three-level inverter using the DC power source having the middle point electrode are constituted by the anti-parallel circuit of the semiconductor switching element and the diode, and the semiconductor of each arm is formed. Among the switching elements, the semiconductor switching element connected to the electrode of the DC power supply is opened and closed at the frequency of the fundamental wave of the AC output voltage, and the semiconductor switching element connected to the AC output terminal is opened at the frequency of PWM modulation higher than the fundamental wave. Since it is configured to be opened and closed, a PN collective discharge prevention snubber circuit with less generated loss can be used even for a semiconductor switching element connected to an AC output line, and further high performance of the device (high speed response, Even when performing pulse width modulation at high frequencies to reduce low-order harmonics, etc. It does not require a large high-speed switching element in constant current loss.

【0019】そこで請求項2に関わる発明では交流出力
線に接続された半導体スイッチング素子のみを高速スイ
ッチング素子としたので、安価で高性能,高効率な3レ
ベルインバータの実現が可能となる。
Therefore, in the invention according to claim 2, since only the semiconductor switching element connected to the AC output line is used as the high-speed switching element, it is possible to realize an inexpensive, high-performance and highly efficient three-level inverter.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1に関わる発明の一実施例としての主回
路構成図
FIG. 1 is a configuration diagram of a main circuit as an embodiment of the invention according to claim 1.

【図2】図1の動作説明用の波形図FIG. 2 is a waveform diagram for explaining the operation of FIG.

【図3】請求項2に関わる発明の一実施例としての主回
路構成図
FIG. 3 is a configuration diagram of a main circuit as an embodiment of the invention according to claim 2;

【図4】図1に対応する従来の主回路構成図FIG. 4 is a conventional main circuit configuration diagram corresponding to FIG.

【図5】図4の動作説明用の波形図5 is a waveform diagram for explaining the operation of FIG.

【符号の説明】[Explanation of symbols]

1 トランジスタ 2 トランジスタ 3 トランジスタ 4 トランジスタ 5 トランジスタ 6 トランジスタ 7 トランジスタ 8 トランジスタ 9 トランジスタ 10 トランジスタ 11 トランジスタ 12 トランジスタ 13 ダイオード 14 ダイオード 15 ダイオード 16 ダイオード 17 ダイオード 18 ダイオード 19 ダイオード 20 ダイオード 21 ダイオード 22 ダイオード 23 ダイオード 24 ダイオード 25 直流電源 26 直流電源 27 LCフィルタ 28 負荷 29 MOSFET 30 MOSFET 31 MOSFET 32 MOSFET 1 transistor 2 transistor 3 transistor 4 transistor 5 transistor 6 transistor 7 transistor 8 transistor 9 transistor 10 transistor 11 transistor 12 transistor 13 diode 14 diode 15 diode 16 diode 17 diode 18 diode 19 diode 20 diode 21 diode 22 diode 23 diode 25 diode 24 diode Power supply 26 DC power supply 27 LC filter 28 Load 29 MOSFET 30 MOSFET 31 MOSFET 32 MOSFET

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】正極, 負極およびこの両極間に中点電位極
のある直流電源を備え、スイッチング素子とダイオード
とを逆並列接続してなるアームを二つ直列接続して上下
アーム回路を構成し、この上下アーム回路を三つ設け、
この三つの上下アーム回路のうち、第一の上下アーム回
路を前記直流電源の正極と中点電位極との間に接続し、
同じく第二の上下アーム回路を前記直流電源の中点電位
極と負極との間に接続し、同じく第三の上下アーム回路
を前記第一の上下アーム回路内のアームの直列接続点と
前記第二の上下アーム回路内のアームの直列接続点との
間に接続し、前記第三の上下アーム回路内のアームの直
列接続点を交流出力端子とした上下アーム回路群をN
(Nは2以上の整数とする)個備えたN相出力のインバ
ータであって、この各々の上下アーム回路群の第一と第
二の上下アーム回路はインバータ出力の基本波周波数で
スイッチングを行い、第三の上下アーム回路は、この基
本波周波数より高い周波数で、パルス幅制御されたスイ
ッチングを行うことを特徴とするインバータ。
1. An upper and lower arm circuit comprising a positive and negative electrodes and a direct current power source having a midpoint potential pole between the two electrodes, and connecting two arms in which switching elements and diodes are connected in anti-parallel in series. , Three upper and lower arm circuits are provided,
Of the three upper and lower arm circuits, the first upper and lower arm circuits are connected between the positive electrode of the DC power supply and the midpoint potential electrode,
Similarly, a second upper and lower arm circuit is connected between the midpoint potential pole and the negative electrode of the DC power source, and a third upper and lower arm circuit is similarly connected to the series connection point of the arms in the first upper and lower arm circuits and the first and second arm circuits. An upper and lower arm circuit group connected to the series connection point of the arms in the second upper and lower arm circuit, and having the series connection point of the arms in the third upper and lower arm circuit as an AC output terminal.
(N is an integer of 2 or more) N-phase output inverters are provided, and the first and second upper and lower arm circuits in each of the upper and lower arm circuit groups perform switching at the fundamental frequency of the inverter output. An inverter characterized in that the third upper and lower arm circuits perform pulse width controlled switching at a frequency higher than the fundamental frequency.
【請求項2】請求項1に記載のインバータにおいて、N
個の前記上下アーム回路群の第三の上下アーム回路を構
成するスイッチング素子を、同じくN個の該上下アーム
回路群の第一、第二の上下アーム回路を構成するスイッ
チング素子よりもスイッチング損失の少ない高速スイッ
チング素子とすることを特徴とするインバータ。
2. The inverter according to claim 1, wherein N
The switching elements that form the third upper and lower arm circuits of the upper and lower arm circuit groups are smaller in switching loss than the switching elements that are also the first and second upper and lower arm circuits of the N upper and lower arm circuit groups. An inverter characterized by a small number of high-speed switching elements.
JP4015614A 1992-01-31 1992-01-31 Inverter Pending JPH05211776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4015614A JPH05211776A (en) 1992-01-31 1992-01-31 Inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4015614A JPH05211776A (en) 1992-01-31 1992-01-31 Inverter

Publications (1)

Publication Number Publication Date
JPH05211776A true JPH05211776A (en) 1993-08-20

Family

ID=11893586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4015614A Pending JPH05211776A (en) 1992-01-31 1992-01-31 Inverter

Country Status (1)

Country Link
JP (1) JPH05211776A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004509591A (en) * 2000-09-13 2004-03-25 アーベーベー・リサーチ・リミテッド Control and adjustment method for three-level power converter with active clamping switch and device therefor
JP2006087257A (en) * 2004-09-17 2006-03-30 Fuji Electric Holdings Co Ltd Multilevel converter and its control method
JP2006121812A (en) * 2004-10-21 2006-05-11 Nissan Motor Co Ltd Method for controlling power conversion device
WO2009116273A1 (en) * 2008-03-19 2009-09-24 三菱電機株式会社 Power conversion device
JP2010246267A (en) * 2009-04-06 2010-10-28 Fuji Electric Systems Co Ltd Five-level inverter
JP2011072118A (en) * 2009-09-25 2011-04-07 Fuji Electric Holdings Co Ltd Five-level inverter
JP2012034428A (en) * 2010-07-28 2012-02-16 Toshiba Mitsubishi-Electric Industrial System Corp Power conversion equipment
CN103250338A (en) * 2010-12-13 2013-08-14 Abb技术有限公司 Multi-level voltage converter
WO2013161045A1 (en) * 2012-04-26 2013-10-31 三菱電機株式会社 Power module and 3-level power conversion device using same
CN105553318A (en) * 2015-12-23 2016-05-04 华为技术有限公司 Equivalent transistor and three-level inverter
US9654026B2 (en) 2012-08-10 2017-05-16 Mitsubishi Electric Corporation Three-level power converting apparatus with reduced conduction loss
DE102016224312A1 (en) * 2016-12-07 2018-06-07 Siemens Aktiengesellschaft High efficiency power converter for three-phase systems
EP2897278B1 (en) 2014-01-06 2018-07-18 General Electric Company System and method of power conversion
EP3972113A1 (en) 2020-09-18 2022-03-23 SEMIKRON Elektronik GmbH & Co. KG Converter device with a converter comprising anpc topology and a control device
US11463017B2 (en) 2018-11-12 2022-10-04 Kaco New Energy Gmbh 3-stage active neutral point clamped (ANPC) hybrid converter

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004509591A (en) * 2000-09-13 2004-03-25 アーベーベー・リサーチ・リミテッド Control and adjustment method for three-level power converter with active clamping switch and device therefor
JP4943625B2 (en) * 2000-09-13 2012-05-30 アーベーベー・リサーチ・リミテッド Control and adjustment method for three-level power conversion device with active clamping switch and device therefor
JP2006087257A (en) * 2004-09-17 2006-03-30 Fuji Electric Holdings Co Ltd Multilevel converter and its control method
JP2006121812A (en) * 2004-10-21 2006-05-11 Nissan Motor Co Ltd Method for controlling power conversion device
JP4626259B2 (en) * 2004-10-21 2011-02-02 日産自動車株式会社 Power converter control method
US8866342B2 (en) 2008-03-19 2014-10-21 Mitsubishi Electric Corporation Power converting apparatus
WO2009116273A1 (en) * 2008-03-19 2009-09-24 三菱電機株式会社 Power conversion device
JP5002706B2 (en) * 2008-03-19 2012-08-15 三菱電機株式会社 Power converter
JP2010246267A (en) * 2009-04-06 2010-10-28 Fuji Electric Systems Co Ltd Five-level inverter
JP2011072118A (en) * 2009-09-25 2011-04-07 Fuji Electric Holdings Co Ltd Five-level inverter
JP2012034428A (en) * 2010-07-28 2012-02-16 Toshiba Mitsubishi-Electric Industrial System Corp Power conversion equipment
EP2652867A4 (en) * 2010-12-13 2018-01-17 ABB Schweiz AG Multi-level voltage converter
CN103250338A (en) * 2010-12-13 2013-08-14 Abb技术有限公司 Multi-level voltage converter
JP2013533729A (en) * 2010-12-13 2013-08-22 アーべーべー・テヒノロギー・リミテッド Multi-level voltage converter
WO2013161045A1 (en) * 2012-04-26 2013-10-31 三菱電機株式会社 Power module and 3-level power conversion device using same
JP5529347B2 (en) * 2012-04-26 2014-06-25 三菱電機株式会社 3-level power converter
KR20140135838A (en) * 2012-04-26 2014-11-26 미쓰비시덴키 가부시키가이샤 Power module and 3-level power conversion device using same
US9281760B2 (en) 2012-04-26 2016-03-08 Mitsubishi Electric Corporation Power module and three-level power converter using the same
US9654026B2 (en) 2012-08-10 2017-05-16 Mitsubishi Electric Corporation Three-level power converting apparatus with reduced conduction loss
EP2897278B1 (en) 2014-01-06 2018-07-18 General Electric Company System and method of power conversion
WO2017107931A1 (en) * 2015-12-23 2017-06-29 华为技术有限公司 Equivalent transistor and three-level inverter
CN105553318A (en) * 2015-12-23 2016-05-04 华为技术有限公司 Equivalent transistor and three-level inverter
EP3382881A4 (en) * 2015-12-23 2018-11-21 Huawei Technologies Co., Ltd. Equivalent transistor and three-level inverter
US10333427B2 (en) 2015-12-23 2019-06-25 Huawei Technologies Co., Ltd. Equivalent transistor and three-level inverter
CN105553318B (en) * 2015-12-23 2020-04-21 华为技术有限公司 Equivalent transistor and three-level inverter
DE102016224312A1 (en) * 2016-12-07 2018-06-07 Siemens Aktiengesellschaft High efficiency power converter for three-phase systems
US11463017B2 (en) 2018-11-12 2022-10-04 Kaco New Energy Gmbh 3-stage active neutral point clamped (ANPC) hybrid converter
EP3972113A1 (en) 2020-09-18 2022-03-23 SEMIKRON Elektronik GmbH & Co. KG Converter device with a converter comprising anpc topology and a control device

Similar Documents

Publication Publication Date Title
JP2711315B2 (en) Switching power supply
US7126409B2 (en) Three level inverter
US5710698A (en) Delta connected resonant snubber circuit
US5642273A (en) Resonant snubber inverter
JPH05211776A (en) Inverter
US11855553B1 (en) Multi-level inverter with mixed device types
JP3323106B2 (en) Semiconductor power converter
Newton et al. The investigation and development of a multi-level voltage source inverter
JP6647471B1 (en) 3-level power converter
JPH08182342A (en) Power converter
WO2022138608A1 (en) Three-phase three-level inverter drive control device and drive control method
JPH07111784A (en) Power conversion system
Baranwal et al. A modified four-step commutation to suppress common-mode voltage during commutations in open-end winding matrix converter drives
JPS6036711B2 (en) Inverter device
JPH11127540A (en) Method for supplying reactive power to ac grid system and inverter used for the same
JP4406909B2 (en) AC-DC converter
JPH0488884A (en) Voltage type inverter
JPH05308778A (en) Inverter for driving electric car
Komurcugil et al. Neutral-point-clamped and T-type multilevel inverters
Mouselinos et al. Multilevel Inverters: A survey of limitations and recommended problem-solving techniques
JPH0197174A (en) Power converter
Khergade et al. Improved Capacitor Voltage Balancing Strategy for Transistor Clamped H-bridge Multi-level Inverter
JP3116714B2 (en) Control method of three-level inverter
JP4277360B2 (en) 3-level inverter controller
JP3150521B2 (en) Bridge circuit and inverter device