JPH05211053A - Charged particle ray device - Google Patents

Charged particle ray device

Info

Publication number
JPH05211053A
JPH05211053A JP1592692A JP1592692A JPH05211053A JP H05211053 A JPH05211053 A JP H05211053A JP 1592692 A JP1592692 A JP 1592692A JP 1592692 A JP1592692 A JP 1592692A JP H05211053 A JPH05211053 A JP H05211053A
Authority
JP
Japan
Prior art keywords
cross
charged particle
section
image
particle beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1592692A
Other languages
Japanese (ja)
Inventor
Takeshi Onishi
毅 大西
Toru Ishitani
亨 石谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1592692A priority Critical patent/JPH05211053A/en
Publication of JPH05211053A publication Critical patent/JPH05211053A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide good images even if a screen is composed of the intricacies of cross section parts, surface parts, and edge parts which are the boundaries thereof by allowing at least either the contrast or brightness of images to be automatically adjusted. CONSTITUTION:There is provided an image quality automatic adjustment function wherein secondary charged particle signals from each of a plurarity of divided beam scanning areas are weighted and used as automatic adjustment feedback signals which adjust either the contrast or brightness of images. That is, in a dynamic memory as an observation sample, the screen displaying a cross section 3 near a contact part including the periphery of machined holes is divided into a central part region 5 (an image quality automatic adjustment region) and other regions and only image signals from the region 5 are used to automatically adjust the contrast. SIM images (cross section photographs) providing good cross section images which allow the circumstances to be simulataneously understood are obtained by adjusting at least either the contrast or brightness of images.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は荷電粒子線を利用した高
分解能の顕微鏡像を得る装置にかかり、特にデバイスの
断面加工後の断面像観察に適した荷電粒子線装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for obtaining a high-resolution microscope image using a charged particle beam, and more particularly to a charged particle beam apparatus suitable for observing a cross-sectional image of a device after cross-section processing.

【0002】[0002]

【従来の技術】従来技術は、プロシーディングス オブ
インターナショナル リライアビリティー フィジィ
ックス シンポジウム,(1989年)第43頁から第
52頁(Proceedings of International Reliability Ph
ysics Symposium,(1989)pp.43−52)に記
載されている。
2. Description of the Related Art The prior art is the Proceedings of International Reliability Physics Symposium, (1989) pp. 43-52.
ysics Symposium, (1989) pp. 43-52).

【0003】上記論文では図2に示すようにFIBを利
用してデバイスの断面加工を行い、SIM機能を用いて
図3に示すデバイス断面写真(SIM像)を得た例が示
されている。
In the above-mentioned paper, as shown in FIG. 2, an example of obtaining a device cross-section photograph (SIM image) shown in FIG. 3 by using the FIB to process the cross-section of the device and using the SIM function is shown.

【0004】論文に記述された加工手順を図2に沿って
説明する。
The processing procedure described in the paper will be described with reference to FIG.

【0005】(1)SIM像を元に粗加工の領域(破線
で囲んだ領域)を設定する。
(1) A rough processing area (area surrounded by a broken line) is set based on the SIM image.

【0006】(2)電流値2から5nAの大電流FIB
により矩形穴をスパッタリングにより高速に加工する。
粗加工後の断面はその断面のだれやスパッタ粒子の再付
着膜によりデバイス断面構造を観察できる状態にない。
(2) Large current FIB with a current value of 2 to 5 nA
The rectangular hole is processed at high speed by sputtering.
The cross-section after rough processing is not in a state where the device cross-sectional structure can be observed due to the sag of the cross-section and the redeposited film of sputter particles.

【0007】(3)観察断面を電流400pAのFIB
により仕上げ加工する。
(3) The observed cross section is FIB with a current of 400 pA.
Finish processing by.

【0008】上記従来技術は複数のビーム電流(ビーム
径)を使いわけ、効率良く断面を形成している点で評価
できる。
The above-mentioned conventional technique can be evaluated in that a plurality of beam currents (beam diameters) are used properly and a cross section is formed efficiently.

【0009】論文には図3に示すように、加工の矩形穴
が視野に入る低倍率のSIM像(1)と目的の観察場所を
含む高倍率のSIM像(2)が示されている。高倍率SI
M像の画角は低倍率SIM像内に白線枠で示されてい
る。この画面構成を良く見ると高倍率SIM像は画面上
部のデバイス断面部と画面下部のデバイス表面部により
構成されていることが分かる。このように、観察画面は
重要な観察点極近傍の領域だけでなくその他の領域も含
まれた形で構成されることが多い。観察点以外の情報を
入れることで、例えば、観察点の相対的な位置や大きさ
を明確にしたり、画像としての構図等を整えることがで
きる。
As shown in FIG. 3, the paper shows a low-magnification SIM image (1) in which a processed rectangular hole enters the field of view and a high-magnification SIM image (2) including a target observation location. High magnification SI
The angle of view of the M image is indicated by a white frame within the low-magnification SIM image. A close look at this screen configuration reveals that the high-magnification SIM image is composed of the device cross section at the top of the screen and the device surface at the bottom of the screen. As described above, the observation screen is often configured to include not only the area near the important observation point but also other areas. By inserting information other than the observation point, for example, the relative position and size of the observation point can be clarified, and the composition as an image can be adjusted.

【0010】[0010]

【発明が解決しようとする課題】上記従来技術では、S
IM像観察において、コントラスト及びブライトネスを
自動調整した記述は無い。例えば、上記従来技術におい
て、SEM等で一般的に行われている自動コントラスト
調整を行えば、下記の理由で不具合が生じる。 (1)一般的に行われている自動コントラスト調整は、
画面を粗く全域走査し、二次電子信号のピーク値が一定
(設定値)になるように信号検出系の利得を帰還回路に
より自動調節して行われる。
In the above conventional technique, S
There is no description of automatic adjustment of contrast and brightness in IM image observation. For example, in the above conventional technique, if automatic contrast adjustment that is generally performed by SEM or the like is performed, a problem occurs due to the following reason. (1) Generally, automatic contrast adjustment is
The entire screen is roughly scanned, and the gain of the signal detection system is automatically adjusted by the feedback circuit so that the peak value of the secondary electron signal becomes constant (set value).

【0011】(2)デバイス断面観察の場合、断面部と
表面部及びその境界のエッジ部などが入り組んだ画面構
成になる場合が多く、コントラストの強い画面となる。
(2) In the case of observing the cross section of a device, the screen structure often has a complicated cross section, the surface, and the edge of the boundary between them, resulting in a high contrast screen.

【0012】従って、(2)に(1)を単純に適用すると、
全体としては良いコントラストの画像が得られるが、断
面部が他に比較して暗くなり、断面情報の欠落した画像
となってしまう。
Therefore, if (1) is simply applied to (2),
Although an image with good contrast can be obtained as a whole, the cross-sectional portion becomes darker than the others, resulting in an image lacking cross-sectional information.

【0013】コントラスト等の自動調整は、特に、断面
部の高分解能の写真撮影を美しく、失敗無く行うために
必要不可欠であり、断面観察装置においてこれを実現す
ることが課題である。
The automatic adjustment of contrast and the like is indispensable in order to take a high-resolution photograph of a cross section beautifully and without failure, and it is a problem to realize this in a cross section observation apparatus.

【0014】本発明の目的は、断面部と表面部及びその
境界のエッジ部などが入り組んだ画面構成になる場合に
おいても、良好な(断面構造の情報が失われない)画像が
得られる自動画質調整機能を有した装置を提供すること
にある。
The object of the present invention is to provide an automatic image quality that can obtain a good image (without losing the information of the sectional structure) even in the case of a screen configuration in which the sectional part, the surface part, and the edge part of the boundary are complicated. It is to provide a device having an adjusting function.

【0015】[0015]

【課題を解決するための手段】上記目的を達成するため
に、FIBを利用してデバイスに断面を形成し、SIMも
しくはSEMにより該断面を含む顕微鏡画像を得る装置
に、ビームの走査領域を複数個に分割し、それぞれの領
域から発生する二次荷電粒子信号に重み付けを行って断
面を含む画像のコントラストとブライトネスの少なくと
も一方を自動的に調整する画質自動調整機能を設けた。
In order to achieve the above object, a plurality of beam scanning regions are provided in an apparatus for forming a cross section on a device by using FIB and obtaining a microscope image including the cross section by SIM or SEM. An image quality automatic adjustment function is provided for automatically adjusting at least one of contrast and brightness of an image including a cross-section by weighting secondary charged particle signals generated from each region.

【0016】[0016]

【作用】断面部と表面部及びその境界のエッジ部などが
入り組んだ画面構成において、例えば、画面を断面の一
部の領域(主に観察したい部分が含まれる)とその他の
領域に分割し、その他の領域の重み(画質調整機能への
寄与分)をゼロとすると断面の一部の領域からの信号の
みで画質を調整できる。これにより、断面部と表面部及
びその境界のエッジ部などが入り組んだ画面構成になる
場合においても、良好な(断面構造の情報が失われな
い)画像が得られる。
In the screen configuration in which the cross-section portion, the surface portion, and the edge portion of the boundary thereof are intricately divided, for example, the screen is divided into a partial area of the cross-section (mainly including the portion to be observed) and other areas, If the weights (contributions to the image quality adjustment function) of the other regions are set to zero, the image quality can be adjusted only by the signals from some regions of the cross section. Thereby, even in the case of a screen configuration in which the cross-section part, the surface part, and the edge part of the boundary thereof are complicated, a good image (information of the cross-section structure is not lost) can be obtained.

【0017】[0017]

【実施例】以下、本発明の実施例を図を用いて説明す
る。図4は実施例で用いたFIB装置の構成図である。
液体金属イオン源100から放出したイオンはコンデン
サレンズ101と対物レンズ107により試料112上
に集束する。ビーム加速電圧は30kVである。レンズ
間には可変アパーチャー102,アライナー・スティグ
マー103,ブランカー104,ブランキング・アパー
チャー105,デフレクター106が配置されている。
試料112はステージ108により移動できる。ステー
ジはx,y,z,チルト,回転の5軸方向に制御され
る。FIB照射により試料112から発生した二次電子
は、二次電子検出器109により検出・増幅され、偏向
制御と同期させることにより、コンピューターのCRT
上にSIM 像として表示される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 4 is a block diagram of the FIB device used in the embodiment.
Ions emitted from the liquid metal ion source 100 are focused on the sample 112 by the condenser lens 101 and the objective lens 107. The beam acceleration voltage is 30 kV. A variable aperture 102, an aligner / stigmer 103, a blanker 104, a blanking aperture 105, and a deflector 106 are arranged between the lenses.
The sample 112 can be moved by the stage 108. The stage is controlled in five axis directions of x, y, z, tilt and rotation. Secondary electrons generated from the sample 112 by FIB irradiation are detected and amplified by the secondary electron detector 109, and are synchronized with the deflection control, so that the CRT of the computer is detected.
Displayed as a SIM image on top.

【0018】図1は本発明を利用した実施例(デバイス
断面観察)の説明図である。断面の形成方法は従来技術
と類似のため説明を省略する。
FIG. 1 is an explanatory diagram of an embodiment (observation of device cross section) using the present invention. Since the method of forming the cross section is similar to the conventional technique, the description thereof will be omitted.

【0019】SIM像は試料を60°傾斜させて撮影し
た。観察試料は、ダイナミック型メモリーで、コンタク
ト部1近傍の断面3を加工穴周辺も含めて撮影した。画
面を中央部の点線で囲まれた領域5(主に観察したい領
域)とその他の領域に分割し、前者の画像信号だけで自
動コントラスト調整を行った。自動コントラスト調整回
路の構成を図5に示す。動作を図を用いて説明する。
The SIM image was taken by inclining the sample by 60 °. The observation sample was a dynamic memory, and the cross section 3 near the contact portion 1 was photographed including the periphery of the processed hole. The screen was divided into an area 5 (mainly an area to be observed) surrounded by a dotted line in the center and other areas, and automatic contrast adjustment was performed only with the former image signal. The configuration of the automatic contrast adjustment circuit is shown in FIG. The operation will be described with reference to the drawings.

【0020】試料から放出された二次電子10はシンチ
レータ11で光に変換され、光電子増倍管12により電
流増幅される。増幅された電流はプリアンプ13で電圧
信号に変換される。この信号はリミッタ14を介しA/
D変換器15に供給され、画像メモリー16に記憶され
る。この内容は濃淡画像としてコンピューターのCRT上
に表示される。
The secondary electrons 10 emitted from the sample are converted into light by the scintillator 11 and current-amplified by the photomultiplier tube 12. The amplified current is converted into a voltage signal by the preamplifier 13. This signal is sent to A / via the limiter 14.
It is supplied to the D converter 15 and stored in the image memory 16. This content is displayed as a grayscale image on the CRT of the computer.

【0021】プリアンプ13を出た信号(輝度情報を持
っている)はゲート回路17に供給され、図1に示す画
質自動調整領域5(破線に囲まれた領域)の信号のみを
後段のピーク・ホールド回路18に供給する。この部分
が本発明において特徴的な部分である。画質自動調整領
域5内で最も高い輝度信号がホールドされ、誤差増幅器
19により基準電圧(設定値)との差電圧を増幅され、
その信号で増倍管用高圧電源の出力電圧を変化する。こ
の高電圧により光電子増倍管12の増幅率が制御される
ため、帰還制御となり、ピーク・ホールド回路18の出
力と基準電圧が等しくなる条件に落ち着く。つまり、図
1に示す画質自動調整領域5のコントラストが適正値
(基準電圧で指定した値)に帰還制御される。増倍管用
高圧電源20の出力電圧を保持したままSIM像を撮り
なおすと、良好な断面画像を有し、かつ、周囲の状況も
同時に把握できるSIM像が得られた。
The signal (having brightness information) output from the preamplifier 13 is supplied to the gate circuit 17, and only the signal in the image quality automatic adjustment area 5 (area surrounded by a broken line) shown in FIG. It is supplied to the hold circuit 18. This part is a characteristic part of the present invention. The highest luminance signal is held in the image quality automatic adjustment area 5, and the error amplifier 19 amplifies the difference voltage from the reference voltage (setting value),
The signal changes the output voltage of the high voltage power supply for the multiplier. Since the amplification factor of the photomultiplier tube 12 is controlled by this high voltage, feedback control is performed, and the condition where the output of the peak hold circuit 18 and the reference voltage become equal is settled down. That is, the contrast of the image quality automatic adjustment area 5 shown in FIG. 1 is feedback-controlled to an appropriate value (value designated by the reference voltage). When the SIM image was retaken while the output voltage of the high-voltage power source 20 for the multiplier was held, a SIM image having a good cross-sectional image and capable of simultaneously grasping the surrounding conditions was obtained.

【0022】本実施例では、画質自動調整領域を設定す
るためのベースとなるSIM像を手動調整により撮影し
てから上記の操作を行った。このように、予め領域設定
に利用できるSIM像を撮っておくと効率良く、正確に
画質の自動調整が行える。
In the present embodiment, the above operation was performed after the SIM image, which is the base for setting the image quality automatic adjustment area, was photographed by manual adjustment. In this way, if a SIM image that can be used for area setting is taken in advance, the image quality can be efficiently and accurately adjusted automatically.

【0023】また、図5中に示すゲート回路を常時ON
の状態にすると、通常の(全走査領域を対象とした)画
質自動調整回路となるため、この状態で予め領域設定用
のSIM像を撮影し、その画像をもとに画質自動調整領
域を設定して良好なSIM像を撮りなおすこともでき
る。
Further, the gate circuit shown in FIG. 5 is always turned on.
In this state, a normal image quality automatic adjustment circuit (for the entire scanning area) is set. In this state, a SIM image for area setting is captured in advance, and the image quality automatic adjustment area is set based on that image. Then, a good SIM image can be taken again.

【0024】FIBによりデバイスに断面を形成し、そ
の断面を観察する場合、断面加工時に使用した仕上げ面
の位置データから断面観察像の断面部を数値計算を利用
して推測する事が可能で、これを行うと画質自動調整領
域も自動設定できるため使い勝手の良いシステムとな
る。
When a cross section is formed on the device by FIB and the cross section is observed, it is possible to estimate the cross section of the cross section observation image by using numerical calculation from the position data of the finished surface used during the cross section processing. If this is done, the image quality automatic adjustment area can also be set automatically, resulting in a system with good usability.

【0025】[0025]

【発明の効果】本発明によれば、デバイス断面部と表面
部及びその境界のエッジ部などが入り組んだ画面構成に
おいても、自動制御によって重要度の高い部分(例えば
断面の一部)のコントラスト(画質)が良好で、かつ、
参考となる他の部分も存在するSIM像が得られる。特
に、高分解能の写真撮影を美しく、失敗無く撮影できる
効果がある。
According to the present invention, even in a screen configuration in which the device cross section, the surface, and the edge of the boundary between them are complicated, the contrast of a highly important part (for example, a part of the cross section) is controlled by automatic control. Image quality) is good, and
A SIM image in which there are other parts that serve as a reference is also obtained. In particular, there is an effect that high-resolution photography can be taken beautifully and without failure.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の説明図(CRT画像)であ
る。
FIG. 1 is an explanatory diagram (CRT image) of an embodiment of the present invention.

【図2】公知例に記載されているデバイス断面加工手順
を示す説明図である。
FIG. 2 is an explanatory diagram showing a device cross-section processing procedure described in a known example.

【図3】公知例に示されているのデバイス断面写真を示
す図である。
FIG. 3 is a view showing a device cross-sectional photograph of a known example.

【図4】実施例で用いたFIB装置の構成図である。FIG. 4 is a configuration diagram of an FIB device used in an example.

【図5】実施例で用いた画質自動調整回路の構成図であ
る。
FIG. 5 is a configuration diagram of an image quality automatic adjustment circuit used in the embodiment.

【符号の説明】[Explanation of symbols]

1…コンタクト部、2…配線パターン、3…観察断面
(仕上げ加工面)、4…加工穴側壁(非仕上げ加工
面)、5…画質自動調整領域、6…CRT画像、10…
二次電子、11…シンチレーター、12…光電子増倍
管、13…プリアンプ、14…リミッタ、15…A/D
変換器、16…画像メモリー、17…ゲート回路、18
…ピーク・ホールド回路、19…誤差増幅器、20…増
倍管用高圧電源、100…液体金属イオン源、101…
コンデンサ・レンズ、102…可変アパーチャー、10
3…アライナー・スティグマー、104…ブランカー、
105…ブランキング・アパーチャー、106…デフレ
クター、107…対物レンズ、108…ステージ、109
…二次電子検出器、112…試料。
1 ... Contact part, 2 ... Wiring pattern, 3 ... Observation section (finished surface), 4 ... Machining hole side wall (non-finished surface), 5 ... Image quality automatic adjustment area, 6 ... CRT image, 10 ...
Secondary electron, 11 ... Scintillator, 12 ... Photomultiplier tube, 13 ... Preamplifier, 14 ... Limiter, 15 ... A / D
Converter, 16 ... Image memory, 17 ... Gate circuit, 18
... Peak / hold circuit, 19 ... Error amplifier, 20 ... High voltage power supply for multiplier, 100 ... Liquid metal ion source, 101 ...
Condenser lens, 102 ... Variable aperture, 10
3 ... Aligner Stigmar, 104 ... Blanker,
105 ... Blanking aperture, 106 ... Deflector, 107 ... Objective lens, 108 ... Stage, 109
... secondary electron detector, 112 ... sample.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】荷電粒子線を集束して試料上を走査し、試
料から放出される二次粒子の強度を走査と同期して検出
することにより顕微鏡画像を得る荷電粒子線装置であっ
て、ビームの走査領域を複数個に分割し、それぞれの領
域から発生する二次荷電粒子信号に重み付けを行った信
号を、該画像のコントラストとブライトネスの少なくと
も一方を調整する自動調整の帰還信号として用いた画質
自動調整機能を有したことを特徴とする荷電粒子線装
置。
1. A charged particle beam apparatus for obtaining a microscope image by focusing a charged particle beam to scan on a sample and detecting the intensity of secondary particles emitted from the sample in synchronization with the scanning, A signal obtained by dividing the beam scanning region into a plurality of regions and weighting the secondary charged particle signals generated from each region was used as a feedback signal for automatic adjustment for adjusting at least one of contrast and brightness of the image. A charged particle beam device having an automatic image quality adjustment function.
【請求項2】該荷電粒子線が集束イオンビーム(Focused
Ion Beam:略してFIB)であり、スパッタリングを利
用した断面加工後に、該断面を走査型イオン顕微鏡(Sc
anning Ion Microscope:略してSIM)で観察すること
を特徴とする請求項1記載の荷電粒子線装置。
2. The charged particle beam is a focused ion beam (Focused)
Ion Beam: FIB for short. After cross-section processing using sputtering, the cross-section is scanned with a scanning ion microscope (Sc
The charged particle beam apparatus according to claim 1, wherein the observation is performed by an anning ion microscope (abbreviated as SIM).
【請求項3】FIBと電子ビームを試料に照射できる装
置であって、FIBで断面加工を行い、走査型電子顕微
鏡(Scanning Electron Microscope:略してSEM)によ
り観察画像を得ることを特徴とする請求項1記載の荷電
粒子線装置。
3. An apparatus capable of irradiating a sample with a FIB and an electron beam, characterized in that a cross-section is processed by the FIB and an observation image is obtained by a scanning electron microscope (SEM for short). Item 1. The charged particle beam device according to Item 1.
【請求項4】画像情報をメモリーに記憶させて表示する
システムであって、すでに撮られた画像を基に画質自動
調整を行うための領域を指定する手段を設けた事を特徴
とする請求項1ないし3のいずれか1項記載の荷電粒子
線装置。
4. A system for storing and displaying image information in a memory, characterized by further comprising means for designating an area for automatic image quality adjustment based on an image already taken. The charged particle beam device according to any one of 1 to 3.
【請求項5】ビーム走査領域を重要な観察点の含まれる
領域(例えばデバイス断面の一部)とその他の部分に2
分割し、その他の部分の重みを0とする事を特徴とする
請求項1ないし4のいずれか1項記載の荷電粒子線装
置。
5. The beam scanning region is divided into a region including an important observation point (for example, a portion of a device cross section) and another portion.
The charged particle beam device according to claim 1, wherein the charged particle beam device is divided and the weight of other portions is set to 0.
【請求項6】FIBによる断面加工工程とSIMもしく
はSEMによる像観察工程を連動させ、断面加工に利用
した加工位置データから該観察像内の領域(自動画質調
整に係る)を自動的に指定する事を特徴とする請求項2
ないし5のいずれか1項記載の荷電粒子線装置。
6. A cross-section processing step by FIB and an image observing step by SIM or SEM are interlocked to automatically specify an area (related to automatic image quality adjustment) in the observed image from processing position data used for cross-section processing. Claim 2 characterized by the above
6. The charged particle beam device according to claim 1.
JP1592692A 1992-01-31 1992-01-31 Charged particle ray device Pending JPH05211053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1592692A JPH05211053A (en) 1992-01-31 1992-01-31 Charged particle ray device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1592692A JPH05211053A (en) 1992-01-31 1992-01-31 Charged particle ray device

Publications (1)

Publication Number Publication Date
JPH05211053A true JPH05211053A (en) 1993-08-20

Family

ID=11902387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1592692A Pending JPH05211053A (en) 1992-01-31 1992-01-31 Charged particle ray device

Country Status (1)

Country Link
JP (1) JPH05211053A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009245674A (en) * 2008-03-31 2009-10-22 Hitachi High-Technologies Corp Charged particle microscope and image processing method using it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009245674A (en) * 2008-03-31 2009-10-22 Hitachi High-Technologies Corp Charged particle microscope and image processing method using it

Similar Documents

Publication Publication Date Title
JP4383950B2 (en) Charged particle beam adjustment method and charged particle beam apparatus
JP3109785B2 (en) Automatic focusing device for scanning electron microscope
US7148479B2 (en) Defect inspection apparatus, program, and manufacturing method of semiconductor device
JPH05343019A (en) Charged particle beam device and observation thereof
JP4359232B2 (en) Charged particle beam equipment
US20020024021A1 (en) Method and apparatus for inspecting patterns of a semiconductor device with an electron beam
JP3101114B2 (en) Scanning electron microscope
JPH11213934A (en) Method for observing secondary ion image formed by focused ion beam
JP2001210263A (en) Scanning electron microscope, its dynamic focus control method and shape identifying method for semiconductor device surface and cross section
KR100377026B1 (en) Focused ion beam apparatus, focused ion beam observation method and focused ion beam processing method
JP3836735B2 (en) Circuit pattern inspection device
JPH05211053A (en) Charged particle ray device
JPS60126834A (en) Ion beam processing method and device thereof
JP3060613B2 (en) Focused ion beam apparatus and cross-section processing method using focused ion beam
JPH1050245A (en) Focusing method in charged particle beam device
JP4431624B2 (en) Charged particle beam adjustment method and charged particle beam apparatus
JP3968144B2 (en) Focused ion beam processing method and processing apparatus
JPH06231716A (en) Ion micro beam device
JP2001118537A (en) Beam-scanning inspection apparatus
JP2672808B2 (en) Ion beam processing equipment
JP3240730B2 (en) Ion beam device and processing condition display method using ion beam device
JP2001006605A (en) Focusing ion beam processing device and processing method for specimen using focusing ion beam
JPH06134583A (en) Ion beam machine
JPH11307417A (en) Method for observing cross-section machined by focused ion beam
JPH05325860A (en) Method for photographing image in scanning electron microscope