JPH0521050A - Uniform micro porous film made of polyethylene and its manufacture - Google Patents

Uniform micro porous film made of polyethylene and its manufacture

Info

Publication number
JPH0521050A
JPH0521050A JP3166612A JP16661291A JPH0521050A JP H0521050 A JPH0521050 A JP H0521050A JP 3166612 A JP3166612 A JP 3166612A JP 16661291 A JP16661291 A JP 16661291A JP H0521050 A JPH0521050 A JP H0521050A
Authority
JP
Japan
Prior art keywords
molecular weight
less
polyethylene
microporous membrane
plasticizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3166612A
Other languages
Japanese (ja)
Other versions
JP3121047B2 (en
Inventor
Koichi Yasugata
公一 安形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP03166612A priority Critical patent/JP3121047B2/en
Publication of JPH0521050A publication Critical patent/JPH0521050A/en
Application granted granted Critical
Publication of JP3121047B2 publication Critical patent/JP3121047B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide high strength while protruding an adequate rupture ductility and pore diameter by having a three-dimensional mesh structure, containing a polyethy lene of a predetermined super high molecular weight, and selecting a porosity, a permea bility, and a rupture ductility, etc., of a predetermined value, respectively. CONSTITUTION:A micro porous film containing a polyethylene of a super high molecular weight has a three-dimensional mesh structure, and a super high molecular weight polyethylene of at least 2 million in a viscosity average molecular weight is contained by at least 30wt.% of the micro porous film. The micro porous film is designed to have a porosity of not less than 40%, a permeability of not above 450sec/100cc, an elasticity in a mechanical direction of not less than 4000kg/cm<2>, a rupture ductility both in the mechanical direction and in the perpendicular direction of not less than 400%, a bubble point in an ethyl alcohol of 2 to 10kg/cm<2>, and the ratio of a maximum pore diameter to an average pore diameter of not less than 1.6. Whereby, a micro porous film can be provided such that it has an adequate elongation in its width direction while having high strength in the mechanical direction, and furthermore has an adequate pore diameter while being homogeneous.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超高分子量ポリエチレ
ンを含有する微多孔膜に関する。特に、本発明は三次元
網目構造を有する均質な超高分子量ポリエチレンを含有
する微多孔膜に関する。
FIELD OF THE INVENTION The present invention relates to a microporous membrane containing ultra high molecular weight polyethylene. In particular, the invention relates to microporous membranes containing homogeneous ultra high molecular weight polyethylene having a three dimensional network structure.

【0002】[0002]

【従来の技術】微多孔膜は、電池用セパレ−タ・電解コ
ンデンサ−用セパレ−タ・精密ろ過膜等として用いられ
ている。電池用セパレ−タ・電解コンデンサ−用セパレ
−タには、電池・電解コンデンサ−の組立加工性及び信
頼性の点から強くて均質な微多孔膜が望まれており、特
にリチウム電池などの非水電解液電池用のセパレ−タに
は、強くて均質で、かつ電気抵抗の小さな微多孔膜が要
求されている。
Microporous membranes are used as separators for batteries, separators for electrolytic capacitors, microfiltration membranes and the like. For separators for batteries and separators for electrolytic capacitors, strong and homogeneous microporous membranes are desired from the viewpoints of assembly workability and reliability of batteries and electrolytic capacitors, and especially for non-rechargeable batteries such as lithium batteries. A separator for water-electrolyte batteries is required to have a strong, uniform, and microporous membrane with low electric resistance.

【0003】また、精密ろ過膜には、適度な孔径を有し
た強くて均質な微多孔膜が望まれている。微多孔膜の製
造方法の一つとして、樹脂と溶媒によって多孔化する方
法がある。例えば、特開平2−21559号公報、特開
平3−105851号公報などであるが、特開平2−2
1559号公報に開示されている方法では、高強度の微
多孔膜は得られない。また、特開平3−105851号
公報に開示されている微多孔膜は、平均貫通孔径が小さ
いため、浄水器などの多量の水をろ過する精密ろ過膜と
して適さないばかりでなく、膜厚が薄いためにリチウム
電池のセパレ−タとして用いるには、安全性の点から問
題がある。さらに、可塑剤抽出により成形シ−トが大幅
に収縮し、2軸延伸しなければならず、少なくとも一方
向に適度な破断伸度を有さないといった難点もある。
Further, for the microfiltration membrane, a strong and homogeneous microporous membrane having an appropriate pore size is desired. As one of the methods for producing a microporous membrane, there is a method of making it porous with a resin and a solvent. For example, JP-A-2-21559 and JP-A-3-105851 are disclosed.
According to the method disclosed in Japanese Patent No. 1559, a high-strength microporous membrane cannot be obtained. Further, the microporous membrane disclosed in Japanese Patent Laid-Open No. 3-105851 is not suitable as a microfiltration membrane for filtering a large amount of water in a water purifier or the like because it has a small average through-hole diameter, and also has a thin film thickness. Therefore, there is a problem in terms of safety when used as a separator of a lithium battery. Further, there is a problem that the molding sheet is significantly shrunk by the extraction of the plasticizer and must be biaxially stretched, so that it does not have an appropriate breaking elongation in at least one direction.

【0004】他の微多孔膜の製造方法として、樹脂と可
塑剤と充填剤からなる混合物の相分離後、可塑剤あるい
は可塑剤と充填剤を抽出除去して多孔化する方法があ
る。例えば、特開昭55−165573号公報である
が、明細書中に記載されているように、一般的な手順及
び材料に従って形成した微多孔膜は電気抵抗が高く、す
なわち、水等の透過抵抗も高いと考えられ、適度な孔径
は有さず、精密ろ過膜としては少なくとも適さず、電気
抵抗が高いためセパレ−タにも適さないと考えられる。
Another method for producing a microporous membrane is a method in which after phase separation of a mixture of a resin, a plasticizer and a filler, the plasticizer or the plasticizer and the filler are extracted and removed to make them porous. For example, as described in JP-A-55-165573, as described in the specification, a microporous membrane formed according to a general procedure and materials has high electric resistance, that is, permeation resistance of water or the like. It is also considered that it is not suitable for a separator because it does not have an appropriate pore size, is not suitable as a microfiltration membrane at least, and has a high electric resistance.

【0005】さらに、特開昭57−49629号公報に
は、特に可塑剤を限定した微多孔膜の製造方法が開示さ
れているが、この方法によっても、高強度で適度な孔径
を有する微多孔膜は得られない。
Further, Japanese Patent Application Laid-Open No. 57-49629 discloses a method for producing a microporous membrane in which the plasticizer is particularly limited, and this method also provides a microporous material having high strength and an appropriate pore size. No film is obtained.

【0006】[0006]

【発明が解決しようとする課題】本発明は、高強度であ
り、かつ適度な破断伸度及び孔径を有する均質な微多孔
膜を提供することを目的としている。本発明で実施され
るような、超高分子量ポリエチレンと高分子量ポリエチ
レンの混合物からなる微多孔膜は公知であるが、多量水
ろ過用の精密ろ過膜、安全性の要求されるリチウム電池
用セパレ−タなどに望まれる所期性能を有する微多孔膜
は、従来の方法では得られなかった。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a homogeneous microporous membrane which has a high strength and has an appropriate breaking elongation and pore size. Microporous membranes composed of a mixture of ultra-high molecular weight polyethylene and high molecular weight polyethylene, which are used in the present invention, are known, but they are microfiltration membranes for filtering large amounts of water, and separators for lithium batteries that require safety. A microporous membrane having the desired performance desired for a device, etc. could not be obtained by the conventional method.

【0007】[0007]

【課題を解決するための手段】本発明者は、少なくとも
粘度平均分子量が200万以上の超高分子量ポリエチレ
ンを含有する微多孔膜において、機械方向に高強度であ
りながら、幅方向(機械方向に直角な方向)に適度な伸
びを有し、さらに適度な孔径を持ち、かつ均質である微
多孔膜及びその製造方法を見いだし、本発明を完成し
た。
Means for Solving the Problems The present inventor has found that a microporous membrane containing at least an ultrahigh molecular weight polyethylene having a viscosity average molecular weight of 2,000,000 or more has high strength in the machine direction, but also in the width direction (machine direction). The present invention has been completed by finding a microporous membrane having a suitable elongation in the direction (perpendicular direction), a suitable pore size, and a homogeneous method, and a method for producing the same.

【0008】すなわち、本発明は、三次元網目構造を有
する微多孔膜であって、少なくとも粘度平均分子量が2
00万以上の超高分子量ポリエチレンを該微多孔膜の少
なくとも30wt%以上含有し、気孔率が40%以上、
透気度450sec/100cc以下、機械方向の弾性
率が4000kg/cm2 以上、機械方向と直角方向の
破断伸度が400%以上、エチルアルコ−ルにおけるバ
ブルポイントが2kg/cm2 〜10kg/cm2 であ
り、平均孔径と最大孔径の比が1.6以下であることを
特徴とする均質なポリエチレン製多孔膜である。
That is, the present invention is a microporous membrane having a three-dimensional network structure and having a viscosity average molecular weight of at least 2
At least 30 wt% of the microporous membrane containing at least 30% by weight of ultra-high molecular weight polyethylene and having a porosity of at least 40%,
Air permeability is 450 sec / 100 cc or less, elastic modulus in the machine direction is 4000 kg / cm 2 or more, breaking elongation in the direction perpendicular to the machine direction is 400% or more, bubble point in ethyl alcohol is 2 kg / cm 2 to 10 kg / cm 2. And the ratio of the average pore diameter to the maximum pore diameter is 1.6 or less, which is a homogeneous polyethylene porous membrane.

【0009】本発明でいうところのポリエチレン、ある
いは超高分子量ポリエチレンとしては、エチレンを重合
した結晶性の単独重合体もしくはエチレンと10モル%
以下のプロピレン、1−ブテン、4−メチル−1−ペン
テン、1−ヘキセンとの共重合体があげられる。三次元
網目構造とは、三次元的に樹脂がネットワ−ク構造を有
しており、その樹脂のネットワ−ク構造間が連通孔とし
て孔を形成している構造を言う。
The polyethylene or the ultrahigh molecular weight polyethylene as referred to in the present invention is a crystalline homopolymer obtained by polymerizing ethylene or 10 mol% of ethylene.
The following copolymers with propylene, 1-butene, 4-methyl-1-pentene and 1-hexene are mentioned. The three-dimensional network structure refers to a structure in which a resin has a three-dimensional network structure, and the network structures of the resin form holes as communication holes.

【0010】気孔率は、電池用セパレ−タとして用いた
場合、電解液の含浸性及び電池の内部抵抗の観点から、
40%以上であることが望ましく、さらには50%以上
であることが望ましい。気孔率が80%以上になると微
多孔膜の強度が低下し、取り扱い上不具合を生ずる。透
気度は、450sec/100cc以下、好ましくは3
00sec/100cc以下、さらに好ましくは200
sec/100cc以下である。透気度が450sec
/100cc以上では、電池用セパレ−タとして用いた
場合、電池の内部抵抗が高くなりすぎ、電池特性を低下
させ、精密ろ過膜として用いた場合、透水度が低くろ過
効率が悪くなる。
The porosity, when used as a separator for a battery, is from the viewpoint of the impregnation property of the electrolytic solution and the internal resistance of the battery.
It is preferably 40% or more, and more preferably 50% or more. When the porosity is 80% or more, the strength of the microporous membrane is reduced, which causes a trouble in handling. Air permeability is 450 sec / 100 cc or less, preferably 3
00 sec / 100 cc or less, more preferably 200
It is sec / 100 cc or less. Air permeability is 450sec
When it is used as a separator for batteries, the internal resistance of the battery becomes too high and the battery characteristics are deteriorated, and when it is used as a microfiltration membrane, the water permeability is low and the filtration efficiency is poor.

【0011】機械方向(長手方向)の弾性率は、400
0kg/cm2 以上、好ましくは5000kg/cm2
以上、さらに好ましくは6000kg/cm2 である。
電池用セパレ−タとして用いた場合、4000kg/c
2 以下では、組立加工性・生産性に劣り、実用性が低
いと考えられる。機械方向と直角方向(幅方向)の破断
伸びは、400%以上、好ましくは450%以上、さら
に好ましくは500%以上である。理由は定かではない
が、該破断伸びが400%以下になると、該微多孔膜を
不織布とともにプリ−ツ加工する場合など、機械方向に
裂け易くなる。
The elastic modulus in the machine direction (longitudinal direction) is 400.
0 kg / cm 2 or more, preferably 5000 kg / cm 2
Above, more preferably 6000 kg / cm 2 .
When used as a battery separator, 4000 kg / c
When it is less than m 2, it is considered that the assembling workability and the productivity are poor and the practicality is low. The breaking elongation in the direction perpendicular to the machine direction (width direction) is 400% or more, preferably 450% or more, more preferably 500% or more. Although the reason is not clear, when the breaking elongation is 400% or less, the microporous membrane is likely to tear in the machine direction when it is pleated with a nonwoven fabric.

【0012】エチルアルコ−ルにおけるバブルポイント
は、2kg/cm2 〜10kg/cm2 、好ましくは3
kg/cm2 〜9kg/cm2 、さらに好ましくは4k
g/cm2 〜8kg/cm2 である。エチルアルコ−ル
におけるバブルポイントが2kg/cm2 以下では、微
多孔膜の孔径が大きく、精密ろ過膜として用いた場合、
菌のリ−クが心配され、特にリチウム電池のセパレ−タ
に用いた場合には、内部短絡の発生が心配される。ま
た、エチルアルコ−ルにおけるバブルボイントが10k
g/cm2 以上では、微多孔膜の孔径が小さすぎて、精
密ろ過膜として用いた場合、透気度が小さくなりろ過効
率が悪く、電池用セパレ−タとして用いた場合、電解液
の含浸性の低下を招く恐れがある。
The bubble point in ethyl alcohol is 2 kg / cm 2 to 10 kg / cm 2 , preferably 3 kg / cm 2.
kg / cm 2 ~9kg / cm 2 , more preferably 4k
g / cm 2 to 8 kg / cm 2 . When the bubble point in ethyl alcohol is 2 kg / cm 2 or less, the pore size of the microporous membrane is large, and when used as a microfiltration membrane,
There is a concern that the bacteria may leak, especially when used as a separator for a lithium battery, which may cause an internal short circuit. Also, the bubble point of ethyl alcohol is 10k.
When it is more than g / cm 2 , the pore size of the microporous membrane is too small, and when it is used as a microfiltration membrane, the air permeability becomes small and the filtration efficiency is poor, and when it is used as a battery separator, it is impregnated with an electrolyte solution. There is a risk of deterioration of sex.

【0013】精密ろ過膜として用いる場合には、確実な
除菌性を確保するために均質な微多孔膜が望まれ、特に
リチウム電池のセパレ−タとして用いる場合には、電池
の内部抵抗の均一性が安全性の確保に必要だと考えら
れ、同様に、均質な微多孔膜が望まれ、平均孔径と最大
孔径の比が1.6以上になると均質性に不安がある。好
ましくは、1.5以下、さらに好ましくは、1.4以下
である。
When used as a microfiltration membrane, a homogeneous microporous membrane is desired in order to ensure reliable sterilization. Especially when used as a separator for lithium batteries, the internal resistance of the battery is uniform. It is considered that the homogeneity is necessary for ensuring safety, and similarly, a homogeneous microporous membrane is desired, and if the ratio of the average pore diameter to the maximum pore diameter is 1.6 or more, there is concern about the homogeneity. It is preferably 1.5 or less, more preferably 1.4 or less.

【0014】本発明において膜厚は特に規定していない
が、精密ろ過膜としての信頼性及び電池用セパレ−タと
しての信頼性の点から、15μm〜60μmが好まし
い。より好ましくは、20μm〜50μm、さらに好ま
しくは、25μm〜45μmである。15μm以下にな
ると膜厚方向のろ過精度(ディプス効果)に劣り、また
電池用セパレ−タにおいては、内部短絡の心配がある。
60μm以上では、精密ろ過膜としては透水度が低下
し、電池用セパレ−タとしては内部抵抗が増加するの
で、好ましくない。
In the present invention, the film thickness is not particularly specified, but from the viewpoint of reliability as a microfiltration membrane and reliability as a battery separator, it is preferably 15 μm to 60 μm. The thickness is more preferably 20 μm to 50 μm, further preferably 25 μm to 45 μm. If the thickness is 15 μm or less, the filtration accuracy (depth effect) in the film thickness direction becomes poor, and in the battery separator, there is a risk of internal short circuit.
When it is 60 μm or more, the water permeability of the microfiltration membrane decreases and the internal resistance of the battery separator increases, which is not preferable.

【0015】本発明で開示するところの三次元網目構造
を有する微多孔膜であって、粘度平均分子量が、200
万以上である超高分子量ポリエチレンを少なくとも該微
多孔膜の30wt%以上含有し、膜厚が15μm〜60
μm、気孔率が40%以上、透気度が450sec/1
00cc以下、機械方向の弾性率が4000kg/cm
2 以上、機械方向と直角方向の破断伸度が400%以
上、エチルアルコ−ルにおけるバブルポイントが2kg
/cm2 〜10kg/cm2 であり、平均孔径と最大孔
径の比が、1.6以下であることを特徴とする均質な超
高分子量ポリエチレン製微多孔膜は、リチウム電池用微
多孔膜として最適である。
A microporous membrane having a three-dimensional network structure as disclosed in the present invention, having a viscosity average molecular weight of 200.
It contains at least 30 wt% of ultra-high molecular weight polyethylene of at least 30% by weight of the microporous membrane and has a thickness of 15 μm to 60 μm.
μm, porosity 40% or more, air permeability 450 sec / 1
00cc or less, elastic modulus in machine direction is 4000kg / cm
2 or more, breaking elongation in the direction perpendicular to the machine direction is 400% or more, bubble point in ethyl alcohol is 2 kg
/ Cm 2 to 10 kg / cm 2 and the ratio of the average pore diameter to the maximum pore diameter is 1.6 or less, a homogeneous ultrahigh molecular weight polyethylene microporous membrane is used as a microporous membrane for lithium batteries. Optimal.

【0016】さらに、該微多孔膜表面に開孔している孔
の形状については、楕円形が好ましいと考えられる。こ
れは、精密ろ過膜として用いた場合、該微多孔膜表面の
開孔が楕円形だと円形に比べ目詰まりしにくくろ過寿命
が長いと思われ、該楕円形の長軸と短軸の比が1.3以
上が好ましく、1.5以上がさらに好ましい。本発明の
微多孔膜は、粘度平均分子量が、200万以上の超高分
子量ポリエチレン及び粘度平均分子量が50万以下の高
分子量ポリエチレンと無機微粉体及び可塑剤の混合物を
混練・加熱溶融しながらシ−ト状に成形した後、無機微
粉体及び可塑剤をそれぞれ抽出除去及び乾燥し、一軸方
向のみに延伸して微多孔膜を得る製造方法において、該
可塑剤のSP値が、7.5〜8.4と8.5〜9.5の
少なくとも2種類の混合可塑剤を用い、かつSP値が
7.5〜8.4の可塑剤量が該微多孔膜重量の1〜50
%以下であることを特徴とする製造方法によって製造さ
れる。
Further, it is considered that the shape of the pores formed on the surface of the microporous membrane is preferably elliptical. This is because when used as a microfiltration membrane, if the pores on the surface of the microporous membrane are elliptical, they are less likely to be clogged and have a longer filtration life than the circular shape. Is preferably 1.3 or more, more preferably 1.5 or more. The microporous membrane of the present invention comprises a mixture of an ultrahigh molecular weight polyethylene having a viscosity average molecular weight of 2,000,000 or more and a high molecular weight polyethylene having a viscosity average molecular weight of 500,000 or less, an inorganic fine powder and a plasticizer while kneading and heating and melting the mixture. In the production method for obtaining a microporous membrane by extracting and drying the inorganic fine powder and the plasticizer respectively after molding into a tongue shape and stretching in a uniaxial direction only, the SP value of the plasticizer is 7.5 to At least two kinds of mixed plasticizers of 8.4 and 8.5 to 9.5 are used, and the amount of the plasticizer having an SP value of 7.5 to 8.4 is 1 to 50 of the weight of the microporous membrane.
It is manufactured by a manufacturing method characterized by being less than or equal to%.

【0017】さらに、単に選ばれた2種類以上の混合可
塑剤では、強くて適度な孔径を有する微多孔膜は得られ
ない。本発明で開示する特に選ばれた2種類以上の可塑
剤を用い、かつ少なくとも1種類の可塑剤量を制限する
ことにより、成形加工が容易で一軸方向のみの延伸によ
って、高強度かつ適度な孔径を有した精密ろ過膜・電池
用セパレ−タ等に適した均質なポリエチレン製微多孔膜
が得られる。一軸方向のみの延伸で適度な孔径を有し、
かつ延伸方向に特に高強度な微多孔膜が得られること
は、工業生産上経済性が高いばかりでなく、幅方向に適
度な破断伸びを有しているため、機械方向に裂けにくい
と言う特徴を有する。
Furthermore, a microporous membrane having a strong and appropriate pore size cannot be obtained by simply selecting two or more kinds of mixed plasticizers. By using two or more kinds of plasticizers selected in particular according to the present invention and limiting the amount of at least one kind of plasticizer, the molding process is easy, and stretching is carried out only in the uniaxial direction to obtain high strength and an appropriate pore size. It is possible to obtain a homogeneous polyethylene microporous membrane suitable for a microfiltration membrane, a battery separator, etc. Having a proper pore size by stretching only in the uniaxial direction,
And the fact that a particularly high-strength microporous film can be obtained in the stretching direction is not only highly economical in industrial production, but also has an appropriate breaking elongation in the width direction, which makes it difficult to tear in the machine direction. Have.

【0018】具体的には、ポリエチレン、可塑剤、無機
微粉体を混合、成形後抽出及び乾燥し、さらに延伸する
ことにより製造する。無機微粉体としては、微粉珪酸、
珪酸カルシウム、珪酸アルミニウム、炭酸カルシウム、
微粉タルク等が上げられる。例えば、ポリエチレン、無
機微粉体、可塑剤の混合組成をそれぞれ10〜40重量
%、5〜35重量%、20〜80重量%とし、ヘンシェ
ルミキサ−等の通常の混合機で混合した後、押し出し機
等の溶融混練装置により混練し、得られた混練物を押し
出し成形等により80μm〜600μmの厚さに成形す
る。さらに、該成形物から溶剤を用いて可塑剤を抽出除
去し、続いて無機微粉体の抽出溶剤にて無機微粉体を抽
出した後、一軸方向のみに延伸して微多孔膜を得る。
Specifically, it is produced by mixing polyethylene, a plasticizer, and an inorganic fine powder, molding, extracting, drying, and further stretching. As the inorganic fine powder, finely divided silicic acid,
Calcium silicate, aluminum silicate, calcium carbonate,
Fine talc, etc. can be raised. For example, the mixing composition of polyethylene, inorganic fine powder, and plasticizer is 10 to 40% by weight, 5 to 35% by weight, and 20 to 80% by weight, respectively, and the mixture is mixed by an ordinary mixer such as a Henschel mixer, and then an extruder. And the like, and the resulting kneaded product is molded into a thickness of 80 μm to 600 μm by extrusion molding or the like. Further, the plasticizer is extracted and removed from the molded product with a solvent, the inorganic fine powder is subsequently extracted with a solvent for extracting the inorganic fine powder, and then stretched only in the uniaxial direction to obtain a microporous membrane.

【0019】可塑剤の溶剤としては、メタノ−ル、エタ
ノ−ル等のアルコ−ル類、アセトン、MEK等のケトン
類、1,1,1−トリクロルエタン等の塩素系炭化水素
等一般的有機溶剤が用いられる。本発明に用いられるS
P値が7.5〜8.4の可塑剤としては、流動パラフィ
ン、プロセスオイル等の鉱物油等が上げられる。
Solvents for the plasticizer include alcohols such as methanol and ethanol, ketones such as acetone and MEK, chlorine-based hydrocarbons such as 1,1,1-trichloroethane, and other general organic compounds. A solvent is used. S used in the present invention
Examples of the plasticizer having a P value of 7.5 to 8.4 include liquid paraffin and mineral oil such as process oil.

【0020】また、SP値が8.5〜9.5の可塑剤と
しては、DBP、DOP、DNP、DBS、TBP等が
上げられる。SP値が7.5〜8.4の可塑剤量は、該
微多孔膜重量の1%から50%、好ましくは2%〜40
%、さらに好ましくは3%〜30%、最も好ましくは3
%〜20%である。該可塑剤量が50%以上になると、
適度な孔径を有する微多孔膜が得られず、1%以下で
は、成形性が悪く製造が困難である。
Further, as the plasticizer having an SP value of 8.5 to 9.5, DBP, DOP, DNP, DBS, TBP, etc. can be mentioned. The amount of the plasticizer having an SP value of 7.5 to 8.4 is 1% to 50% of the weight of the microporous membrane, preferably 2% to 40.
%, More preferably 3% to 30%, most preferably 3%
% To 20%. When the amount of the plasticizer is 50% or more,
A microporous membrane having an appropriate pore size cannot be obtained, and if it is 1% or less, moldability is poor and production is difficult.

【0021】該混合可塑剤の量は、混合性及び適度な孔
径を有する為にも、該混合物(ポリエチレン・可塑剤・
無機微粉体)重量の50%〜180%、好ましくは55
%〜150%、さらに好ましくは60%〜120%であ
る。該混合可塑剤量が50%以下では、適度な孔径の微
多孔膜は得られず、180%以上になるとポリエチレン
・可塑剤・無機微粉体の混合性が低下し成形加工が困難
となる。
The amount of the mixed plasticizer is such that the mixture (polyethylene / plasticizer /
Inorganic fine powder) 50% to 180% by weight, preferably 55
% To 150%, more preferably 60% to 120%. When the amount of the mixed plasticizer is 50% or less, a microporous membrane having an appropriate pore size cannot be obtained, and when it is 180% or more, the mixing property of polyethylene / plasticizer / inorganic fine powder is deteriorated and molding process becomes difficult.

【0022】粘度平均分子量が200万以上の超高分子
量ポリエチレンの含有量は、ポリエチレン重量の30w
t%以上、好ましくは40wt%以上、さらに好ましく
は50wt%以上である。30wt%以下では、高強度
の微多孔膜は得られない。超高分子量ポリエチレン以外
に成形性の向上をはかるために高分子量ポリエチレンの
混合が望ましい。該高分子量ポリエチレンの粘度平均分
子量は100万以下、好ましくは80万以下、さらに好
ましくは50万以下である。
The content of ultra high molecular weight polyethylene having a viscosity average molecular weight of 2,000,000 or more is 30 w of polyethylene weight.
It is at least t%, preferably at least 40 wt%, more preferably at least 50 wt%. If it is 30 wt% or less, a high-strength microporous film cannot be obtained. In addition to ultra high molecular weight polyethylene, it is desirable to mix high molecular weight polyethylene in order to improve moldability. The viscosity average molecular weight of the high molecular weight polyethylene is 1,000,000 or less, preferably 800,000 or less, more preferably 500,000 or less.

【0023】高分子量ポリエチレンの含有量は、ポリエ
チレン重量の70wt%以下、好ましくは60wt%以
下、さらに好ましくは50wt%以下である。また、延
伸は一軸方向にのみ延伸する必要がある。当然のことな
がら二軸延伸することも可能であるが、幅方向に適度な
破断伸びが得られないと言う問題がある。
The content of high molecular weight polyethylene is 70 wt% or less, preferably 60 wt% or less, and more preferably 50 wt% or less based on the weight of polyethylene. Further, the stretching needs to be performed only in the uniaxial direction. As a matter of course, it is possible to perform biaxial stretching, but there is a problem that an appropriate breaking elongation cannot be obtained in the width direction.

【0024】[0024]

【実施例】以下、実施例により本発明を説明するが、本
発明は下記実施例に限定されるものではない。なお、測
定方法を下記に示す。 (1)膜厚 最小目盛り1μmのダイヤルゲ−ジにて測定した。 (2)気孔率 10cm角のサンプルを切り出し、サンプルの含水時の
重量・絶乾時の重量及び膜厚を測定し、下式から求め
た。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to the following examples. The measuring method is shown below. (1) It was measured with a dial gauge having a minimum film thickness scale of 1 μm. (2) A sample having a porosity of 10 cm square was cut out, and the weight of the sample when it was wet, the weight when it was absolutely dried, and the film thickness were measured and determined from the following formula.

【0025】 気孔率=(空孔容積/微多孔膜容積)×100(%) 空孔容積=(含水重量〔g〕−絶乾重量〔g〕)/水の
密度〔g/cm3〕 微多孔膜容積=100×膜厚〔cm〕 (3)バブルポイント ASTM E−128−61に準拠し、エタノ−ル中の
バブルポイントを測定した。 (4)透気度 JIS P−8117に準拠し、東洋精機製B型ガ−レ
−式デンソメ−タを用い、標線目盛0〜100までに要
する時間をストップウォッチで測定した。 (5)弾性率 島津社製の型式オ−トグラフAG−A型を用いて、試験
片の大きさが幅10mm×長さ100mmでチャック間
距離50mm、引張速度200mm/minにおいて引
張試験を行い、弾性率を測定した。
Porosity = (pore volume / microporous membrane volume) × 100 (%) Pore volume = (weight of water [g] -weight of absolutely dry weight [g]) / density of water [g / cm 3 ] Porous membrane volume = 100 × film thickness [cm] (3) Bubble point The bubble point in ethanol was measured according to ASTM E-128-61. (4) Air permeability In accordance with JIS P-8117, a B-type galley type densometer manufactured by Toyo Seiki was used to measure the time required for the marking line scale 0 to 100 with a stopwatch. (5) Modulus of elasticity Using a model Autograph AG-A manufactured by Shimadzu, a tensile test was conducted at a test piece size of width 10 mm x length 100 mm, a chuck distance of 50 mm, and a pulling speed of 200 mm / min. The elastic modulus was measured.

【0026】断面積は、(1)項で測定した膜厚×膜幅
によって算出した。 (6)引張破断伸度 島津社製の型式オ−トグラフAG−A型を用いて、試験
片の大きさが幅10mm×長さ100mmでチャック間
距離50mm、引張速度200mm/minにおいて引
張試験を行い、チャ−トから破断までの伸び量を求め、
下式により算出した。
The cross-sectional area was calculated by (film thickness × film width measured in item (1)). (6) Tensile rupture elongation Using a model Autograph AG-A manufactured by Shimadzu, a tensile test was performed at a test piece size of 10 mm width × 100 mm length, a chuck distance of 50 mm, and a pulling speed of 200 mm / min. Do the following to determine the amount of elongation from chart to fracture,
It was calculated by the following formula.

【0027】 引張破断伸度=(破断までの伸び量〔mm〕−50〔m
m〕)/50〔mm〕×100〔%〕 (7)平均孔径 ASTM F−316−70に準拠したハ−フドライ法
によって求めた。 (8)最大孔径 ASTM E−128−61に準じて、エタノ−ル中で
のバブルポイントより算出した。 (9)粘度平均分子量 デカリンを用い、測定温度135℃でウベロ−ゼ型粘度
型により粘度を測定し、Chiangの式により粘度平
均分子量を求めた。
Tensile elongation at break = (elongation before breaking [mm] -50 [m
m]) / 50 [mm] × 100 [%] (7) Average Pore Size Obtained by the Half Dry method according to ASTM F-316-70. (8) Maximum pore size Calculated from the bubble point in ethanol according to ASTM E-128-61. (9) Viscosity average molecular weight Using decalin, the viscosity was measured at a measurement temperature of 135 ° C. with an uberose type viscosity type, and the viscosity average molecular weight was determined by the Chang's formula.

【0028】[0028]

【実施例1】粘度平均分子量300万の超高分子量ポリ
エチレン11重量%と粘度平均分子量30万の高分子量
ポリエチレン6重量%と微粉珪酸22重量%とジオクチ
ルフタレ−ト57重量%及び流動パラフィン4重量%を
ヘンシェルミキサ−で混合し、当該混合物をφ30mm
二軸押出機に450mm幅のTダイを取り付けたフィル
ム製造装置で厚さ150μmの膜状に成形した。
Example 1 11% by weight of ultrahigh molecular weight polyethylene having a viscosity average molecular weight of 3,000,000, 6% by weight of high molecular weight polyethylene having a viscosity average molecular weight of 300,000, 22% by weight of finely divided silicic acid, 57% by weight of dioctyl phthalate and 4 of liquid paraffin. Wt% is mixed with a Henschel mixer, and the mixture is φ30 mm.
The film was formed into a film having a thickness of 150 μm by a film manufacturing apparatus in which a T-die having a width of 450 mm was attached to a twin-screw extruder.

【0029】成形された膜は、1,1,1−トリクロル
エタン中に10分間浸漬し、ジオクチルフタレ−トを抽
出した後乾燥し、さらに60℃の25%苛性ソ−ダ中に
60分間浸漬して、微粉珪酸を抽出した後乾燥した。さ
らに、該微多孔膜を125℃の加熱された一軸ロ−ル延
伸機により膜厚が30μm〜40μmになるよう延伸
し、115℃の雰囲気下で5秒間熱処理を行った。
The formed film is dipped in 1,1,1-trichloroethane for 10 minutes to extract dioctyl phthalate and then dried, and further placed in 25% caustic soda at 60 ° C. for 60 minutes. It was dipped to extract fine silicic acid and then dried. Further, the microporous film was stretched by a uniaxial roll stretching machine heated at 125 ° C. so that the film thickness was 30 μm to 40 μm, and heat-treated at 115 ° C. for 5 seconds.

【0030】得られた微多孔膜の特性を表1に示す。The characteristics of the obtained microporous membrane are shown in Table 1.

【0031】[0031]

【実施例2】粘度平均分子量200万の超高分子量ポリ
エチレンを用いた以外は、実施例1と同様に行った。そ
の結果を表1に示す。
Example 2 The procedure of Example 1 was repeated, except that ultrahigh molecular weight polyethylene having a viscosity average molecular weight of 2,000,000 was used. The results are shown in Table 1.

【0032】[0032]

【実施例3】ジオクチルフタレ−ト44重量%、流動パ
ラフィン15重量%以外は、実施例1と同様に行った。
その結果を表1に示す。
Example 3 Example 1 was repeated except that 44% by weight of dioctyl phthalate and 15% by weight of liquid paraffin were used.
The results are shown in Table 1.

【0033】[0033]

【実施例4】粘度平均分子量300万の超高分子量ポリ
エチレン13.5重量%と粘度平均分子量30万の高分
子量ポリエチレン3.5重量%と微粉珪酸22重量%と
ジオチルフタレ−ト53重量%及び流動パラフィン8重
量%を用いた以外は、実施例1と同様に行った。その結
果を表1に示す。
Example 4 13.5% by weight of ultra high molecular weight polyethylene having a viscosity average molecular weight of 3,000,000, 3.5% by weight of high molecular weight polyethylene having a viscosity average molecular weight of 300,000, 22% by weight of finely divided silicic acid, 53% by weight of dioctyl phthalate, and a flow. Example 1 was repeated except that 8% by weight of paraffin was used. The results are shown in Table 1.

【0034】[0034]

【実施例5】粘度平均分子量300万の超高分子量ポリ
エチレン5.5重量%と粘度平均分子量30万の高分子
量ポリエチレン11.5重量%、微粉珪酸22重量%と
ジオクチルフタレ−ト53重量%及び流動パラフィン8
重量%をヘンシェルミキサ−で混合した以外は、実施例
1と同様に行った。その結果を表1に示す。
Example 5 5.5% by weight of ultra high molecular weight polyethylene having a viscosity average molecular weight of 3,000,000, 11.5% by weight of high molecular weight polyethylene having a viscosity average molecular weight of 300,000, 22% by weight of finely divided silicic acid and 53% by weight of dioctyl phthalate. And liquid paraffin 8
The same procedure as in Example 1 was performed except that the weight% was mixed in a Henschel mixer. The results are shown in Table 1.

【0035】[0035]

【比較例1】ジオクチルフタレ−ト24重量%、流動パ
ラフィン35重量%以外は、実施例1と同様に実施しよ
うとしたが、ヘンシェルミキサ−での混合性が悪く、成
形加工に至らなかった。
COMPARATIVE EXAMPLE 1 An attempt was made in the same manner as in Example 1 except that 24% by weight of dioctyl phthalate and 35% by weight of liquid paraffin were used, but the mixing properties in the Henschel mixer were poor, and molding processing could not be achieved. .

【0036】[0036]

【比較例2】可塑剤として流動パラフィンのみ59重量
%を用いた以外は、実施例1と同様に行った。その結果
を表1に示す。
Comparative Example 2 The procedure of Example 1 was repeated except that only 59% by weight of liquid paraffin was used as the plasticizer. The results are shown in Table 1.

【0037】[0037]

【比較例3】可塑剤としてジオクチルフタレ−トのみ6
5重量%を用いた以外は、実施例1と同様に実施しよう
としたが、成形加工できなかった。
[Comparative Example 3] Dioctyl phthalate alone as a plasticizer 6
An attempt was made in the same manner as in Example 1 except that 5% by weight was used, but molding could not be performed.

【0038】[0038]

【比較例4】可塑剤として、ジオクチルフタレ−トの代
わりに、SP値約10.0のアセチル・トリ−n−ブチ
ルシトレ−トを用いた以外は、実施例1と同様に実施し
ようとしたが、成形加工できなかった。
Comparative Example 4 An attempt was made in the same manner as in Example 1 except that acetyl tri-n-butyl citrate having an SP value of about 10.0 was used as the plasticizer instead of dioctyl phthalate. However, it could not be molded.

【0039】[0039]

【比較例5】可塑剤として、流動パラフィンの代わり
に、SP値約7.2のジ−n−オクチルテトラヒドロフ
タレ−トを用いた以外は、実施例1と同様に実施しよう
としたが、成形加工できなかった。
Comparative Example 5 An attempt was made in the same manner as in Example 1 except that di-n-octyltetrahydrophthalate having an SP value of about 7.2 was used as the plasticizer instead of liquid paraffin. Could not be molded.

【0040】[0040]

【比較例6】特開平2−21559号公報の実施例1に
従った方法で微多孔膜を得た。その結果を表1に示す。
Comparative Example 6 A microporous membrane was obtained by the method according to Example 1 of JP-A-2-21559. The results are shown in Table 1.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【発明の効果】上記構成によれば、高強度で適度な孔径
を有する微多孔膜が得られ、特に精密ろ過膜としては、
均質であり信頼性の高いろ過膜として、特に非水電解液
電池用セパレ−タとして、加工性・安全性が高く、低内
部抵抗で、かつ均一な低内部抵抗の特性を有するセパレ
−タとして適用できる。
According to the above structure, a microporous membrane having high strength and an appropriate pore size can be obtained. Particularly, as a microfiltration membrane,
As a homogeneous and highly reliable filtration membrane, especially as a separator for non-aqueous electrolyte batteries, as a separator with high workability and safety, low internal resistance, and uniform low internal resistance. Applicable.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 三次元網目構造を有する微多孔膜であっ
て、粘度平均分子量が、200万以上である超高分子量
ポリエチレンを少なくとも該微多孔膜の30wt%以上
含有し、気孔率が40%以上、透気度が450sec/
100cc以下、機械方向の弾性率が4000kg/c
2 以上、機械方向と直角方向の破断伸度が400%以
上、エチルアルコ−ルにおけるバブルポイントが2kg
/cm 2 〜10kg/cm2 であり、平均孔径と最大孔
径の比が、1.6以下であることを特徴とする均質な超
高分子量ポリエチレン製微多孔膜
1. A microporous membrane having a three-dimensional network structure.
Ultra high molecular weight with a viscosity average molecular weight of 2,000,000 or more
30% by weight or more of polyethylene in the microporous membrane
Contains, porosity of 40% or more, air permeability of 450 sec /
100 cc or less, machine direction elastic modulus is 4000 kg / c
m2Above, breaking elongation in the direction perpendicular to the machine direction is 400% or less
Above, bubble point 2kg in ethyl alcohol
/ Cm 2-10kg / cm2And mean pore size and maximum pore
Diameter ratio is 1.6 or less
High molecular weight polyethylene microporous membrane
【請求項2】 粘度平均分子量が、200万以上である
超高分子量ポリエチレンを含むポリエチレン混合物と無
機微粉体及び可塑剤を混練・加熱溶融しながらシ−ト状
に成形した後、無機微粉体及び可塑剤をそれぞれ抽出除
去及び乾燥し、一軸方向のみに延伸して微多孔膜を得る
製造方法において、該可塑剤のSP値が、7.5〜8.
4と8.5〜9.5の少なくとも2種類の混合可塑剤を
用い、かつSP値が7.5〜8.4の可塑剤量が該ポリ
エチレン混合物重量の1%〜50%であることを特徴と
する、気孔率が40%以上、透気度が450sec/1
00cc以下、機械方向の弾性率が4000kg/cm
2 以上、機械方向と直角方向の破断伸度が400%以
上、エチルアルコ−ルにおけるバブルポイントが2kg
/cm2 〜10kg/cm2 であり、平均孔径と最大孔
径の比が、1.6以下である均質な超高分子量ポリエチ
レン製微多孔膜の製造方法
2. A polyethylene mixture containing an ultrahigh molecular weight polyethylene having a viscosity average molecular weight of 2,000,000 or more, an inorganic fine powder and a plasticizer are kneaded and heat-melted to form a sheet, and then the inorganic fine powder and In the production method in which the plasticizer is extracted and removed, and dried, and stretched only in the uniaxial direction to obtain a microporous membrane, the SP value of the plasticizer is 7.5 to 8.
4 and 8.5-9.5, and the amount of the plasticizer having an SP value of 7.5-8.4 is 1% to 50% of the weight of the polyethylene mixture. Characteristically, porosity is 40% or more, air permeability is 450 sec / 1
00cc or less, elastic modulus in machine direction is 4000kg / cm
2 or more, breaking elongation in the direction perpendicular to the machine direction is 400% or more, bubble point in ethyl alcohol is 2 kg
/ Cm 2 to 10 kg / cm 2 , and a method for producing a homogeneous ultrahigh molecular weight polyethylene microporous membrane having a ratio of average pore diameter to maximum pore diameter of 1.6 or less.
JP03166612A 1991-07-08 1991-07-08 Homogeneous polyethylene microporous membrane and method for producing the same Expired - Lifetime JP3121047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03166612A JP3121047B2 (en) 1991-07-08 1991-07-08 Homogeneous polyethylene microporous membrane and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03166612A JP3121047B2 (en) 1991-07-08 1991-07-08 Homogeneous polyethylene microporous membrane and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0521050A true JPH0521050A (en) 1993-01-29
JP3121047B2 JP3121047B2 (en) 2000-12-25

Family

ID=15834540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03166612A Expired - Lifetime JP3121047B2 (en) 1991-07-08 1991-07-08 Homogeneous polyethylene microporous membrane and method for producing the same

Country Status (1)

Country Link
JP (1) JP3121047B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005061599A1 (en) * 2003-12-24 2005-07-07 Asahi Kasei Chemicals Corporation Microporous membrane made from polyolefin
JP2005193200A (en) * 2004-01-09 2005-07-21 Kuraray Co Ltd Hollow fiber membrane having excellent mechanical strength and its production method
JP2006008959A (en) * 2004-05-28 2006-01-12 Mitsui Chemicals Inc High-molecular weight polyolefin porous film
US7374843B2 (en) 2002-08-28 2008-05-20 Asahi Kasei Chemicals Corporations Polyolefin microporous membrane and method of evaluating the same
WO2008093572A1 (en) * 2007-01-30 2008-08-07 Asahi Kasei E-Materials Corporation Polyolefin microporous membrane
JP2009270013A (en) * 2008-05-08 2009-11-19 Asahi Kasei E-Materials Corp Process for producing inorganic particle-containing microporous membrane
JP2009269941A (en) * 2008-04-30 2009-11-19 Asahi Kasei E-Materials Corp Microporous polyolefin membrane
JP2011102368A (en) * 2009-10-15 2011-05-26 Asahi Kasei E-Materials Corp Polyolefin microporous film, separator for electricity storage device, and electricity storage device
KR101103125B1 (en) * 2007-01-30 2012-01-04 아사히 가세이 이-매터리얼즈 가부시키가이샤 Polyolefin microporous membrane
US8349236B2 (en) 2004-12-23 2013-01-08 Toray Advanced Materials Korea Inc. Method of preparing a polyethylene microporous film for a rechargeable battery separator

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7374843B2 (en) 2002-08-28 2008-05-20 Asahi Kasei Chemicals Corporations Polyolefin microporous membrane and method of evaluating the same
CN100448922C (en) * 2003-12-24 2009-01-07 旭化成化学株式会社 Microporous membrane made from polyolefin
JP4614887B2 (en) * 2003-12-24 2011-01-19 旭化成イーマテリアルズ株式会社 Polyolefin microporous membrane
JPWO2005061599A1 (en) * 2003-12-24 2007-07-12 旭化成ケミカルズ株式会社 Polyolefin microporous membrane
WO2005061599A1 (en) * 2003-12-24 2005-07-07 Asahi Kasei Chemicals Corporation Microporous membrane made from polyolefin
JP2005193200A (en) * 2004-01-09 2005-07-21 Kuraray Co Ltd Hollow fiber membrane having excellent mechanical strength and its production method
JP2006008959A (en) * 2004-05-28 2006-01-12 Mitsui Chemicals Inc High-molecular weight polyolefin porous film
US8349236B2 (en) 2004-12-23 2013-01-08 Toray Advanced Materials Korea Inc. Method of preparing a polyethylene microporous film for a rechargeable battery separator
JP4753446B2 (en) * 2007-01-30 2011-08-24 旭化成イーマテリアルズ株式会社 Polyolefin microporous membrane
KR101103125B1 (en) * 2007-01-30 2012-01-04 아사히 가세이 이-매터리얼즈 가부시키가이샤 Polyolefin microporous membrane
US8283073B2 (en) 2007-01-30 2012-10-09 Asahi Kasei E-Materials Corporation Microporous polyolefin membrane
WO2008093572A1 (en) * 2007-01-30 2008-08-07 Asahi Kasei E-Materials Corporation Polyolefin microporous membrane
JP2009269941A (en) * 2008-04-30 2009-11-19 Asahi Kasei E-Materials Corp Microporous polyolefin membrane
JP2009270013A (en) * 2008-05-08 2009-11-19 Asahi Kasei E-Materials Corp Process for producing inorganic particle-containing microporous membrane
JP2011102368A (en) * 2009-10-15 2011-05-26 Asahi Kasei E-Materials Corp Polyolefin microporous film, separator for electricity storage device, and electricity storage device

Also Published As

Publication number Publication date
JP3121047B2 (en) 2000-12-25

Similar Documents

Publication Publication Date Title
RU2432372C2 (en) Method of producing microporous polyolefin membranes and microporous membranes
WO2004081109A1 (en) Porous membrane of vinylidene fluoride resin and process for producing the same
JP3497569B2 (en) Polyethylene microporous membrane for non-aqueous battery separator
JP3449656B2 (en) Battery separator
CN107428977B (en) Method for producing microporous membrane and microporous membrane
US20140335396A1 (en) Microporous Membrane
JP6100022B2 (en) Method for producing polyolefin microporous membrane
WO1993001623A1 (en) Separator of battery wherein organic electrolyte is used and production thereof
JP5171012B2 (en) Method for producing polyolefin microporous membrane
US20200047473A1 (en) Polyolefin microporous membrane
JPH0521050A (en) Uniform micro porous film made of polyethylene and its manufacture
JP2000017100A (en) Preparation of polyethylene micro-porous membrane
JPH059332A (en) Homogeneous microporous film made of ultrahigh-molecular weight polyethylene and its production
JP5592745B2 (en) Polyolefin microporous membrane
JP4310424B2 (en) Polyolefin microporous membrane for battery separator
JP6596329B2 (en) Method for producing polyolefin microporous membrane
JP3486785B2 (en) Battery separator and method of manufacturing the same
JP2009516046A (en) Semi-crystalline polymer microporous membrane and method for producing the same
CN112063006A (en) Polyolefin microporous membrane and preparation method thereof
JPH0653826B2 (en) Polyethylene microporous membrane
JP2961387B2 (en) Microporous polyethylene membrane for battery separator
JP2003020357A (en) Microporous polyolefin membrane and manufacturing method therefor
JP6596270B2 (en) Method for producing polyolefin microporous membrane
JPH09231957A (en) Separator for zinc bromine secondary battery
JPH09259858A (en) Polyethylene micro-porous film for separator, and manufacture thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081020

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081020

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 11