JPH05210088A - Driving method for liquid crystal display device - Google Patents

Driving method for liquid crystal display device

Info

Publication number
JPH05210088A
JPH05210088A JP3071453A JP7145391A JPH05210088A JP H05210088 A JPH05210088 A JP H05210088A JP 3071453 A JP3071453 A JP 3071453A JP 7145391 A JP7145391 A JP 7145391A JP H05210088 A JPH05210088 A JP H05210088A
Authority
JP
Japan
Prior art keywords
pulse
voltage
signal line
scanning signal
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3071453A
Other languages
Japanese (ja)
Inventor
Ryuichi Saito
隆一 斉藤
Takayuki Wakui
陽行 和久井
Fumiaki Nemoto
文明 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Power Semiconductor Device Ltd
Original Assignee
Hitachi Ltd
Hitachi Haramachi Electronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Haramachi Electronics Ltd filed Critical Hitachi Ltd
Priority to JP3071453A priority Critical patent/JPH05210088A/en
Publication of JPH05210088A publication Critical patent/JPH05210088A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To avert the degradation in a writing ratio and to decrease the driving voltage of a driver IC by shifting the rising and falling timing of the writing pulse and AC voltage pulse of a scanning signal line. CONSTITUTION:The writing pulse and the AC voltage pulse deviate by the time Ts shorter than the writing pulse Tg. Namely, the rising timing of the writing pulse is delayed by the time Ts from the rising timing of the intermediate voltage pulse at the time of writing a positive polarity and, therefore, the voltage of the scanning signal line changes from Vgm to Vgh at the time of the rising of the writing pulse and the voltage of the scanning signal line changes from Vgh to Vgl at the falling of the writing pulse. The AC voltage pulse synchronized at the same voltage amplitude, pulse width and pulse interval as the voltage amplitude, pulse width and pulse interval of the AC voltage pulse of the scanning signal line is applied to a counter electrode. The video signal pulse of a video signal line is nearly synchronized with the writing pulse but is delayed from the writing pulse by the delay time iotagd of the scanning signal line in a usual manner.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は液晶表示装置に関し、特
に薄膜トランジスタ駆動方式液晶表示装置の駆動方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device, and more particularly to a method of driving a thin film transistor drive type liquid crystal display device.

【0002】[0002]

【従来の技術】従来、液晶表示装置(Liquid Crystal D
isplay、以下LCDと略記)の一つとして非晶質Si半
導体薄膜、あるいは、多結晶Si半導体薄膜からなる薄
膜トランジスタ(Thin Film Transistor、以下TFTと
略記)を用いた薄膜トランジスタ駆動方式液晶表示装置
(TFTLCD)が公知である。この表示装置はガラスなどの
透明基板上に設けられたTFTを用いて1画素(表示の
一単位)の液晶に加わる電圧を制御する方式のため、画
質が鮮明であるという特徴を有しており、OA機器用の
端末やTVなどに広く用いられつつある。
2. Description of the Related Art Conventionally, a liquid crystal display device (Liquid Crystal D
Thin film transistor (hereinafter abbreviated as TFT), which is an amorphous Si semiconductor thin film or polycrystalline Si semiconductor thin film, is used as one of isplay (hereinafter abbreviated as LCD) thin film transistor drive type liquid crystal display device (TFTLCD) Is known. This display device uses a TFT provided on a transparent substrate such as glass to control the voltage applied to the liquid crystal of one pixel (one unit of display), and therefore has the characteristic that the image quality is clear. , Is being widely used in terminals for OA equipment, TVs, and the like.

【0003】図5は1画素の等価回路を示したものであ
る。走査信号線311と映像信号線312の交差部に薄
膜トランジスタTFT310が配置され、液晶容量313と保
持容量314が接続されている。走査信号線311の信
号によって薄膜トランジスタTFT310がON状態となる
と、映像信号線312の電位が画素電極315に書き込
まれ、液晶容量313と保持容量314に電荷が蓄積さ
れる。薄膜トランジスタTFT310がOFF状態となると液
晶容量313と保持容量314に蓄積された電荷は保持
される。液晶は直流電圧が印加されると劣化するため、
上記の書き込み及び保持は対向電極316の電位に対し
正及び負の極性に交互に行われる。このようにして画素
電極315に書き込まれ、保持された電位と対向電極3
16の電位との電位差を時間平均することによって液晶
容量313に実効的に加わる電圧Vrmsが決まる。この実
効電圧Vrmsによって液晶の配向状態が決まり、液晶の光
透過率が制御されることとなる。
FIG. 5 shows an equivalent circuit of one pixel. A thin film transistor TFT310 is arranged at the intersection of the scanning signal line 311 and the video signal line 312, and a liquid crystal capacitor 313 and a storage capacitor 314 are connected. When the thin film transistor TFT 310 is turned on by the signal of the scanning signal line 311, the potential of the video signal line 312 is written in the pixel electrode 315, and electric charge is accumulated in the liquid crystal capacitor 313 and the storage capacitor 314. When the thin film transistor TFT310 is turned off, the charges accumulated in the liquid crystal capacitor 313 and the storage capacitor 314 are held. Liquid crystal deteriorates when a DC voltage is applied,
The writing and holding described above are alternately performed with positive and negative polarities with respect to the potential of the counter electrode 316. In this way, the potential written and held in the pixel electrode 315 and the counter electrode 3 are held.
The voltage Vrms effectively applied to the liquid crystal capacitor 313 is determined by time-averaging the potential difference from the potential of 16. This effective voltage Vrms determines the alignment state of the liquid crystal and controls the light transmittance of the liquid crystal.

【0004】走査信号線及び映像信号線を駆動するため
には通常シリコンチップに形成されたドライバICが用
いられる。薄膜トランジスタTFTは電流駆動能力が小
さいためドライバICは高電圧で駆動され、例えば、走
査信号線側のドライバICは通常25V程度、映像信号
線側のドライバICは通常16V程度の高電圧が必要と
なる。このように高電圧のためドライバICの耐圧も高
くする必要があり、このためチップサイズが大きくなり
コストが高くなる。また、ドライバICを製造するため
に通常のシリコンIC製造プロセスと異なった高耐圧プ
ロセスを用いる必要があるためさらに製造コストが高く
なる。特に、映像信号線側のドライバICは使用個数が
多いため影響が大きく、駆動電圧の低減が望まれてい
た。
A driver IC formed on a silicon chip is usually used to drive the scanning signal line and the video signal line. Since the thin film transistor TFT has a small current driving capability, the driver IC is driven at a high voltage. For example, the driver IC on the scanning signal line side usually needs a high voltage of about 25V, and the driver IC on the video signal line side usually needs a high voltage of about 16V. .. Because of the high voltage, it is necessary to increase the withstand voltage of the driver IC, which increases the chip size and the cost. In addition, since it is necessary to use a high breakdown voltage process different from the normal silicon IC manufacturing process for manufacturing the driver IC, the manufacturing cost is further increased. In particular, since the number of driver ICs on the video signal line side is large, the driver ICs are greatly affected, and it has been desired to reduce the driving voltage.

【0005】そこで、特公平2−10955号などに記載のよ
うに、保持容量314の保持容量電極317を他の配線
とは独立の配線とする完全保持容量方式が知られてい
る。この方式によると、完全保持容量314及び液晶容
量313に対向する電極である対向電極316および保
持容量電極317を、映像信号線312の信号と同期し
て交流的に駆動し、書き込み時に映像信号線312の信
号電位と対向電極316の交流電位を重ね合わせて液晶
に加わる電位とすることにより、映像信号線312の信号
電位振幅を小さくし、ドライバICの駆動電圧を低減す
ることができる。この交流駆動のパルス幅(1周期の1
/2)は通常1走査信号線の選択時間と同一に設定さ
れ、いわゆるライン反転駆動法が取られる。しかしなが
ら、この方式ではTFT基板上に完全保持容量の電極配
線を各画素ごとに新たに形成する必要があるため配線数
が増え、断線、ショートの確率が増加し、歩留まりが低
下するという問題があった。
Therefore, as described in Japanese Patent Publication No. 2-10955, there is known a complete storage capacity method in which the storage capacity electrode 317 of the storage capacity 314 is a wiring independent of other wirings. According to this method, the counter electrode 316 and the storage capacitor electrode 317 which are electrodes facing the complete storage capacitor 314 and the liquid crystal capacitor 313 are AC-driven in synchronization with the signal of the video signal line 312, and the video signal line is written at the time of writing. The signal potential of the video signal line 312 can be reduced and the driving voltage of the driver IC can be reduced by superimposing the signal potential of the signal 312 and the AC potential of the counter electrode 316 to be a potential applied to the liquid crystal. Pulse width of this AC drive (1 of 1 cycle)
/ 2) is usually set equal to the selection time of one scanning signal line, and a so-called line inversion driving method is adopted. However, in this method, there is a problem that the number of wirings increases, the probability of disconnection and short circuit increases, and the yield decreases because it is necessary to newly form an electrode wiring of a complete storage capacitor on the TFT substrate. It was

【0006】そこで、特開平2−913号に記載のように保
持容量の対向電極317を前段の走査信号線とする付加
容量方式とし、走査信号線に走査信号に加えて前述の対
向電極316の信号と同様の交流信号を印加することに
より、映像信号線312の信号電位振幅を小さくし、ド
ライバICの駆動電圧を低減する付加容量方式ライン反
転駆動法が提示されている。中でも、特開平2−913号の
第10図の構成及び第11図の駆動方法は液晶容量31
3の対向電極316をパネル全面について共通化した構
成におけるものであり、TFTLCDを低コスト,高歩留まり
で形成できる。この駆動法では書き込み時に書き込まれ
た液晶印加電位がほぼそのまま保持されるため液晶印加
電位の制御性に優れており、したがって階調制御性に優
れている。また、交流駆動のパルス幅は1走査信号線の
選択時間と同一でライン反転駆動であるため面フリッカ
が避けられる。
Therefore, as described in Japanese Patent Application Laid-Open No. 2-913, an additional capacitance method is adopted in which the counter electrode 317 of the storage capacitor is used as the scanning signal line in the preceding stage, and in addition to the scanning signal on the scanning signal line, the above-mentioned counter electrode 316 is formed. An additional capacitance type line inversion driving method has been proposed in which the signal potential amplitude of the video signal line 312 is reduced and the driving voltage of the driver IC is reduced by applying an AC signal similar to the signal. Among them, the configuration shown in FIG. 10 and the driving method shown in FIG.
The counter electrodes 316 of No. 3 are common to the entire panel surface, and the TFT LCD can be formed at low cost and high yield. In this driving method, the liquid crystal application potential written at the time of writing is maintained almost as it is, and therefore the controllability of the liquid crystal application potential is excellent, and thus the gradation controllability is excellent. Further, since the pulse width of the AC drive is the same as the selection time of one scanning signal line and the line inversion drive is performed, the surface flicker can be avoided.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、前述の
公知の付加容量方式ライン反転駆動法においてはTFTLCD
パネルの高精細化,大型化及び多色化に伴う問題点、す
なわち、走査信号印加時間(書き込み時間)の低減とい
う問題に対応できなかった。すなわち、TFTLCDを高精細
化すると1走査信号線当たりの選択時間が短くなり書き
込みマージンが縮小するため、書き込み時間を更に短縮
すると輝度変化やフリッカの発生など様々の表示不良が
発生することになる。しかし、公知の付加容量方式ライ
ン反転駆動法においては変調信号を正常に印加するため
に書き込み時間は1走査信号線当たりの選択時間よりさ
らに走査信号線遅延時間相当分短い。すなわち、公知の
駆動法を適用すると書き込み時間がさらに低減するた
め、書き込み率の低下を増長し、前述のような不良を引
き起こすことになる。また、TFTLCDを大型化すると走査
信号線の遅延時間が大きくなるが、公知の方法では書き
込み時間は遅延時間相当分短いため前述の書き込み率低
下はさらに問題となる。さらに、TFTLCDの多色化を行う
ためにフレーム率制御法(Frame Rate Control,以下F
RCと略記する)を採用する際、画面の部分的なちらつ
きを低減するためフレーム周波数を高くし、1走査信号
線当たりの選択時間を短くすることが必要になってくる
が、この場合前述の書き込み率低下はさらに深刻にな
る。
However, in the above-mentioned known additional capacitance type line inversion driving method, the TFT LCD is used.
It has not been possible to deal with the problems associated with high definition, large size, and multicolor of the panel, that is, the problem of reducing the scanning signal application time (writing time). In other words, when the definition of the TFT LCD is increased, the selection time per scanning signal line is shortened and the write margin is reduced. Therefore, if the write time is further shortened, various display defects such as luminance change and flicker will occur. However, in the known addition capacitance line inversion driving method, the writing time is shorter than the selection time per scanning signal line by a time corresponding to the scanning signal line delay time in order to normally apply the modulation signal. That is, when the known driving method is applied, the writing time is further reduced, so that the reduction of the writing rate is increased and the above-mentioned defects are caused. Further, when the TFT LCD is made larger, the delay time of the scanning signal line becomes longer, but in the known method, the writing time is shortened by an amount corresponding to the delay time, so that the above-mentioned reduction of the writing rate becomes a further problem. In addition, a frame rate control method (Frame Rate Control, hereinafter referred to as F
(Abbreviated as RC), it is necessary to increase the frame frequency and shorten the selection time per scanning signal line in order to reduce the partial flicker of the screen. The write rate decline becomes more serious.

【0008】また、公知の付加容量方式ライン反転駆動
法の本来の目的の一つであったドライバICの駆動電圧
の低減、および、階調制御性についても公知の方法は不
十分であった。すなわち、公知の方法では書き込み終了
後に最初の変調電圧が加わる際、画素電極315に付加
容量Cadd314により接続された前段の走査信号線
317、および、液晶容量Clc313により接続され
た対向電極316の電位が変化するが、TFTのソース
ーゲート間容量Cgs318により接続された自段の走
査信号線311は電位変化しないため、これらの容量比
に対応して画素電極315の電位変化量は減少する。つ
まり、変調電圧印加後、次の書き込みまでの画素電極3
15と対向電極316間の電位(液晶印加電圧)は、書
き込み直後の液晶印加電圧より小さい。換言すれば、所
望の液晶印加電圧を得るためには、映像信号線312の
信号電位と対向電極316の交流電位を重ね合わせた電
位は、本来必要な電位より大きくする必要があるという
問題がある。また、前述のように書き込み終了後に液晶
印加電圧の変化があり、これは各容量の比率に依存する
ため、製造バラツキなどの影響を受けやすく階調制御が
困難であった。
Further, the known method is not sufficient for the reduction of the driving voltage of the driver IC and the gradation controllability, which are one of the original purposes of the known additional capacitance type line inversion driving method. That is, in the known method, when the first modulation voltage is applied after the writing is completed, the potentials of the preceding scanning signal line 317 connected to the pixel electrode 315 by the additional capacitance Cadd 314 and the counter electrode 316 connected by the liquid crystal capacitance Clc 313 are changed. Although changing, the potential of the scanning signal line 311 of its own stage connected by the source-gate capacitance Cgs318 of the TFT does not change, so that the potential change amount of the pixel electrode 315 decreases corresponding to these capacitance ratios. That is, after applying the modulation voltage, the pixel electrode 3 until the next writing is performed.
The potential (liquid crystal applied voltage) between 15 and the counter electrode 316 is smaller than the liquid crystal applied voltage immediately after writing. In other words, in order to obtain a desired liquid crystal applied voltage, there is a problem that the potential obtained by superimposing the signal potential of the video signal line 312 and the AC potential of the counter electrode 316 needs to be higher than the originally required potential. .. In addition, as described above, there is a change in the voltage applied to the liquid crystal after the writing is completed, and this depends on the ratio of each capacitance, so that it is easily affected by manufacturing variations and the like, and gradation control is difficult.

【0009】[0009]

【課題を解決するための手段】これらの問題点に対処す
るため、本発明においては、走査信号線と、前記走査信
号線にゲート電極が接続された薄膜トランジスタと、前
記薄膜トランジスタのドレイン電極に接続された映像信
号線と、前記薄膜トランジスタのソース電極に接続され
た画素電極と、前記画素電極と前記走査信号線の前段の
走査信号線との間に形成された付加容量素子と、前記ソ
ース電極と対向電極との間に形成された液晶容量素子と
からなる画素において、走査信号線には書き込みパルス
とこれと同一のパルス幅の交流電圧パルスが印加され、
書き込みパルスの立上り及び立下がりタイミングを交流
電圧パルスの立上り及び立下がりタイミングからずらし
た。また、対向電極にも交流電圧パルスを印加した。
To solve these problems, in the present invention, a scanning signal line, a thin film transistor having a gate electrode connected to the scanning signal line, and a drain electrode of the thin film transistor are connected. A video signal line, a pixel electrode connected to the source electrode of the thin film transistor, an additional capacitance element formed between the pixel electrode and the scanning signal line in the preceding stage of the scanning signal line, and the source electrode facing the source electrode. In a pixel including a liquid crystal capacitance element formed between an electrode and a pixel, a writing pulse and an AC voltage pulse having the same pulse width as that of the writing pulse are applied to the scanning signal line,
The rising and falling timings of the write pulse were shifted from the rising and falling timings of the AC voltage pulse. An AC voltage pulse was also applied to the counter electrode.

【0010】[0010]

【作用】走査信号線の書き込みパルスと交流電圧パルス
は立上り及び立下がりタイミングがずれているため、書
き込みパルス幅を縮小しなくとも変調電圧が印加でき
る。このため、書き込みパルス幅は1走査信号線当たり
の選択時間と同一とすることができ、これによって、高
精細化,大型化及び多色化により1走査信号線当たりの
選択時間が減少し書き込みマージンが縮小した場合で
も、書き込み率の低下が避けられ、同時にドライバIC
の駆動電圧の低減が可能となる。また、画素電極に容量
結合された自段及び前段の走査信号線および対向電極に
は常に同一電圧の交流電圧パルスが印加されるため保持
状態での液晶印加電圧の変化がなく、このため駆動電圧
の低減が可能となり、また、階調制御性も良好となる。
Since the rising and falling timings of the writing pulse and the AC voltage pulse of the scanning signal line are different from each other, the modulation voltage can be applied without reducing the writing pulse width. Therefore, the write pulse width can be made the same as the selection time per scanning signal line, which reduces the selection time per scanning signal line due to high definition, large size, and multicolor, and reduces the writing margin. Even if the size of the driver IC is reduced, a decrease in the write rate can be avoided and at the same time the driver IC
It is possible to reduce the drive voltage of the. In addition, since the AC voltage pulse of the same voltage is always applied to the scanning signal lines of the self-stage and the preceding stage capacitively coupled to the pixel electrode and the counter electrode, there is no change in the liquid crystal applied voltage in the holding state. Can be reduced, and gradation controllability can be improved.

【0011】[0011]

【実施例】以下、本発明の実施例を図面を用いて説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】図5は本発明の駆動方法が適用されるTFTL
CDの一画素の等価回路を示したものである。TFT310のゲ
ート電極319は走査信号線311に接続され、ドレイ
ン電極320は映像信号線312に接続され、ソース電
極は画素電極315となっている。ここで、ソースおよ
びドレインは動作中にその役割を変えるためここでは映
像信号線に接続された電極をドレイン電極、画素電極側
をソース電極と便宜上呼ぶ。画素電極315には前段の
走査信号線317との間に付加容量Cadd314 が形成さ
れ、対向電極316との間に液晶容量Clc313が形
成されている。この他に、意図的に形成されたものでは
ないが、ゲート電極319と画素電極315との間にゲー
トソース間寄生容量Cgs318,ドレイン電極320
と画素電極315との間にソースドレイン間寄生容量C
sd321が形成される。このうち、ソースドレイン間
寄生容量Csd321は通常の画素設計では非常に小さ
いため無視でき、画素電極に接続された容量としては付
加容量Cadd314,液晶容量Clc313及びゲー
トソース間寄生容量Cgs318のみ考慮すればよい。
付加容量Cadd,液晶容量Clc,ゲートソース間寄
生容量Cgsの値は例えばCadd=0.75pF ,C
lc=0.20pF ,Cgs=0.07pF などといっ
た値に設定される。
FIG. 5 shows a TFTL to which the driving method of the present invention is applied.
It shows an equivalent circuit of one pixel of CD. The gate electrode 319 of the TFT 310 is connected to the scanning signal line 311, the drain electrode 320 is connected to the video signal line 312, and the source electrode is the pixel electrode 315. Here, since the source and the drain change their roles during operation, the electrode connected to the video signal line is referred to as a drain electrode, and the pixel electrode side is referred to as a source electrode here for convenience. An additional capacitance Cadd314 is formed between the pixel electrode 315 and the preceding scanning signal line 317, and a liquid crystal capacitance Clc313 is formed between the pixel electrode 315 and the counter electrode 316. Besides this, although not intentionally formed, a gate-source parasitic capacitance Cgs 318 and a drain electrode 320 are provided between the gate electrode 319 and the pixel electrode 315.
Source-drain parasitic capacitance C between the pixel electrode 315 and the pixel electrode 315.
sd321 is formed. Of these, the source-drain parasitic capacitance Csd321 is very small in a normal pixel design and can be ignored. Only the additional capacitance Cadd314, the liquid crystal capacitance Clc313, and the gate-source parasitic capacitance Cgs318 should be considered as the capacitance connected to the pixel electrode. ..
The values of the additional capacitance Cadd, the liquid crystal capacitance Clc, and the gate-source parasitic capacitance Cgs are, for example, Cadd = 0.75 pF, C
It is set to a value such as lc = 0.20 pF and Cgs = 0.07 pF.

【0013】図6は画素を複数個配置した様子を示した
図である。各々の画素の付加容量Caddはそれぞれ前
段の走査信号線に接続され、全ての走査信号線は周辺の
走査側ドライバ401によって駆動される。なお、第一
ライン目の画素には前段の画素が存在しないため、これ
を補償する走査信号線402(以下第0ラインと呼ぶ)
が設けられる。また、映像信号線は図6の上及び下に引
き出され、周辺の映像側ドライバ403,404によっ
て駆動される。対向電極は通常液晶を挟んでTFT基板
に対向するカラーフィルタ側の電極であり、これは全て
の画素について共通の電極406となり、駆動回路40
5によって駆動される。
FIG. 6 is a diagram showing a state in which a plurality of pixels are arranged. The additional capacitance Cadd of each pixel is connected to the preceding scanning signal line, and all the scanning signal lines are driven by the peripheral scanning side driver 401. It should be noted that the pixels on the first line do not have preceding pixels, so the scanning signal line 402 (hereinafter referred to as the 0th line) that compensates for this
Is provided. Further, the video signal lines are drawn out to the upper and lower parts of FIG. 6 and driven by the peripheral image side drivers 403 and 404. The counter electrode is an electrode on the side of the color filter that normally faces the TFT substrate with the liquid crystal sandwiched therebetween. This is a common electrode 406 for all pixels, and the drive circuit 40
Driven by five.

【0014】図1,図2及び図3,図4は本発明の駆動
波形を示したものである。図1,図2は奇フレームすな
わち正極性書き込みの波形であり、図3,図4は偶フレ
ームすなわち負極性書き込みの波形を示している。図
1,図3(a)は今注目している画素の前段の走査信号
線の波形、図1,図3(b)は今注目している画素の走
査信号線の波形、図1,図3(c)は対向電極の波形、
図1,図3(d)は映像信号線の波形、図2,図4
(e)は画素電極の波形を示している。走査信号線の波
形は3個の電圧レベルからなり、最も高い電圧Vghが
印加されているときTFTはONとなり書き込みが行わ
れる。書き込みパルス幅Tgは一走査信号線当たりの選
択時間に等しく、例えば、走査信号線数が480本、フ
レーム周波数60Hzの場合約35μsである。書き込
みパルスは各走査信号線に順次印加される。そのほかの
電圧印加時は保持状態であり、従来の交流電圧パルスを
印加しない場合は最も低い電圧Vglに固定されていた
のに対し、本発明では最も低い電圧Vglと中間の電圧
Vgmに交互に変動する交流電圧となる。交流電圧パル
ス幅およびパルス間隔は書き込みパルス幅Tgと同一で
あり、全ての走査信号線について同期して印加されてい
る。本発明で重要な点は書き込みパルスと交流電圧パル
スがTgより短い時間Tsだけずれているところにあ
る。図1(b)に示したように、正極性書き込みの時は
書き込みパルスの立上りタイミングは中間電圧パルスの
立上りタイミングよりTs遅れているため、書き込みパ
ルス立上り時は走査信号線の電圧はVgmからVgh
へ、書き込みパルス立下がり時は走査信号線の電圧はV
ghからVglへ変化する。また、図3(b)に示した
ように、負極性書き込みの時は書き込みパルスの立上り
タイミングは中間電圧パルスの立下りタイミングよりT
s遅れているため、書き込みパルス立上り時は走査信号
線の電圧はVglからVghへ、書き込みパルス立下り
時の走査信号線の電圧はVghからVgmへ変化する。
図1,図2,図3,図4ではずれ時間TsはTgの約1
/2程度の場合を示しており、例えば前出の例ではTs
=17μsといった値に設定されている。図1,図3
(a)に示したように前段の走査信号線は反対の極性の
書き込みが行われる。すなわち、ライン毎反転となって
いる。対向電極は走査信号線の交流電圧パルスと同じ電
圧振幅、パルス幅およびパルス間隔でこれと同期した交
流電圧パルスが加えられている。映像信号線の映像信号
パルスは書き込みパルスとほぼ同期しているが、通常通
り走査信号線の遅延時間τgdだけ書き込みパルスから
遅れている。
FIGS. 1, 2 and 3 and 4 show drive waveforms according to the present invention. 1 and 2 show waveforms of odd frames, that is, positive polarity writing, and FIGS. 3 and 4 show waveforms of even frames, that is, negative polarity writing. 1 and 3 (a) are waveforms of the scanning signal line in the preceding stage of the pixel of interest, FIG. 1 and FIG. 3 (b) are waveforms of the scanning signal line of the pixel of interest, FIG. 3 (c) is the waveform of the counter electrode,
1 and 3 (d) are waveforms of the video signal line, and FIGS.
(E) shows the waveform of the pixel electrode. The waveform of the scanning signal line has three voltage levels. When the highest voltage Vgh is applied, the TFT is turned on and writing is performed. The write pulse width Tg is equal to the selection time per scanning signal line, and is about 35 μs when the number of scanning signal lines is 480 and the frame frequency is 60 Hz, for example. The write pulse is sequentially applied to each scanning signal line. The voltage is held when other voltages are applied, and is fixed to the lowest voltage Vgl when the conventional AC voltage pulse is not applied, whereas in the present invention, the lowest voltage Vgl and the intermediate voltage Vgm are alternately changed. It becomes the alternating voltage. The AC voltage pulse width and pulse interval are the same as the write pulse width Tg, and are applied in synchronization to all the scanning signal lines. An important point in the present invention is that the write pulse and the AC voltage pulse are shifted by a time Ts shorter than Tg. As shown in FIG. 1B, since the rising timing of the write pulse is delayed from the rising timing of the intermediate voltage pulse by Ts in the positive polarity writing, the voltage of the scanning signal line is from Vgm to Vgh at the rising of the writing pulse.
When the write pulse falls, the voltage of the scanning signal line is V
Change from gh to Vgl. Further, as shown in FIG. 3B, the rising timing of the write pulse during negative polarity writing is T than the falling timing of the intermediate voltage pulse.
Since it is delayed by s, the voltage of the scanning signal line changes from Vgl to Vgh when the write pulse rises, and the voltage of the scanning signal line when the write pulse falls changes from Vgh to Vgm.
1, FIG. 2, FIG. 3, and FIG. 4, the shift time Ts is about 1 of Tg.
/ 2, for example, Ts in the above example
= 17 μs. 1 and 3
As shown in (a), the scan signal lines in the preceding stage are written with the opposite polarities. That is, each line is inverted. An AC voltage pulse having the same voltage amplitude, pulse width, and pulse interval as the AC voltage pulse of the scanning signal line and synchronized with this is applied to the counter electrode. The video signal pulse of the video signal line is almost synchronized with the writing pulse, but is delayed from the writing pulse by the delay time τgd of the scanning signal line as usual.

【0015】このような駆動による画素電極の電位変化
は以下のようになる。
The potential change of the pixel electrode due to such driving is as follows.

【0016】図2(e)には正極性書き込み時の画素電
極の電位変化が実線で、走査信号線,対向電極及び映像
信号線の電圧波形が点線で示されている。まず、時刻t
1に前段の走査信号線に書き込みパルスが加わると付加
容量Caddによる容量結合により画素電極の電位はV
1からV2に増加する。次に、時刻t2に対向電極の電
位がVcomlからVcomhに変化し、自段の走査信
号線がVglからVgmに変化するため、液晶容量Cl
cおよびゲートソース間寄生容量Cgsによる容量結合
により画素電極の電位はV3まで増加する。次に、時刻
t3に前段の走査信号線の書き込みが終わり、Vghか
らVgmへ電位が変化すると画素電極の電位はV4まで
低下する。このとき、前段の走査信号線がVghから中
間電位Vgmに変化するため、従来の駆動法でVghか
ら最も低い電圧Vglに変化する場合に比べて画素電極
の電位V4は高い。従って、引き続いて行われる正極性
の書き込みが容易となり、書き込み率の増加が図れる。
時刻t3に前段の走査信号線の電位がOFF状態となる
のと同時に自段の走査信号線はVgmからVghに変化
し、ON状態となる。これによって正極性の書き込みが
始まり、画素電極の電位はV4から映像信号線の信号電
圧Vsighに近づき、書き込み時間Tg後の時刻t5
にはほぼV5=Vsighとなる。すなわち、ここでは
通常の設計通り書き込み時間Tg中に、例えば95%以
上の十分な書き込みが行われるものとしている。対向電
極の交流電圧パルスは走査信号線の交流電圧パルスと同
期しており、書き込みパルスとずれているために書き込
み中の時刻t4に対向電極の電位はVcomhからVc
omlに変化する。時刻t5には液晶に印加されている
電圧はVsighとVcomlの電位差となる。この時
液晶印加電圧は対向電極の交流電圧による液晶印加電圧
分Vc(=(Vcomh−Vcoml)/2)と映像信号線
の信号電圧による液晶印加電圧分Vs(=(Vsigh
−Vsigl)/2)の両者に分担されているため、映
像信号線のドライバICの駆動電圧は対向電極の交流電
圧による液晶印加電圧Vc×2相当が低減される。ま
た、書き込み時間Tgは一走査信号線当たりの選択時間
と同一で、これより減少することはないため、本発明の
駆動方法を適用しても書き込み率が低下することはな
い。時刻t5に書き込みが終了し走査信号線の電位はV
ghからVglに変化する。この時、画素電極の電位は
ゲートソース間容量Cgsによる容量結合によってV5
からV6に変化する。これはいわゆる飛込み電圧と呼ば
れ、液晶印加電圧は減少するが、後述するように負極性
側も同様の変化があるため、対向電極の電位全体をV5
からV6への変化相当分低電圧方向にシフトすることに
よって補償できる。次に、時刻t6に前段及び自段の走
査信号線はVglからVgmに変化し、対向電極はVc
omlからVcomhに変化する。これらの電位変化量
は等しく、画素電極に実質的に容量結合された電極のす
べてが同一量電位変化するため、画素電極も同一量電位
変化し、V7の電位になる。ここで、書き込みパルスと
交流電圧パルスはTsだけずれており、その値は例えば
書き込み時間Tgの半分と大きいため、それぞれの電極
の波形変化時間が重なることはなく、走査信号線の電位
変化と画素の電位変化は正確に一致する。以下、正極性
の保持状態中は走査信号線及び対向電極の交流的電圧変
化に応じて画素電極の電位はV6とV7の間を変位す
る。この間、画素電極と対向電極の間の電圧、すなわ
ち、液晶印加電圧は飛込みによる電圧変化後の値から変
化しない。したがって、製造バラツキなどによる液晶印
加電圧の変化がなく、階調制御性に優れている。また、
画素電極と自段の走査信号線との間の電圧は保持状態中
変化しないため、TFTのソースゲート間電圧は従来の
交流電圧を加えない場合と同様であり、このため、TF
TのVthシフト量は従来と同様である。正極性の書き込
み時のゲート電圧は書き込み時間内に十分な書き込み率
が得られる必要がある。例えば、ゲート電圧Vgh−Vsigh
は4v程度に設定すれば、通常のアモルファスシリコン
TFTおよび画素パラメータで十分な書き込み率が得ら
れる。
In FIG. 2E, the potential change of the pixel electrode at the time of positive polarity writing is shown by a solid line, and the voltage waveforms of the scanning signal line, the counter electrode and the video signal line are shown by a dotted line. First, time t
When a write pulse is applied to the scanning signal line of the previous stage at 1, the potential of the pixel electrode is V due to capacitive coupling by the additional capacitance Cadd.
Increase from 1 to V2. Next, at time t2, the potential of the counter electrode changes from Vcoml to Vcomh, and the scanning signal line of its own stage changes from Vgl to Vgm. Therefore, the liquid crystal capacitance Cl
The potential of the pixel electrode increases up to V3 due to the capacitive coupling due to c and the gate-source parasitic capacitance Cgs. Next, at time t3, the writing of the scanning signal line in the previous stage is completed, and the potential changes from Vgh to Vgm, the potential of the pixel electrode drops to V4. At this time, since the scanning signal line in the previous stage changes from Vgh to the intermediate potential Vgm, the potential V4 of the pixel electrode is higher than when the conventional driving method changes from Vgh to the lowest voltage Vgl. Therefore, the positive polarity writing that is subsequently performed becomes easy, and the writing rate can be increased.
At time t3, the potential of the scanning signal line of the previous stage is turned off, and at the same time, the scanning signal line of the self stage is changed from Vgm to Vgh and is turned on. As a result, positive polarity writing is started, the potential of the pixel electrode approaches from V4 to the signal voltage Vsigh of the video signal line, and time t5 after writing time Tg.
Almost V5 = Vsig. That is, here, it is assumed that sufficient writing of, for example, 95% or more is performed during the writing time Tg as designed normally. Since the AC voltage pulse of the counter electrode is synchronized with the AC voltage pulse of the scanning signal line and deviates from the writing pulse, the potential of the counter electrode changes from Vcomh to Vc at time t4 during writing.
Change to oml. At time t5, the voltage applied to the liquid crystal has a potential difference between Vsig and Vcoml. At this time, the liquid crystal applied voltage is a liquid crystal applied voltage component Vc (= (Vcomh-Vcoml) / 2) due to the AC voltage of the counter electrode and the liquid crystal applied voltage component Vs (= (Vsigh) due to the signal voltage of the video signal line.
-Vsigl) / 2), the driving voltage of the driver IC for the video signal line is reduced by the liquid crystal application voltage Vc × 2 corresponding to the AC voltage of the counter electrode. Further, since the writing time Tg is the same as the selection time per scanning signal line and does not decrease below this, the writing rate does not decrease even if the driving method of the present invention is applied. At the time t5, writing is completed and the potential of the scanning signal line is V
Change from gh to Vgl. At this time, the potential of the pixel electrode is V5 due to capacitive coupling by the gate-source capacitance Cgs.
To V6. This is called a so-called jump voltage, and the liquid crystal applied voltage decreases, but since there is a similar change on the negative polarity side as described later, the entire potential of the counter electrode is V5.
To V6 can be compensated by shifting in the direction of low voltage. Next, at time t6, the scanning signal lines of the preceding stage and the scanning stage of the self stage change from Vgl to Vgm, and the counter electrode is Vc.
Change from oml to Vcomh. These potential change amounts are equal, and all of the electrodes that are substantially capacitively coupled to the pixel electrode change in potential by the same amount, so that the pixel electrode also changes in potential by the same amount and reaches the potential of V7. Here, the write pulse and the AC voltage pulse are deviated by Ts, and since the values are large, for example, half the write time Tg, the waveform change times of the respective electrodes do not overlap, and the potential change of the scanning signal line and the pixel The changes in the electric potential of are exactly the same. Hereinafter, during the positive holding state, the potential of the pixel electrode is displaced between V6 and V7 according to the AC voltage change of the scanning signal line and the counter electrode. During this time, the voltage between the pixel electrode and the counter electrode, that is, the liquid crystal applied voltage does not change from the value after the voltage change due to the jump. Therefore, there is no change in the voltage applied to the liquid crystal due to manufacturing variations and the like, and the gradation controllability is excellent. Also,
Since the voltage between the pixel electrode and the scanning signal line of its own stage does not change during the holding state, the source-gate voltage of the TFT is the same as when the conventional AC voltage is not applied.
The Vth shift amount of T is the same as the conventional one. As for the gate voltage at the time of writing with positive polarity, it is necessary to obtain a sufficient writing rate within the writing time. For example, the gate voltage Vgh-Vsigh
Is set to about 4v, a sufficient writing rate can be obtained with ordinary amorphous silicon TFTs and pixel parameters.

【0017】図3,図4の負極性書き込みについても同
様な変化となる。すなわち、図4(e)に示されている
ように、まず、時刻t1′に前出の正極性の保持状態に
あり、電位V7であった画素電極の電位は、前段の走査
信号線に書き込みパルスが加わると付加容量Caddに
よる容量結合により画素電極の電位はV7からV8に増
加する。次に、時刻t2′に対向電極の電位がVcom
hからVcomlに変化し、自段の走査信号線がVgm
からVglに変化するため、液晶容量Clcおよびゲー
トソース間寄生容量Cgsによる容量結合により画素電
極の電位はV9に変化する。次に、時刻t3′に前段の
走査信号線の書き込みが終わり、VghからVglへ電
位が変化すると画素電極の電位はV10まで低下する。
時刻t3′に前段の走査信号線の電位がOFF状態とな
るのと同時に自段の走査信号線はVglからVghに変
化し、ON状態となる。これによって負極性の書き込み
が始まり、画素電極の電位はV10から映像信号線の信
号電圧Vsiglに近づき、書き込み時間Tg後の時刻
t5′にはほぼV11=Vsiglとなる。対向電極の
交流電圧パルスは走査信号線の交流電圧パルスと同期し
ており、書き込みパルスとずれているために書き込み中
の時刻t4′に対向電極の電位はVcomlからVco
mhに変化する。時刻t5′には液晶に印加されている
電圧はVsiglとVcomhの電位差となる。この
時、前述の正極性と同様に、液晶印加電圧は対向電極の
交流電圧による液晶印加電圧分Vc(=(Vcomh−
Vcoml)/2)と映像信号線の信号電圧による液晶
印加電圧分Vs(=(Vsigh−Vsigl)/2)
の両者に分担されているため、映像信号線のドライバI
Cの駆動電圧が低減される。また、書き込み時間Tgは
一走査信号線当たりの選択時間と同一とでき、これより
減少することはないため、本発明の駆動方法を適用して
も書き込み率が大幅に低下することはない。時刻t5′
に書き込みが終了し走査信号線の電位はVghからVg
lに変化する。この時、画素電極の電位はゲートソース
間容量Cgsによる容量結合によってV11からV12
に変化する。この飛込み電圧は前述の正極性側とほぼ同
様の値のため、対向電極の電位をV2からV3への変化
相当分低電圧方向にシフトすることによって補償されて
いる。次に、時刻t6′に前段及び自段の走査信号線は
VgmからVglに変化し、対向電極はVcomhから
Vcomlに変化する。これらの電位変化量は等しく、
画素電極に実質的に容量結合された電極のすべてが同一
量電位変化するため、画素電極も同一量電位変化し、V
13(=V1)の電位になる。ここで、書き込みパルス
と交流電圧パルスはTsだけずれており、その値は例え
ば書き込み時間Tgの半分と大きいため、それぞれの電
極の波形変化時間が重なることはなく、走査信号線の電
位変化と画素の電位変化は正確に一致する。以下、負極
性の保持状態中は正極性の場合と同様走査信号線及び対
向電極の交流的電圧変化に応じて画素電極の電位はV1
2とV13の間を変位する。この間、画素電極と対向電
極の間の電圧、すなわち、液晶印加電圧は飛込みによる
電圧変化後の値から変化しない。したがって、製造バラ
ツキなどによる液晶印加電圧の変化がなく、階調制御性
に優れている。負極性の保持状態での画素電極の電位は
液晶印加電圧が最大の時でもTFTがOFF状態を維持
するように設定される。例えば、通常の設計による画素
では飛込み電圧は2v程度以下と考えてよいから、V1
1−Vgm(=Vsigl−Vgm)は5v程度に設定
すればTFTはOFF状態を維持する。
The same change occurs in the negative polarity writing in FIGS. 3 and 4. That is, as shown in FIG. 4E, first, at time t1 ′, the potential of the pixel electrode in the positive holding state described above and having the potential V7 is written to the scanning signal line in the previous stage. When a pulse is applied, the potential of the pixel electrode increases from V7 to V8 due to capacitive coupling by the additional capacitance Cadd. Next, at time t2 ′, the potential of the counter electrode is Vcom.
It changes from h to Vcoml, and the scanning signal line of its own stage is Vgm
Changes from Vgl to Vgl, the potential of the pixel electrode changes to V9 due to capacitive coupling by the liquid crystal capacitance Clc and the gate-source parasitic capacitance Cgs. Next, at time t3 ', the writing of the scanning signal line in the previous stage is completed and the potential changes from Vgh to Vgl, and the potential of the pixel electrode drops to V10.
At time t3 ′, the potential of the scanning signal line of the preceding stage is turned off, and at the same time, the scanning signal line of the self stage is changed from Vgl to Vgh and turned on. As a result, the writing of the negative polarity starts, the potential of the pixel electrode approaches the signal voltage Vsigl of the video signal line from V10, and at time t5 'after the writing time Tg, almost V11 = Vsigl. Since the AC voltage pulse of the counter electrode is synchronized with the AC voltage pulse of the scanning signal line and deviates from the write pulse, the potential of the counter electrode changes from Vcoml to Vcom at time t4 'during writing.
Change to mh. At time t5 ', the voltage applied to the liquid crystal has a potential difference between Vsigl and Vcomh. At this time, similarly to the above-mentioned positive polarity, the liquid crystal applied voltage is the liquid crystal applied voltage component Vc (= (Vcomh-
Vcoml) / 2) and the liquid crystal applied voltage Vs (= (Vsig-Vsigl) / 2) due to the signal voltage of the video signal line
Driver of the video signal line I
The drive voltage of C is reduced. Further, the writing time Tg can be made equal to the selection time per scanning signal line, and it does not decrease below this. Therefore, even if the driving method of the present invention is applied, the writing rate does not significantly decrease. Time t5 '
Writing is completed and the potential of the scanning signal line changes from Vgh to Vg.
change to l. At this time, the potential of the pixel electrode is changed from V11 to V12 by capacitive coupling by the gate-source capacitance Cgs.
Changes to. Since this jump-in voltage has almost the same value as that on the positive polarity side, it is compensated by shifting the potential of the counter electrode in the low voltage direction by the amount corresponding to the change from V2 to V3. Next, at time t6 ', the scanning signal lines of the preceding stage and its own stage change from Vgm to Vgl, and the counter electrode changes from Vcomh to Vcoml. These potential changes are equal,
Since all of the electrodes that are capacitively coupled to the pixel electrode change in potential by the same amount, the pixel electrode also changes in potential by the same amount, and V
The potential becomes 13 (= V1). Here, the write pulse and the AC voltage pulse are deviated by Ts, and since the values are large, for example, half the write time Tg, the waveform change times of the respective electrodes do not overlap, and the potential change of the scanning signal line and the pixel The changes in the electric potential of are exactly the same. In the following, during the holding state of the negative polarity, the potential of the pixel electrode is V1 according to the AC voltage change of the scanning signal line and the counter electrode as in the case of the positive polarity.
Displace between 2 and V13. During this time, the voltage between the pixel electrode and the counter electrode, that is, the liquid crystal applied voltage does not change from the value after the voltage change due to the jump. Therefore, there is no change in the voltage applied to the liquid crystal due to manufacturing variations and the like, and the gradation controllability is excellent. The potential of the pixel electrode in the negative holding state is set so that the TFT maintains the OFF state even when the liquid crystal applied voltage is maximum. For example, in a pixel with a normal design, the jump-in voltage may be considered to be about 2 V or less.
If 1-Vgm (= Vsigl-Vgm) is set to about 5v, the TFT maintains the OFF state.

【0018】以上の実施例ではずれ時間TsはTgのほ
ぼ1/2としているが、正確に1/2である場合は、書
き込みパルスと交流電圧パルスの立上り及び立ち下がり
は従来の半分のTg/2のパルス幅を有するクロック信
号で与えることができるため、従来よりクロック信号数
を増やすことなしに駆動回路を形成できる。なお、回路
構成については後述する。
In the above embodiment, the shift time Ts is set to about 1/2 of Tg, but when it is exactly 1/2, the rising and falling of the write pulse and the AC voltage pulse are half of the conventional value, Tg /. Since a clock signal having a pulse width of 2 can be given, a driver circuit can be formed without increasing the number of clock signals as compared with the conventional case. The circuit configuration will be described later.

【0019】図7はずれ時間TsがTgより十分小さい
場合の実施例の駆動波形である。図7(a)は正極性書
き込み時の走査信号線の駆動波形、図7(b)は負極性
書き込み時の走査信号線の駆動波形、図7(c)は対向
電極の駆動波形である。この場合の画素電極の電位変化
は図1,図2,図3,図4と同様である。但し、本実施
例では、書き込みパルスが立ち下がった後で走査信号線
及び対向電極の電位が変化するまでの時間(t4からt
5、あるいは、t6からt7)が長い。このため、走査
信号線の遅延時間τgd、τgd′が長いパネルの場合
に好適である。但し、対向電極の電位が変化してから書
き込みが終了するまでの時間(t3からt4、あるい
は、t5からt6)が短いため、対向電極の電位の遅延
が短い方が好ましい。
FIG. 7 shows a drive waveform of the embodiment when the shift time Ts is sufficiently smaller than Tg. 7A shows a driving waveform of the scanning signal line at the time of writing in the positive polarity, FIG. 7B shows a driving waveform of the scanning signal line at the time of writing in the negative polarity, and FIG. 7C shows a driving waveform of the counter electrode. The change in potential of the pixel electrode in this case is the same as that in FIGS. 1, 2, 3, and 4. However, in this embodiment, the time (t4 to t) until the potentials of the scanning signal line and the counter electrode change after the writing pulse falls.
5, or t6 to t7) is long. Therefore, it is suitable for a panel in which the delay times τgd and τgd ′ of the scanning signal lines are long. However, since the time (t3 to t4, or t5 to t6) from the change of the potential of the counter electrode to the end of writing is short, it is preferable that the delay of the potential of the counter electrode is short.

【0020】図8はずれ時間TsがTgよりやや小さい
場合の実施例の駆動波形である。図8(a)は正極性書
き込み時の走査信号線の駆動波形、図8(b)は負極性
書き込み時の走査信号線の駆動波形、図8(c)は対向
電極の駆動波形である。この場合の画素電極の電位変化
は図1,図2,図3,図4と同様である。但し、本実施
例では、対向電極の電位が変化してから書き込みが終了
するまでの時間(t3からt4、あるいは、t5からt
6)が長いため、対向電極の電位の遅延時間τcdが長
い場合に好適である。但し、書き込みパルスが立ち下が
った後で走査信号線及び対向電極の電位が変化するまで
の時間(t4からt5、あるいは、t6からt7)が短
いため、走査信号線の遅延時間が短いパネルの方が好ま
しい。
FIG. 8 shows a driving waveform of the embodiment when the shift time Ts is slightly smaller than Tg. FIG. 8A is a drive waveform of the scanning signal line at the time of positive polarity writing, FIG. 8B is a drive waveform of the scanning signal line at the time of negative polarity writing, and FIG. 8C is a drive waveform of the counter electrode. The change in potential of the pixel electrode in this case is the same as that in FIGS. 1, 2, 3, and 4. However, in the present embodiment, the time (t3 to t4, or t5 to t) from the change of the potential of the counter electrode to the end of writing.
Since 6) is long, it is suitable when the delay time τcd of the potential of the counter electrode is long. However, since the time (t4 to t5, or t6 to t7) until the potentials of the scanning signal line and the counter electrode change after the falling of the writing pulse is short, a panel having a short scanning signal line delay time is preferable. Is preferred.

【0021】図9は走査信号線の中間電位パルス幅及び
対向電極の高電位パルス幅Tgmと、走査信号線の中間
電位パルス間隔及び対向電極の高電位パルス間隔Tgl
が異なる場合の実施例を示している。図9(a)は正極
性書き込み時の走査信号線の駆動波形、図9(b)は負
極性書き込み時の走査信号線の駆動波形、図9(c)は
対向電極の駆動波形である。この場合の画素電極の電位
変化は図1,図2,図3,図4と同様である。Tgm、
TglはいずれもTgと異なるがこれらの和は2Tgと
なっている。正極性書き込み時の中間電位パルス立上り
と書き込みパルス立上りのずれ時間をTsとすると、T
gmはTsより大きく、Ts+Tgより小さくなるよう
に設定される。このように、本実施例ではパルス波形の
設定自由度が高い。TgmがTgより大きい場合は、走
査信号線の遅延時間が特に問題となる負極性側で走査信
号線と対向電極が電位変化するまでの時間が長いため、
走査信号線の遅延時間が長い場合に好適である。
FIG. 9 shows the intermediate potential pulse width of the scanning signal line and the high potential pulse width Tgm of the counter electrode, the intermediate potential pulse interval of the scanning signal line and the high potential pulse interval Tgl of the counter electrode.
Shows an example in which is different. 9A shows a driving waveform of the scanning signal line at the time of writing in the positive polarity, FIG. 9B shows a driving waveform of the scanning signal line at the time of writing in the negative polarity, and FIG. 9C shows a driving waveform of the counter electrode. The change in potential of the pixel electrode in this case is the same as that in FIGS. 1, 2, 3, and 4. Tgm,
Although Tgl is different from Tg, the sum of them is 2Tg. Let Ts be the time difference between the rise of the intermediate potential pulse and the rise of the write pulse at the time of positive polarity write,
gm is set to be larger than Ts and smaller than Ts + Tg. As described above, in this embodiment, the degree of freedom in setting the pulse waveform is high. If Tgm is larger than Tg, the delay time of the scanning signal line is particularly problematic because it takes a long time until the potentials of the scanning signal line and the counter electrode change on the negative side.
It is suitable when the delay time of the scanning signal line is long.

【0022】以上の実施例では対向電極は走査信号線の
交流電圧パルスと同期するため、これらは同一の信号源
で駆動できる。
In the above embodiments, the counter electrode is synchronized with the AC voltage pulse of the scanning signal line, so that they can be driven by the same signal source.

【0023】図10,図11は対向電極は走査信号線の
交流電圧パルスと同期しない場合の実施例を示してい
る。ここでは正極性書き込みの波形のみを図1,図2と
同様に示している。すなわち、図10(a)は今注目し
ている画素の前段の走査信号線の波形、図10(b)は
今注目している画素の走査信号線の波形、図10(c)
は対向電極の波形、図10(d)は映像信号線の波形、
図11(e)は画素電極の波形を示している。前述の実
施例と異なる点は、対向電極の電圧変化が走査信号線交
流電圧パルスの電圧変化よりTg−Ts以下の時間Tf
だけ進んで開始されることにある。この場合の画素電極
の電位変化を図1,図2と同様に図11(e)に示す。
まず、時刻t1に前段の走査信号線に書き込みパルスが
加わると付加容量Caddによる容量結合により画素電
極の電位はV1からV2に増加する。次に、時刻t2に
対向電極の電位がVcomlからVcomhに変化する
ため、液晶容量Clcによる容量結合により画素電極の
電位はV3まで増加する。次に、時刻3に自段の走査信
号線がVglからVgmに変化するため、ゲートソース
間寄生容量Cgsによる容量結合により画素電極の電位
はV4まで増加する。次に、時刻t4に前段の走査信号
線の書き込みが終わり、VghからVgmへ電位が変化
すると画素電極の電位はV5まで低下する。これと同時
に自段の走査信号線はVgmからVghに変化し、ON
状態となる。これによって正極性の書き込みが始まり、
画素電極の電位はV5から映像信号線の信号電圧Vsi
ghに近づき、書き込み時間Tg後の時刻t7にはほぼ
V6=Vsighとなる。対向電極の交流電圧パルスは
書き込み中の時刻t5にはVcomhからVcomlに
変化する。時刻t7には液晶に印加されている電圧はV
sighとVcomlの電位差となる。時刻t7に書き
込みが終了し走査信号線の電位はVghからVglに変化
する。この時、画素電極の電位はゲートソース間容量C
gsによる容量結合によってV6からV7に変化する。
次に、時刻t8に対向電極はVcomlからVcomh
に変化する。この時、画素電極の電位は液晶容量Clc
による容量結合によりV8まで増加する。次に、時刻t
9に前段及び自段の走査信号線はVglからVgmに変
化するため、付加容量Caddおよびゲートソース間寄
生容量Cgsによる容量結合により画素電極の電位はV
9まで増加する。次に、時刻t10に対向電極はVco
mhからVcomlに変化するため、液晶容量Clcによ
る容量結合によりV10まで減少する。次に、時刻t1
1に前段及び自段の走査信号線はVgmからVglに変
化するため、付加容量Caddおよびゲートソース間寄
生容量Cgsによる容量結合により画素電極の電位はV
11(=V7)まで減少する。以下、正極性の保持状態中
は走査信号線及び対向電極の交流的電圧変化に応じて画
素電極の電位はV7,V8,V9,V10の間を変位す
る。ここで、前述までの実施例と大きく異なる点は、液
晶印加電圧は書き込み直後の値から変化することにあ
る。すなわち、時刻t7からt8の間で書き込みパルス
遅延時間後の期間は前述までの実施例と同様に液晶印加
電圧は書き込み直後の値から変化しないが、時刻t8か
らt9の間は対向電極のみ変化しているため液晶印加電
圧は書き込み直後の値からVa減少する。時刻t9から
t10の間は走査信号線も変化しているため液晶印加電
圧は書き込み直後の値と同一になる。時刻t10からt
11の間は対向電極のみ変化しているため液晶印加電圧
は書き込み直後の値からVa増加する。以下、同様の変
化を繰り返す。従って、保持状態中を平均化すると液晶
印加電圧は書き込み直後の値と同一になる。このため、
前述までの実施例と同様の効果がある。負極性について
も以上と同様な変化となる。また、本実施例の駆動法で
はずれ時間Tsを小さく設定することにより走査信号線
の遅延及び対向電極の遅延があっても安定な電位変化が
得られる。また、対向電極を映像信号線の電位変化と同
期させれば対向電極を駆動するためのクロック信号を増
やす必要はない。
10 and 11 show an embodiment in which the counter electrode is not synchronized with the AC voltage pulse of the scanning signal line. Here, only the waveform of positive polarity writing is shown as in FIGS. That is, FIG. 10A is the waveform of the scanning signal line in the preceding stage of the pixel of interest, FIG. 10B is the waveform of the scanning signal line of the pixel of interest, and FIG.
Is the waveform of the counter electrode, FIG. 10D is the waveform of the video signal line,
FIG. 11E shows the waveform of the pixel electrode. The difference from the above-described embodiment is that the voltage change of the counter electrode is Tg-Ts or less Tf from the voltage change of the scanning signal line AC voltage pulse.
It's just to get started. The change in potential of the pixel electrode in this case is shown in FIG. 11 (e) as in FIGS.
First, when a write pulse is applied to the scanning signal line in the previous stage at time t1, the potential of the pixel electrode increases from V1 to V2 due to capacitive coupling by the additional capacitance Cadd. Next, at time t2, the potential of the counter electrode changes from Vcoml to Vcomh, so that the potential of the pixel electrode increases to V3 due to capacitive coupling by the liquid crystal capacitance Clc. Next, at time 3, the scanning signal line of its own stage changes from Vgl to Vgm, so that the potential of the pixel electrode increases to V4 due to capacitive coupling due to the gate-source parasitic capacitance Cgs. Next, at time t4, when the writing of the previous scanning signal line is completed and the potential changes from Vgh to Vgm, the potential of the pixel electrode drops to V5. At the same time, the scanning signal line of its own stage changes from Vgm to Vgh, and is turned on.
It becomes a state. With this, writing of positive polarity starts,
The potential of the pixel electrode is from V5 to the signal voltage Vsi of the video signal line.
When the write time Tg approaches gh, at time t7, almost V6 = Vsight. The AC voltage pulse of the counter electrode changes from Vcomh to Vcoml at time t5 during writing. At time t7, the voltage applied to the liquid crystal is V
There is a potential difference between sigh and Vcoml. At the time t7, the writing is completed and the potential of the scanning signal line changes from Vgh to Vgl. At this time, the potential of the pixel electrode is equal to the gate-source capacitance C
It changes from V6 to V7 due to capacitive coupling by gs.
Next, at time t8, the counter electrode changes from Vcoml to Vcomh.
Changes to. At this time, the potential of the pixel electrode is equal to the liquid crystal capacitance Clc.
It increases to V8 due to capacitive coupling by. Next, time t
In FIG. 9, the scanning signal lines of the previous stage and the self stage change from Vgl to Vgm. Therefore, the potential of the pixel electrode is V due to the capacitive coupling by the additional capacitance Cadd and the parasitic capacitance Cgs between the gate and the source.
Increase to 9. Next, at time t10, the counter electrode is Vco
Since mh changes to Vcoml, it decreases to V10 due to capacitive coupling by the liquid crystal capacitance Clc. Next, time t1
Since the scanning signal lines of the previous stage and the self stage change from Vgm to Vgl, the potential of the pixel electrode is V by the capacitive coupling by the additional capacitance Cadd and the gate-source parasitic capacitance Cgs.
It decreases to 11 (= V7). Hereinafter, in the positive holding state, the potential of the pixel electrode is displaced between V7, V8, V9, and V10 according to the AC voltage change of the scanning signal line and the counter electrode. Here, a major difference from the above-described embodiments is that the liquid crystal applied voltage changes from the value immediately after writing. That is, during the period after the write pulse delay time between times t7 and t8, the liquid crystal applied voltage does not change from the value immediately after writing as in the above-described embodiments, but only the counter electrode changes between times t8 and t9. Therefore, the voltage applied to the liquid crystal decreases Va from the value immediately after writing. Since the scanning signal line is also changing from time t9 to time t10, the liquid crystal applied voltage becomes the same as the value immediately after writing. From time t10 to t
Since only the counter electrode changes during the period 11, the liquid crystal applied voltage increases Va from the value immediately after writing. Hereinafter, the same change is repeated. Therefore, when the holding state is averaged, the liquid crystal applied voltage becomes the same as the value immediately after writing. For this reason,
The same effects as those of the above-described embodiments are obtained. With respect to the negative polarity, the same change as above is obtained. Further, in the driving method of this embodiment, by setting the deviation time Ts to be small, a stable potential change can be obtained even if there is a delay of the scanning signal line and a delay of the counter electrode. Further, if the counter electrode is synchronized with the potential change of the video signal line, it is not necessary to increase the clock signal for driving the counter electrode.

【0024】以上のいずれの実施例においても正極性書
き込みと負極性書き込みが交互に行われるのはいうまで
もない。しかし、通常の表示装置の走査信号線数は40
0,480,768,780,1024などのように偶
数になっている。このため交流電圧パルスを全走査信号
線に連続して印加し、最終ライン書き込み直後に第1ラ
イン書き込みを行う場合はフレームごとの正極,負極の
変換ができなくなる。そこで、本発明では図12に示し
たように第1ラインの画素の付加電極に接続される第0
ラインにも同様な電圧を加え、総ライン数を奇数とする
ことによりフレームごとの正極,負極の変換を可能とす
る。無論、この他にも最終ライン書き込み後に帰線期間
を設けて、この時間中に調整することも可能である。
It goes without saying that the positive polarity writing and the negative polarity writing are alternately performed in any of the above embodiments. However, the number of scanning signal lines of a normal display device is 40.
It is an even number such as 0, 480, 768, 780, and 1024. Therefore, when the alternating voltage pulse is continuously applied to all the scanning signal lines and the first line writing is performed immediately after the final line writing, the conversion between the positive electrode and the negative electrode for each frame cannot be performed. Therefore, according to the present invention, as shown in FIG. 12, the 0th pixel connected to the additional electrode of the pixel on the first line is connected.
By applying a similar voltage to the lines and setting the total number of lines to an odd number, it is possible to convert the positive and negative polarities for each frame. Of course, in addition to this, it is also possible to provide a blanking period after writing the final line and adjust during this time.

【0025】図13は本発明の走査信号線の波形を与え
るための走査信号線ドライバ回路の一実施例をブロック
単位で示したものである。この回路は通常の映像信号線
ドライバ回路とほとんど同様である。すなわち、3値以
上の電圧レベルを出力できる映像信号線ドライバを用い
れば本発明の走査信号線波形を得るのは容易である。図
13でセレクタはCL2の立ち下がりをカウントしてラ
ッチ回路(1)のラッチ信号を発生する。ラッチ回路
(1)では、他の記憶回路などに記憶されたか、あるい
は、他の制御回路から与えられる走査信号線波形のデー
タを取り込む。ラッチ回路(2)ではラッチ回路(1)
のデータをCL1およびずれ時間Ts遅延されたCL3
でラッチする。つぎにレベルシフタで液晶駆動電圧に昇
圧し、液晶駆動回路で3レベルのうち1レベルを選んで
出力する。ずれ時間Tsが書き込み時間Tgの1/2で
あればCL1をTg/2にすることにより駆動でき、遅
延回路及びCL3は必要ない。この他にも前述の走査信
号線の波形を与える回路であればどのような構成でも適
用できるのはいうまでもない。また、ずれ時間Tsはコ
ントローラなどに可変抵抗や可変容量などの調節可能な
機構部を設けて、これを調節する構造としたほうが好ま
しいであろう。
FIG. 13 shows, in block units, an embodiment of a scanning signal line driver circuit for giving a waveform of a scanning signal line according to the present invention. This circuit is almost the same as a normal video signal line driver circuit. That is, it is easy to obtain the scanning signal line waveform of the present invention by using the video signal line driver capable of outputting a voltage level of three or more values. In FIG. 13, the selector counts the falling edge of CL2 and generates the latch signal of the latch circuit (1). In the latch circuit (1), the data of the scanning signal line waveform stored in another storage circuit or the like or given from another control circuit is fetched. In the latch circuit (2), the latch circuit (1)
Data of CL1 and CL3 delayed by the deviation time Ts
Latch with. Next, the level shifter boosts the liquid crystal drive voltage, and the liquid crystal drive circuit selects and outputs one of the three levels. If the shift time Ts is 1/2 of the write time Tg, it can be driven by setting CL1 to Tg / 2, and the delay circuit and CL3 are unnecessary. In addition to this, it goes without saying that any configuration can be applied as long as it is a circuit that gives the waveform of the scanning signal line. Further, it is preferable that the shift time Ts is adjusted by providing a controller or the like with an adjustable mechanism section such as a variable resistance or a variable capacitance.

【0026】[0026]

【発明の効果】以上述べてきたように本発明によれば付
加容量構成の画素で映像信号線ドライバの駆動電圧を下
げられるため、映像信号線ドライバの低コスト化、低消
費電力化が可能になり、また、ドライバの製造プロセス
として従来より微細なルールが適用できるためフルカラ
ー用の回路構成にしてもICのチップサイズが大きくな
ることがない。
As described above, according to the present invention, the driving voltage of the video signal line driver can be lowered by the pixel having the additional capacitance structure, so that the cost and power consumption of the video signal line driver can be reduced. Further, since finer rules can be applied to the driver manufacturing process than in the conventional case, the chip size of the IC does not increase even if the circuit configuration for full color is used.

【0027】また、走査信号線の書き込みパルスと交流
電圧パルスがずれているため、交流電圧パルスを印加し
て付加容量方式ライン反転駆動法を適用しても書き込み
パルス幅を縮小する必要がない。このため、高精細,大
型あるいは多色TFTパネルへ適用しても表示不良を生
ずることがない。
Further, since the writing pulse of the scanning signal line and the alternating voltage pulse are deviated, it is not necessary to reduce the writing pulse width even if the alternating voltage pulse is applied and the additional capacitance type line inversion driving method is applied. Therefore, no display defects will occur even when applied to a high-definition, large-sized or multicolor TFT panel.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の駆動波形及び画素電極の電
位変化を示す図である。
FIG. 1 is a diagram showing a drive waveform and a potential change of a pixel electrode according to an embodiment of the present invention.

【図2】本発明の一実施例の駆動波形及び画素電極の電
位変化を示す図である。
FIG. 2 is a diagram showing a drive waveform and a potential change of a pixel electrode according to an embodiment of the present invention.

【図3】駆動波形及び画素電極の電位変化を示す図であ
る。
FIG. 3 is a diagram showing a drive waveform and a potential change of a pixel electrode.

【図4】駆動波形及び画素電極の電位変化を示す図であ
る。
FIG. 4 is a diagram showing a drive waveform and a potential change of a pixel electrode.

【図5】一画素の等価回路図である。FIG. 5 is an equivalent circuit diagram of one pixel.

【図6】画素を複数個並べたTFTLCDの構成例を示す図で
ある。
FIG. 6 is a diagram showing a configuration example of a TFT LCD in which a plurality of pixels are arranged.

【図7】本発明の他の実施例の駆動波形図である。FIG. 7 is a drive waveform chart of another embodiment of the present invention.

【図8】本発明の他の実施例の駆動波形図である。FIG. 8 is a drive waveform chart of another embodiment of the present invention.

【図9】本発明の他の実施例の駆動波形図である。FIG. 9 is a drive waveform chart of another embodiment of the present invention.

【図10】本発明の他の実施例の駆動波形及び画素電極
の電位変化を示す図である。
FIG. 10 is a diagram showing drive waveforms and potential changes of pixel electrodes according to another embodiment of the present invention.

【図11】他の実施例の駆動電波形及び画素電極の電位
変化を示す図である。
FIG. 11 is a diagram showing a driving electric waveform and a potential change of a pixel electrode in another example.

【図12】本発明の実施例の駆動波形を各ライン及び各
フレームについて全体像を示した図である。
FIG. 12 is a diagram showing an overall image of drive waveforms according to an embodiment of the present invention for each line and each frame.

【図13】本発明の実施例の駆動波形を出力するドライ
バ回路の一実施例を示す図である。
FIG. 13 is a diagram showing an example of a driver circuit that outputs a drive waveform according to an example of the present invention.

【符号の説明】[Explanation of symbols]

310…TFT、311…走査信号線、312…映像信
号線、313…液晶容量、314…付加容量、315…
画素電極、316…対向電極、317…前段の走査信号
線、318…ゲートソース間容量、319…ゲート電
極、320…ドレイン電極、321…ソースドレイン間
容量、401…走査側ドライバ、402…第0ラインの
走査信号線、403,404…映像信号線側ドライバ、
405…対向電極駆動回路、406…対向電極。
310 ... TFT, 311, ... Scan signal line, 312 ... Video signal line, 313 ... Liquid crystal capacity, 314 ... Additional capacity, 315 ...
Pixel electrode, 316 ... Counter electrode, 317 ... Scanning signal line of previous stage, 318 ... Gate-source capacitance, 319 ... Gate electrode, 320 ... Drain electrode, 321 ... Source-drain capacitance, 401 ... Scan side driver, 402 ... No. 0 Line scanning signal lines 403, 404 ... Video signal line side driver,
405 ... Counter electrode drive circuit, 406 ... Counter electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 根本 文明 茨城県日立市弁天町三丁目10番2号 日立 原町電子工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Fumiaki Nemoto 3-10-2 Bentencho, Hitachi-shi, Ibaraki Hitachi Haramachi Electronics Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】走査信号線と、前記走査信号線にゲート電
極が接続された薄膜トランジスタと、前記薄膜トランジ
スタのドレイン電極に接続された映像信号線と、前記薄
膜トランジスタのソース電極に接続された画素電極と、
前記画素電極と前記走査信号線の前段の走査信号線との
間に形成された付加容量素子と、前記ソース電極と対向
電極との間に形成された液晶容量素子とからなる画素に
おいて、走査信号線には書き込みパルスとこのパルス幅
と同一のパルス幅及びパルス間隔の交流電圧パルスが印
加され、前記書き込みパルスの立上り及び立下がりタイ
ミングを前記交流電圧パルスの立上り及び立下がりタイ
ミングから少なくとも書き込みパルス幅より短い時間ず
らし、前記対向電極には前記交流電圧パルスと同一の交
流電圧パルスが印加されていることを特徴とする液晶表
示装置の駆動方法。
1. A scanning signal line, a thin film transistor having a gate electrode connected to the scanning signal line, a video signal line connected to a drain electrode of the thin film transistor, and a pixel electrode connected to a source electrode of the thin film transistor. ,
In a pixel including an additional capacitance element formed between the pixel electrode and a scan signal line in the preceding stage of the scan signal line, and a liquid crystal capacitance element formed between the source electrode and the counter electrode, a scan signal A write pulse and an AC voltage pulse having the same pulse width and pulse interval as this pulse width are applied to the line, and the rising and falling timings of the write pulse are at least the write pulse width from the rising and falling timings of the AC voltage pulse. A method for driving a liquid crystal display device, wherein the same alternating voltage pulse as the alternating voltage pulse is applied to the counter electrode for a shorter period of time.
【請求項2】書き込みパルスの立上り及び立下がりタイ
ミングと交流電圧パルスの立上り及び立下がりタイミン
グのずれ時間は書き込みパルス幅のほぼ1/2であるこ
とを特徴とする請求項1記載の液晶表示装置の駆動方
法。
2. A liquid crystal display device according to claim 1, wherein the time difference between the rising and falling timings of the write pulse and the rising and falling timings of the AC voltage pulse is approximately 1/2 of the write pulse width. Driving method.
【請求項3】対向電極の交流電圧パルスと走査信号線の
交流電圧パルスは同期して印加されていることを特徴と
する請求項1又は請求項2記載の液晶表示装置の駆動方
法。
3. The method of driving a liquid crystal display device according to claim 1, wherein the AC voltage pulse of the counter electrode and the AC voltage pulse of the scanning signal line are applied in synchronization with each other.
【請求項4】対向電極の交流電圧パルスは走査信号線の
交流電圧パルスより、書き込みパルス幅からずれ時間を
引いた時間より短い時間進んでいることを特徴とする請
求項1又は請求項2記載の液晶表示装置の駆動方法。
4. The AC voltage pulse of the counter electrode leads the AC voltage pulse of the scanning signal line by a time shorter than a time obtained by subtracting a shift time from a writing pulse width. Driving method of the liquid crystal display device.
【請求項5】走査信号線は3個の電圧レベルを有し、正
極性書き込みパルスの立上り時は中間電圧レベルから高
電圧の書き込みパルス電圧レベルへ、正極性書き込みパ
ルスの立下り時は高電圧の書き込みパルス電圧レベルか
ら低電圧レベルへ変化し、負極性書き込みパルスの立上
り時は低電圧レベルから高電圧の書き込みパルス電圧レ
ベルへ、負極性書き込みパルスの立下り時は高電圧の書
き込みパルス電圧レベルから中間電圧レベルへ変化する
ことを特徴とする液晶表示装置の駆動方法。
5. The scanning signal line has three voltage levels, an intermediate voltage level to a high voltage write pulse voltage level when the positive polarity write pulse rises, and a high voltage when the positive polarity write pulse falls. Write pulse voltage level changes to a low voltage level, the negative write pulse rises from a low voltage level to a high voltage write pulse voltage level, and the negative write pulse falls to a high voltage write pulse voltage level. To a medium voltage level, a method for driving a liquid crystal display device.
JP3071453A 1991-04-04 1991-04-04 Driving method for liquid crystal display device Pending JPH05210088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3071453A JPH05210088A (en) 1991-04-04 1991-04-04 Driving method for liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3071453A JPH05210088A (en) 1991-04-04 1991-04-04 Driving method for liquid crystal display device

Publications (1)

Publication Number Publication Date
JPH05210088A true JPH05210088A (en) 1993-08-20

Family

ID=13461007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3071453A Pending JPH05210088A (en) 1991-04-04 1991-04-04 Driving method for liquid crystal display device

Country Status (1)

Country Link
JP (1) JPH05210088A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6995741B2 (en) 2001-06-04 2006-02-07 Seiko Epson Corporation Driving circuit and driving method
JP2008003611A (en) * 1996-04-12 2008-01-10 Thomson Multimedia Sa Display device and row selection line scanner thereof
JP2010072154A (en) * 2008-09-17 2010-04-02 Ricoh Co Ltd Image display
US8982030B2 (en) 2009-10-13 2015-03-17 Au Optronics Corp. Gate output control method and corresponding gate pulse modulator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008003611A (en) * 1996-04-12 2008-01-10 Thomson Multimedia Sa Display device and row selection line scanner thereof
JP4567710B2 (en) * 1996-04-12 2010-10-20 トムソン マルチメディア Display device and row selection line scanner thereof
US6995741B2 (en) 2001-06-04 2006-02-07 Seiko Epson Corporation Driving circuit and driving method
JP2010072154A (en) * 2008-09-17 2010-04-02 Ricoh Co Ltd Image display
US8982030B2 (en) 2009-10-13 2015-03-17 Au Optronics Corp. Gate output control method and corresponding gate pulse modulator

Similar Documents

Publication Publication Date Title
US8786535B2 (en) Liquid Crystal display device and driving method thereof, television receiver, liquid crystal display program computer-readable storage medium storing the liquid crystal display program, and drive circuit
US7808472B2 (en) Liquid crystal display and driving method thereof
US8502764B2 (en) Gate driving method and circuit for liquid crystal display
US7705822B2 (en) Liquid crystal display
KR100433064B1 (en) Liquid crystal display and driving control method therefore
US20040017344A1 (en) Liquid-crystal display device and driving method thereof
US20080180370A1 (en) Liquid Crystal Display and Driving Method Thereof
US20120081352A1 (en) Display device
US8299998B2 (en) Liquid crystal display device with first and second image signals about a middle voltage
KR100440360B1 (en) LCD and its driving method
JP3405579B2 (en) Liquid crystal display
JPH0572999A (en) Liquid crystal display device and its driving method
US20040196241A1 (en) Liquid crystal display
WO2019179134A1 (en) Shift register and driving method therefor, gate driving circuit and display apparatus
US20020196247A1 (en) Display device
KR100389027B1 (en) Liquid Crystal Display and Driving Method Thereof
JP4824863B2 (en) Liquid crystal display panel, liquid crystal display device including the same, and driving method thereof
JP2001166741A (en) Semiconductor integrated circuit device and liquid crystal display device
JP2629360B2 (en) Driving method of liquid crystal display device
JPH05210088A (en) Driving method for liquid crystal display device
CN113870806B (en) Compensation system and method for dual gate display
KR100965587B1 (en) The liquid crystal display device and the method for driving the same
JP2001272959A (en) Liquid crystal display device
US6812910B2 (en) Driving method for liquid crystal display
JPH11218736A (en) Driving method of liquid crystal panel