JPH0521005B2 - - Google Patents

Info

Publication number
JPH0521005B2
JPH0521005B2 JP60093236A JP9323685A JPH0521005B2 JP H0521005 B2 JPH0521005 B2 JP H0521005B2 JP 60093236 A JP60093236 A JP 60093236A JP 9323685 A JP9323685 A JP 9323685A JP H0521005 B2 JPH0521005 B2 JP H0521005B2
Authority
JP
Japan
Prior art keywords
sulfite
cleaning solution
concentration
sulfite concentration
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60093236A
Other languages
Japanese (ja)
Other versions
JPS61249528A (en
Inventor
Naoharu Shinoda
Atsushi Tatani
Masakazu Onizuka
Fumio Kadota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP60093236A priority Critical patent/JPS61249528A/en
Publication of JPS61249528A publication Critical patent/JPS61249528A/en
Publication of JPH0521005B2 publication Critical patent/JPH0521005B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明はNaHSO3、Na2SO3、CaSO3・1/2
H2O、Ca(HSO32、MgSO3、Mg(HSO32
(NH42SO3、NH4HSO3などの亜硫酸塩や重亜
硫酸塩(以下亜硫酸も含めて、亜硫酸塩と総称す
る。)の濃度を管理する方法に関するもので、例
えば酸素とSO2を含む排ガスを亜硫酸塩を含有す
るSO2洗浄液で洗浄する湿式排煙硫装置に於い
て、SO2洗浄液に含まれる亜硫酸塩の抑制して所
望の亜硫酸塩濃度を維持する際に、酸化防止剤の
供給量を調整する場合に極めて有効な方法を提供
するものである。 〔従来の技術〕 ボイラーから発生する燃焼排ガス中の希薄な
SO2を洗浄液で除去するいわゆる排煙脱硫装置は
広く実用化されている所であり、その中の1つに
NaOHやNH4OHやMg(OH)2やCa(OH)2などの
水酸化物やNa2CO3やCaCO3などの炭酸塩をSO2
吸収剤として含む水溶液(スラリーも含めて以下
水溶液と総称する。)で排ガスを洗浄し、SO2
除去する方法がある。 例えばNaOHをSO2吸収剤として利用する場合
を例として示すと 2NaOH+SO2→Na2SO3+H2O Na2SO3+SO2+H2O→2NaHSO3 となり、SO2を吸収除去した洗浄液はNa2SO3
NaHSO3を生成物として含有した水溶液となる。 しかし、排ガス中には過剰空気燃焼からもたら
されるO2が含まれており、SO2吸収と同時にO2
吸収による酸化反応が生じる。 2NaHSO3+O2→Na2SO4+H2SO4 Na2SO3+1/2O2→Na2SO4 この硫酸塩は排ガス中のO2濃度が高くなる等
してO2の吸収速度が大きくなると、亜硫酸塩に
対する硫酸塩の生成モル比率(ここでは以下酸化
率と呼ぶ)が大きくなる。 排煙脱硫装置で副生する亜硫酸塩を利用するパ
ルプ製造に於いては、酸化率が大きくなると木材
の蒸解液として十分な亜硫酸液が得られないこと
となつて問題である。 この問題に対処する為には、常套手段として酸
化防止剤の使用が考えられる。 従来、排煙脱硫装置のSO2の洗浄液に酸化防止
剤を加え、亜硫酸塩の酸化を制御する方法が知ら
れており、酸化防止剤として、パラアミノフエノ
ール(特公昭47−20455号)、パラフエニレンジア
ミン(特公昭48−1594号)の如くフエノール類や
アミン類が知られており更に詳細にはエチレジア
ミンテトラ酢酸(特公昭49−40357号、特開昭57
−205314号)、アミノポリカルボン酸(特公昭54
−14077号)、硫化物(特開昭48−21694号)、L−
アスコルビン酸(特開昭55−109210号)、アルキ
ルジチオカルバミン酸(特公昭51−45554号)、ノ
ニルフエノール(特公昭57−61300号、同59−
1202号)、トリアルキルトリチオホスフアイト
(特公昭58−58283号、同59−1203号)、ソルビト
ール(特公昭52−21994号)、チオビスフエノール
化合物(特公昭58−58282号)が挙げられる。 しかし、これらの酸化防止剤を工業的に利用す
る従来法では、亜硫酸塩の酸化速度を実験的に把
握した上で適宜酸化防止剤の添加量を調整し、亜
硫酸塩濃度の管理の為に該当液を少量サンプリン
グし、JISK0102に準拠した手分析に依つて亜硫
酸塩濃度を求め、酸化防止剤が適量を満たしてい
るかどうかをチエツクする方法が採用されてい
た。 従つて、当然のことながら、ボイラの負荷変動
や燃料中のS分の変動など、時々刻々の排ガス性
状や排ガス処理量の変動が常である排煙脱硫装置
を連続的に操作する場合、SO2の洗浄液中の亜硫
酸塩濃度を管理する為には酸化防止剤の供給量を
調整する手間と多くの手分析が必要であり、人手
と時間を要する欠点があつた。 更に排煙脱硫装置の洗浄液中の亜流酸塩を
JISK0102にて手分析する場合、酸化防止剤の妨
害や鉄イオンの妨害を受ける不具合もあつて、亜
硫酸塩の濃度管理上の問題となつていた。 従つて、従来法では過剰の酸化防止剤を供給し
続け、酸化率を半ば盲目的に抑制してしまう欠点
があつた。高価な酸化防止剤を過剰に供給しない
様にして、所望の亜硫酸塩濃度に管理する要求が
あり乍ら、手分析で管理するには限界があり、こ
の要求を満足するものではなかつた。 〔発明が解決しようとする問題点〕 本発明はかかる現状に鑑み、なされたもので、
負荷変動に対しても常に迅速に適正量の酸化防止
剤を無駄なく供給し、洗浄液中の亜硫酸塩濃度を
所望の値に調整する方法を提供することを目的と
したものである。 〔問題点を解決するための手段〕 酸素とSO2を含む排ガスを亜硫酸塩を含有する
SO2洗浄液で洗浄する排煙脱硫装置において該
SO2洗浄液の亜硫酸塩濃度を検出した信号と、亜
硫酸塩濃度設定値との偏差信号により該SO2洗浄
液中の亜硫酸塩の酸化を抑制するための酸化抑制
剤の供給量を調整することを特徴とする亜硫酸塩
濃度の管理方法を提案するものである。 以下、本発明の方法を湿式ソーダ法排煙脱硫装
置に適用した場合の実施態様例を第1図により説
明する。 なお、ここで本発明は液中の亜硫酸塩を手分析
に依らず連続的且つ瞬時にオンラインで検出する
方法を開発したことによつて成し得たものである
から、亜硫酸塩の1検出方法を第2図によつて具
体的に説明する。 第2図は本発明に使用した第1図における亜硫
酸塩検出器112の構成を示す説明図であり、第
2図に於いて、Aは試料液、Bは空気もしくは窒
素の如きキヤリヤガス、Cは塩酸もしくは硫酸の
如き亜硫酸塩を分解する酸、Dは廃液、EはSO2
を含有する抜き出しガス、FとGは排気、Hはド
レンを示す。さらに1は定量ポンプ、2は加熱
器、3は温度調節計、4は温度検出器、5は酸分
解容器であつて外気とは遮断された撹拌式連続酸
分解容器である。6は滞留液、7は撹拌機、8は
キヤリヤガス吹込管、9はシール材、10はモー
ター、11は流量調整計、12は微量ポンプ、1
3は液封器、14はキヤリヤガス、15は流量指
示計、16はガスポンプ、17はSO2分析計、1
8は亜硫酸塩濃度演算器、19は亜硫酸塩濃度指
示計、20はオーバーフロー管、21は弁、22
は除湿器、23は演算設定器、24は亜硫酸塩濃
度信号、25は酸供給量制御用演算信号を示し、
*1はキヤリヤガス流量信号、*2は試料液Aの
採取流量信号を示している。 亜硫酸塩を含有する試料液Aを定量ポンプ1で
採取し、酸分解容器5内の滞留液6の温度が50℃
以上となるように加熱器2を通して送り込む。滞
留液6に塩酸の如き亜硫酸塩を分解する酸Cをキ
ヤリヤガス吹込管8を介して注入すると、試料液
A中の亜硫酸塩は下記の式(1)、(2)のように酸と反
応しSO2を発生する。 (硫酸添加の場合) 2NaHSO3+H2SO4→Na2SO4+2H2O+2SO2↑ (1) (塩酸添加の場合) NaHSO3+HCl→NaCl+H2O+SO2↑ (2) 尚(1)、(2)式は亜硫酸塩がNaHSO3である場合
を示したがNa、NH4、Ca、Mg、Kの亜硫酸塩
(重亜硫酸塩含む)も同様である。 発生したSO2はキヤリヤガスとして流量調節計
11で所要流量に調節してある空気もしくは窒素
の一部あるいは全部を分配弁21の操作におり流
量指示計15を通して液中に吹き込まれたガスと
一緒に抜き出しガスEとして抜気する。 一方、吹き込みに使用した残りのキヤリヤガス
14は抜き出しガスEと合流し、該合流ガスは後
述するSO2分析計17用として、その一部をガス
ポンプ16で吸引採取する以外は排気Fとして排
出すると同時にSO2分析計17からも排気Gとし
て放出する。SO2分析計17からの信号を亜硫酸
塩濃度演算器18へ送り、同時に入力されるキヤ
リヤガス流量信号*1と試料液Aの採取流量信号
*2とを用いて、下記の理論演算を行い、試料液
A中に含まれる亜硫酸塩濃度を算出し、亜硫酸塩
濃度指示計19に表示する。 (亜硫酸塩濃度の算出) 亜硫酸塩濃度〔mol/〕=SO2〔%〕/100−SO2〔%〕
×キヤリヤガス〔Nl/min〕/22.4〔Nl/mol〕×試料液
流量〔/min〕 更に亜硫酸塩濃度信号24と試料液Aの採取流
量信号*2を演算設定器23に入力し、下記演算
式に従つて演算処理する。 a・b・x+b・d=F ここで a:定数 〔−〕 b:試料液Aの採取流量 〔/h〕 x:亜硫酸塩濃度 〔mol/〕 d:定数 〔mol/〕 F:酸供給量 〔mol/h〕 この演算値Fは酸供給量制御用演算信号25と
して、酸Cの量を制御する。ここに於いて、定数
aは亜硫酸塩を完全に分解するのに必要な酸の量
を規定するものであり、定数dは滞留液6を酸性
に保つために必要な酸の濃度を規定する値を示
す。 酸化防止剤の供給量の調整は、上述したような
亜硫酸塩検出器によりオンラインでSO2洗浄液の
亜硫酸塩濃度を検出し、次に亜硫酸塩検出器から
の亜硫酸塩濃度信号を亜硫酸塩濃度調節計に送
り、亜硫酸塩濃度設定値と偏差信号を酸化防止剤
の流量調節計に送り、酸化防止剤流量計と調整弁
を介して適正量の酸化防止剤含有液をSO2洗浄液
に供給することにより行う。 〔実施例〕 以下、本発明の方法を実施例により詳細に説明
する。 使用した装置を第1図に示す小型石炭燃焼炉か
ら発生するSO2とO2を含む排ガス100を吸収塔
本体101に導入し、SO2洗浄液と接触させた
後、浄化ガス102として排出した。排ガス10
0の流量は20Nm3/hであり、排ガスの組成は
SO2=600ppmドライベース、O2=10vol.%ドラ
イベースであつた。 吸収塔はグリツド充填塔を使用した。吸収塔の
下部にはSO洗浄液の液留めを設け、液溜め容量
は8とし、循環ポンプ103を介してSO2洗浄
液を吸収塔101の塔項からスプレーして排ガス
を洗浄した。 SO2の吸収剤であるNaOHは0.4mol/の水溶
液110を使用し、吸収剤流量計108と調整弁
109を介して吸収塔の液溜めには供給する。液
溜めには撹拌機104を設けて撹拌しSO2洗浄液
のSO2吸収能を調整する為にPH検出器105でPH
を検出し、PH調節計106でのPH設定値との偏差
信号を流量調節計107で送つてNaOH水溶液
の供給量を調整した。SO2洗浄液中にはSO2の吸
収によつて生成した亜硫酸塩(Na2SO3
NaHSO3)が排ガス中のO2によつてすべて酸化
されて、硫酸塩(Na2SO4)だけが含まれてい
た。SO2の吸収量に見合つた物質収支に従つて
SO2洗浄液の1部は抜き出しライン111から抜き
出した。抜き出しライン111のSO2洗浄液中の亜
硫酸塩濃度は排ガス中のO2によつて酸化される
為、定常状態に於いて殆んど検出されず、すべて
硫酸塩であつた理由は、(1)吸収塔に接触効率の良
いグリツド充填塔を採用したこと、(2)SO2濃度が
600ppmと低いこと、(3)O2濃度が10vol.%と高い
こと、(4)Na+濃度が0.4mol/と低いこと、(5)石
炭燃焼排ガス中に含まれるダストがSO2洗浄液に
捕集され、酸化を促進するマンガンや鉄などの化
合物が不純物として混入したこと、等が挙げられ
る。 SO2洗浄液中の亜硫酸塩濃度は第2図によつて
説明したものと全く同じ構成から成る亜硫酸塩検
出器112によつて検出した。次に亜硫酸塩検出
器からの亜硫酸塩濃度信号を亜硫酸塩濃度調節計
113に送り、亜硫酸塩濃度設定値との偏差信号
を流量調節計114に送り、酸化防止剤流量計1
15と調整弁116を介して酸化防止剤含有液1
17をSO2洗浄液に供給出来る様にした。 酸化防止剤はヒドロキノンを使用し、SO2洗浄
液中の亜硫酸塩濃度を所望値に調整した。前述の
通り酸化防止剤を供給しない時は、吸収された
SO2がすべて排ガス中の酸素によつて酸化される
のでSO2洗浄液中の亜硫酸塩は検出されなかつた
が亜硫酸塩濃度調節計113の設定値を
0.12mol/とし、亜硫酸塩検出器112の信号
との偏差信号によりヒドロキノン含有液117の
供給量を調整し、定常状態になつた所でのSO2
浄液の組成を調べた。亜硫酸塩濃度の設定値を
0.19、0.25、0とした場合の結果を併せて表−1
に示す。
[Industrial Application Field] The present invention uses NaHSO 3 , Na 2 SO 3 , CaSO 3・1/2
H2O , Ca( HSO3 ) 2 , MgSO3 , Mg( HSO3 ) 2 ,
This relates to a method for controlling the concentration of sulfites and bisulfites (hereinafter collectively referred to as sulfites, including sulfites) such as (NH 4 ) 2 SO 3 and NH 4 HSO 3. For example, when oxygen and SO 2 In a wet flue gas sulfur system that cleans flue gas containing sulfites with an SO 2 cleaning solution containing sulfites, the use of antioxidants is necessary to suppress sulfites contained in the SO 2 cleaning solution and maintain the desired sulfite concentration. This provides an extremely effective method for adjusting the supply amount. [Conventional technology] Dilute combustion exhaust gas generated from a boiler
So-called flue gas desulfurization equipment, which removes SO 2 with cleaning fluid, is widely used in practical use, and one of them is
Hydroxides such as NaOH, NH 4 OH, Mg(OH) 2 and Ca(OH) 2 and carbonates such as Na 2 CO 3 and CaCO 3 are converted to SO 2
There is a method of removing SO 2 by cleaning the exhaust gas with an aqueous solution (hereinafter collectively referred to as aqueous solution, including slurry) containing it as an absorbent. For example, if NaOH is used as an SO 2 absorbent, 2NaOH + SO 2 → Na 2 SO 3 + H 2 O Na 2 SO 3 + SO 2 + H 2 O → 2NaHSO 3 , and the cleaning solution that has absorbed and removed SO 2 is Na 2 SO 3 and
This results in an aqueous solution containing NaHSO 3 as a product. However, exhaust gas contains O 2 resulting from excess air combustion, and at the same time as SO 2 is absorbed, O 2
Oxidation reactions occur due to absorption. 2NaHSO 3 +O 2 →Na 2 SO 4 +H 2 SO 4 Na 2 SO 3 +1/2O 2 →Na 2 SO 4This sulfate is absorbed when the O 2 absorption rate increases due to an increase in the O 2 concentration in the exhaust gas, etc. , the molar ratio of sulfate to sulfite (hereinafter referred to as oxidation rate) increases. In pulp production using sulfite as a by-product in flue gas desulfurization equipment, if the oxidation rate increases, there is a problem in that sufficient sulfite solution cannot be obtained as a wood cooking liquor. In order to deal with this problem, the use of antioxidants can be considered as a conventional method. Conventionally, it has been known to add antioxidants to the SO 2 cleaning solution of flue gas desulfurization equipment to control the oxidation of sulfites. Phenols and amines are known, such as diamine (Japanese Patent Publication No. 48-1594), and more specifically, ethylediaminetetraacetic acid (Japanese Patent Publication No. 49-40357, Patent Publication No. 57).
-205314), aminopolycarboxylic acid (Special Publication No. 1973)
-14077), sulfide (JP-A-48-21694), L-
Ascorbic acid (Japanese Patent Publication No. 55-109210), alkyldithiocarbamic acid (Japanese Patent Publication No. 51-45554), nonylphenol (Japanese Patent Publication No. 57-61300, 59-
1202), trialkyltrithiophosphite (Japanese Patent Publication No. 58-58283, Japanese Patent Publication No. 59-1203), sorbitol (Japanese Patent Publication No. 52-21994), and thiobisphenol compounds (Japanese Patent Publication No. 58-58282). However, in the conventional method of industrially using these antioxidants, the oxidation rate of sulfite is experimentally determined and the amount of antioxidant added is adjusted accordingly to control the sulfite concentration. The method used was to take a small sample of the liquid, determine the sulfite concentration by manual analysis in accordance with JISK0102, and check whether the antioxidant was in the appropriate amount. Therefore, when operating a flue gas desulfurization equipment continuously, where the exhaust gas properties and exhaust gas processing amount fluctuate from time to time due to changes in the boiler load and fluctuations in the S content in the fuel, SO In order to control the sulfite concentration in the cleaning solution in step 2 , it required the effort of adjusting the amount of antioxidant supplied and a lot of manual analysis, which had the drawback of requiring manpower and time. Furthermore, sulfites in the cleaning fluid of flue gas desulfurization equipment
When manually analyzing according to JISK0102, there were problems with interference from antioxidants and interference from iron ions, which caused problems in controlling the concentration of sulfites. Therefore, the conventional method has the drawback of continuously supplying an excessive amount of antioxidant, thereby half-blindly suppressing the oxidation rate. Although there is a need to control the sulfite concentration to a desired level without oversupplying expensive antioxidants, there are limits to controlling it by manual analysis, and this need has not been met. [Problems to be solved by the invention] The present invention has been made in view of the current situation, and
The object of the present invention is to provide a method for constantly and quickly supplying an appropriate amount of antioxidant without waste even in response to load fluctuations, and for adjusting the sulfite concentration in a cleaning liquid to a desired value. [Means to solve the problem] Exhaust gas containing oxygen and SO 2 containing sulfites
In flue gas desulfurization equipment that is cleaned with SO 2 cleaning liquid,
The supply amount of the oxidation inhibitor for suppressing the oxidation of sulfite in the SO 2 cleaning solution is adjusted based on the signal that detects the sulfite concentration of the SO 2 cleaning solution and the deviation signal from the sulfite concentration setting value. This paper proposes a method for controlling sulfite concentration. Hereinafter, an embodiment in which the method of the present invention is applied to a wet soda method flue gas desulfurization apparatus will be described with reference to FIG. It should be noted that the present invention was achieved by developing a method for continuously and instantaneously detecting sulfites in liquid online without relying on manual analysis, so this is one method for detecting sulfites. will be specifically explained with reference to FIG. FIG. 2 is an explanatory diagram showing the configuration of the sulfite detector 112 in FIG. 1 used in the present invention. In FIG. 2, A is a sample liquid, B is a carrier gas such as air or nitrogen, and C is a carrier gas such as air or nitrogen. An acid that decomposes sulfites such as hydrochloric acid or sulfuric acid, D is waste liquid, E is SO 2
The extracted gas containing , F and G are exhaust, and H is drain. Furthermore, 1 is a metering pump, 2 is a heater, 3 is a temperature controller, 4 is a temperature detector, and 5 is an acid decomposition container, which is a stirring type continuous acid decomposition container that is isolated from the outside air. 6 is a retained liquid, 7 is an agitator, 8 is a carrier gas blowing pipe, 9 is a sealing material, 10 is a motor, 11 is a flow rate regulator, 12 is a micro-volume pump, 1
3 is a liquid seal, 14 is a carrier gas, 15 is a flow rate indicator, 16 is a gas pump, 17 is an SO 2 analyzer, 1
8 is a sulfite concentration calculator, 19 is a sulfite concentration indicator, 20 is an overflow pipe, 21 is a valve, 22
23 is a dehumidifier, 23 is a calculation setting device, 24 is a sulfite concentration signal, 25 is a calculation signal for acid supply amount control,
*1 indicates the carrier gas flow rate signal, and *2 indicates the sample liquid A sampling flow rate signal. A sample solution A containing sulfite is collected using a metering pump 1, and the temperature of the retained solution 6 in the acid decomposition container 5 is 50°C.
It is fed through the heater 2 so that the temperature is as above. When acid C, which decomposes sulfites such as hydrochloric acid, is injected into the retained liquid 6 through the carrier gas blowing pipe 8, the sulfites in the sample liquid A react with the acid as shown in equations (1) and (2) below. Generates SO2 . (When adding sulfuric acid) 2NaHSO 3 +H 2 SO 4 →Na 2 SO 4 +2H 2 O+2SO 2 ↑ (1) (When adding hydrochloric acid) NaHSO 3 +HCl→NaCl+H 2 O+SO 2 ↑ (2) Note (1), (2) ) Formula shows the case where the sulfite is NaHSO 3 , but the same applies to sulfites (including bisulfites) of Na, NH 4 , Ca, Mg, and K. The generated SO 2 is used as a carrier gas by controlling part or all of air or nitrogen, which has been adjusted to the required flow rate with the flow rate controller 11, by operating the distribution valve 21, and combining it with the gas blown into the liquid through the flow rate indicator 15. The air is vented as extraction gas E. On the other hand, the remaining carrier gas 14 used for blowing is combined with the extracted gas E, and the combined gas is used for the SO 2 analyzer 17, which will be described later. It is also released from the SO 2 analyzer 17 as exhaust G. The signal from the SO 2 analyzer 17 is sent to the sulfite concentration calculator 18, and the following theoretical calculations are performed using the carrier gas flow rate signal *1 and sample liquid A sampling flow rate signal *2 that are input at the same time. The sulfite concentration contained in liquid A is calculated and displayed on the sulfite concentration indicator 19. (Calculation of sulfite concentration) Sulfite concentration [mol/] = SO 2 [%] / 100−SO 2 [%]
× Carrier gas [Nl/min] / 22.4 [Nl/mol] × Sample liquid flow rate [/min] Furthermore, input the sulfite concentration signal 24 and sample liquid A sampling flow rate signal *2 to the calculation setting device 23, and use the following calculation formula. Perform calculations according to . a・b・x+b・d=F where a: constant [-] b: sampling flow rate of sample solution A [/h] x: sulfite concentration [mol/] d: constant [mol/] F: acid supply amount [mol/h] This calculated value F controls the amount of acid C as the acid supply amount control calculation signal 25. Here, the constant a defines the amount of acid required to completely decompose sulfite, and the constant d defines the concentration of acid required to keep the retentate 6 acidic. shows. To adjust the supply amount of antioxidant, the sulfite concentration of the SO 2 cleaning solution is detected online using a sulfite detector as described above, and then the sulfite concentration signal from the sulfite detector is sent to a sulfite concentration controller. by sending the sulfite concentration set value and deviation signal to the antioxidant flow controller, and supplying the appropriate amount of antioxidant-containing liquid to the SO 2 cleaning solution through the antioxidant flow meter and the adjustment valve. conduct. [Example] Hereinafter, the method of the present invention will be explained in detail with reference to Examples. The used apparatus is shown in FIG. 1. Exhaust gas 100 containing SO 2 and O 2 generated from a small coal combustion furnace is introduced into an absorption tower main body 101, brought into contact with an SO 2 cleaning liquid, and then discharged as purified gas 102. Exhaust gas 10
The flow rate at 0 is 20Nm 3 /h, and the composition of the exhaust gas is
SO 2 = 600 ppm dry base, O 2 = 10 vol.% dry base. A grid packed tower was used as the absorption tower. A reservoir for the SO cleaning solution was provided at the bottom of the absorption tower, and the reservoir capacity was 8, and the SO 2 cleaning solution was sprayed from the column section of the absorption tower 101 via the circulation pump 103 to clean the exhaust gas. A 0.4 mol/aqueous solution 110 of NaOH, which is an absorbent for SO 2 , is used and is supplied to the liquid reservoir of the absorption tower via an absorbent flow meter 108 and a regulating valve 109 . A stirrer 104 is provided in the liquid reservoir for stirring, and a PH detector 105 measures the pH in order to adjust the SO 2 absorption capacity of the SO 2 cleaning solution.
was detected, and a deviation signal from the PH setting value from the PH controller 106 was sent by the flow controller 107 to adjust the supply amount of the NaOH aqueous solution. The SO 2 cleaning solution contains sulfites (Na 2 SO 3 ,
NaHSO 3 ) was completely oxidized by O 2 in the exhaust gas, and only sulfate (Na 2 SO 4 ) was contained. According to the mass balance commensurate with the amount of SO 2 absorbed
A portion of the SO 2 cleaning solution was withdrawn from withdrawal line 111. The sulfite concentration in the SO 2 cleaning solution in the extraction line 111 is oxidized by O 2 in the exhaust gas, so it is hardly detected in steady state, and the reason why it was all sulfate is (1) A grid-packed tower with good contact efficiency was adopted as the absorption tower, (2) the SO 2 concentration was
(3) The O 2 concentration is as high as 10 vol.%. (4) The Na + concentration is as low as 0.4 mol/%. (5) The dust contained in the coal combustion exhaust gas is trapped in the SO 2 cleaning solution. For example, impurities such as manganese and iron that promote oxidation have been mixed in. The sulfite concentration in the SO 2 wash solution was detected by a sulfite detector 112 having exactly the same configuration as that described in connection with FIG. Next, the sulfite concentration signal from the sulfite detector is sent to the sulfite concentration controller 113, the deviation signal from the sulfite concentration setting value is sent to the flow rate controller 114, and the antioxidant flow meter 1
15 and the antioxidant-containing liquid 1 through the regulating valve 116.
17 can be supplied to the SO 2 cleaning solution. Hydroquinone was used as the antioxidant, and the sulfite concentration in the SO 2 cleaning solution was adjusted to a desired value. As mentioned above, when no antioxidant is supplied, the absorbed
Sulfite in the SO 2 cleaning solution was not detected because all SO 2 was oxidized by oxygen in the exhaust gas, but the setting value of the sulfite concentration controller 113 was
The supply amount of the hydroquinone-containing liquid 117 was adjusted based on the deviation signal from the signal of the sulfite detector 112, and the composition of the SO 2 cleaning liquid was investigated when a steady state was reached. Set value of sulfite concentration
Table 1 shows the results for 0.19, 0.25, and 0.
Shown below.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、SO2洗浄液中の亜硫酸塩を手
分析によらず連続的に且つ瞬時にオンラインで検
出し、この検出信号により酸化抑制剤の適正量を
負荷変動に対しても常に迅速に無駄なく供給し、
SO2洗浄液中の亜硫酸塩濃度を所定の値に調整す
ることができる特有の効果を奏する。
According to the present invention, sulfites in the SO 2 cleaning solution can be detected continuously and instantaneously online without manual analysis, and the detection signal can be used to constantly and quickly determine the appropriate amount of oxidation inhibitor even when the load fluctuates. Supply without waste,
It has the unique effect of being able to adjust the sulfite concentration in the SO 2 cleaning solution to a predetermined value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施態様の例示図、第2図は
本発明に使用した亜硫酸塩検出器の構成を示す説
明図である。 第1図の記号の説明は第1図に併記、第2図の
記号の説明は以下の通りである。 1……定量ポンプ、2……加熱器、3……温度
調節計、4……温度検出器、5……酸分解容器、
6……滞留液、7……撹拌機、8……キヤリヤー
ガス吹込管、9……シール材、10……モータ
ー、11……流量調節計、12……微量ポンプ、
13……液封器、14……キヤリヤーガス、15
……流量指示計、16……ガスポンプ、17……
SO2分析計、18……亜硫酸塩濃度演算器、19
……亜硫酸塩濃度指示計、20……オーバーフロ
ー管、21……弁、22……除湿器、23……演
算設定器、24……亜硫酸塩濃度信号、25……
酸供給量制御用演算信号、*1……キヤリヤーガ
ス流量信号、*2……試料液Aの採取流量信号、
A……試料液、B……キヤリヤーガス、C……
酸、D……廃液、E……抜き出しガス、F……排
気、G……排気、H……ドレン。
FIG. 1 is an illustrative diagram of an embodiment of the present invention, and FIG. 2 is an explanatory diagram showing the configuration of a sulfite detector used in the present invention. Explanations of the symbols in FIG. 1 are given in FIG. 1, and explanations of the symbols in FIG. 2 are as follows. 1... Metering pump, 2... Heater, 3... Temperature controller, 4... Temperature detector, 5... Acid decomposition container,
6... Remaining liquid, 7... Stirrer, 8... Carrier gas blowing pipe, 9... Seal material, 10... Motor, 11... Flow rate controller, 12... Trace pump,
13...liquid seal, 14...carrier gas, 15
...Flow rate indicator, 16...Gas pump, 17...
SO 2 analyzer, 18...Sulfite concentration calculator, 19
... Sulfite concentration indicator, 20 ... Overflow pipe, 21 ... Valve, 22 ... Dehumidifier, 23 ... Calculation setting device, 24 ... Sulfite concentration signal, 25 ...
Acid supply amount control calculation signal, *1...Carrier gas flow rate signal, *2...Sample liquid A sampling flow rate signal,
A...Sample liquid, B...Carrier gas, C...
Acid, D... Waste liquid, E... Exhaust gas, F... Exhaust, G... Exhaust, H... Drain.

Claims (1)

【特許請求の範囲】[Claims] 1 酸素とSO2を含む排ガスを亜硫酸塩を含有す
るSO2洗浄液で洗浄する排煙脱硫装置において、
該SO2洗浄液の亜硫酸塩濃度を検出した信号と、
亜硫酸塩濃度設定値との偏差信号により、該SO2
洗浄液中の亜硫酸塩の酸化を抑制するための酸化
抑制剤の供給量を調整することを特徴とする亜硫
酸塩濃度の管理方法。
1. In a flue gas desulfurization equipment that cleans flue gas containing oxygen and SO 2 with an SO 2 cleaning solution containing sulfites,
a signal detecting the sulfite concentration of the SO 2 cleaning solution;
Based on the deviation signal from the sulfite concentration setting value, the SO 2
A method for controlling sulfite concentration, the method comprising adjusting the supply amount of an oxidation inhibitor for suppressing oxidation of sulfite in a cleaning solution.
JP60093236A 1985-04-30 1985-04-30 Controlling method for sulfite concentration Granted JPS61249528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60093236A JPS61249528A (en) 1985-04-30 1985-04-30 Controlling method for sulfite concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60093236A JPS61249528A (en) 1985-04-30 1985-04-30 Controlling method for sulfite concentration

Publications (2)

Publication Number Publication Date
JPS61249528A JPS61249528A (en) 1986-11-06
JPH0521005B2 true JPH0521005B2 (en) 1993-03-23

Family

ID=14076893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60093236A Granted JPS61249528A (en) 1985-04-30 1985-04-30 Controlling method for sulfite concentration

Country Status (1)

Country Link
JP (1) JPS61249528A (en)

Also Published As

Publication number Publication date
JPS61249528A (en) 1986-11-06

Similar Documents

Publication Publication Date Title
US4337230A (en) Method of absorbing sulfur oxides from flue gases in seawater
US9321025B2 (en) Oxidation control for improved flue gas desulfurization performance
JPS60226403A (en) Method for adjusting sulfite concentration
CA1150036A (en) Flue gas desulfurization process
JP3968457B2 (en) Wet flue gas desulfurization method
US9321006B2 (en) Oxidation control for improved flue gas desulfurization performance
WO1996014137A1 (en) Forced oxidation system for a flue gas scrubbing apparatus
EP0518585B1 (en) Flue gas desulfurization process
US5928413A (en) Flue gas treating system and process
JPH0521005B2 (en)
US4587112A (en) Effluent gas desulfurization with conversion to gypsum of large particle size
SK279543B6 (en) Process for treating flue gas
JPH0696086B2 (en) Operation control method for wet flue gas desulfurization equipment
JP3692219B2 (en) Smoke exhaust treatment method and smoke exhaust treatment apparatus
JPH0356123A (en) Removal of mercury and nox in gas
CA1151848A (en) Removal of sulfur from waste gas streams
JPH01171622A (en) Wet type exhaust gas desulfurization apparatus
JPS6244735Y2 (en)
JP2008143747A (en) Manufacturing method of sodium bisulfite solution
JPH0227867Y2 (en)
JPH0691940B2 (en) Oxidizing air control method for wet flue gas desulfurization equipment
JPS62262728A (en) Method for operating wet exhaust gas desulfurizer
CH706528B1 (en) Method and installation for capturing highly oxidizing pollutants in a wet gas stream
JPH09285792A (en) Treatment of oxidizing material-containing waste water and device therefor
JPS60125232A (en) Method for controlling ph of oxidation tower

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees