JPH05209997A - Cracking method for chelating agent in decontaminated waste liquid - Google Patents

Cracking method for chelating agent in decontaminated waste liquid

Info

Publication number
JPH05209997A
JPH05209997A JP1573892A JP1573892A JPH05209997A JP H05209997 A JPH05209997 A JP H05209997A JP 1573892 A JP1573892 A JP 1573892A JP 1573892 A JP1573892 A JP 1573892A JP H05209997 A JPH05209997 A JP H05209997A
Authority
JP
Japan
Prior art keywords
ozone
liquid
decomposition
chelating agent
waste liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1573892A
Other languages
Japanese (ja)
Inventor
Akira Kakimoto
朗 柿本
Yukio Nishihara
幸夫 西原
Yuzo Inagaki
雄三 稲垣
Iwao Nakayasu
巖 中安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KORYO ENG KK
Mitsubishi Heavy Industries Ltd
Original Assignee
KORYO ENG KK
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KORYO ENG KK, Mitsubishi Heavy Industries Ltd filed Critical KORYO ENG KK
Priority to JP1573892A priority Critical patent/JPH05209997A/en
Publication of JPH05209997A publication Critical patent/JPH05209997A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To decompose a chelating agent in a decontaminating agent in a relatively short time, and enable an amount of chemicals and secondary wastes to be reduced as well by agitating the decontaminated liquid waste of a primary system equipment after adding ozone, and concurrently irradiating ultraviolet light to the waste under agitation. CONSTITUTION:A reaction layer 1 is charged with liquid containing chelate, and filled with a gaseous form of ozone form from a ozone generator 3 through a glass filter 4. Concurrently, ultraviolet light generated at a mercury lamp 2 is irradiated to the liquid. Also, a magnetic stirrer 5 agitates the liquid in a reaction bath 1. As a result, the chelate is decomposed, but an excess of the ozone is discharged. In this case, an ozone gas absorbing tower A is provided for preventing the ozone from being released to the atmosphere.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は原子力発電設備の一次系
機器除染の廃液のキレート剤の分解方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for decomposing a chelating agent in a waste liquid for decontamination of primary equipment of a nuclear power plant.

【0002】[0002]

【従来の技術】原子力発電所においては、定検時の被曝
低減を目的として一次冷却材ポンプ等高線量の機器の除
染が行われ、この除染剤にはシュウ酸、クエン酸、エチ
レンジアミン四酢酸(EDTA)などの有機物の水溶液
が用いられている(代表的なものとしては、特開昭52
−118200号公報参照)。一方、原子力発電所から
排出されるセメント固化体やアスファルト固化体は埋設
処分にあたりシュウ酸、クエン酸、EDTAなどキレー
ト作用をもつ物質を含まないことが要求されていること
から、除染時の廃液もそのままでは通常の廃液と同様に
は処分ができない状況にある。また、これまでキレート
剤を分解するための適切な処理方法がなく処分に困って
いた。そのため、除染廃液中のキレート剤を何らかの方
法で分解することが求められている。
2. Description of the Related Art In nuclear power plants, high dose equipment such as primary coolant pumps is decontaminated for the purpose of reducing exposure during regular inspections. The decontaminating agents include oxalic acid, citric acid and ethylenediaminetetraacetic acid. An aqueous solution of an organic substance such as (EDTA) is used.
-118200 gazette). On the other hand, solidified cement and asphalt solids discharged from nuclear power plants are required to contain no chelates such as oxalic acid, citric acid, and EDTA for landfill disposal. However, as it is, it cannot be disposed of like normal waste liquid. Further, until now, there has been no proper treatment method for decomposing the chelating agent, which has been a problem for disposal. Therefore, it is required to decompose the chelating agent in the decontamination waste liquid by some method.

【0003】従来、用排水中の有機物を分解する方法と
しては種々検討されており、例えば以下のように大別で
きる。 (1)酸化剤添加法:塩素系酸化剤、過酸化水素、オゾ
ンなどを添加する。 (2)湿式酸化法:酸化雰囲気下で高温高圧において熱
分解する。(触媒を用いる場合もある) (3)電解酸化法:電極反応による酸化分解(オゾンな
どの酸化剤を併用する場合もある) (4)触媒酸化法:触媒として金属塩ないし金属を用い
酸化剤で分解する。 (5)光触媒酸化法:紫外線(以下「UV」と称する)
などの照射下で金属塩ないし半導体触媒を用いて酸化分
解する。 (6)UV湿式酸化法:UV+塩素系酸化剤、UV+H
2 2 、UV+オゾン、UV+オゾン+超音波、UV+
2 2 +オゾン。
Conventionally, various methods for decomposing organic substances in waste water for use have been studied, and for example, they can be roughly classified as follows. (1) Oxidizing agent addition method: A chlorine-based oxidizing agent, hydrogen peroxide, ozone, etc. are added. (2) Wet oxidation method: Thermal decomposition at high temperature and high pressure in an oxidizing atmosphere. (Catalyst may be used) (3) Electrolytic oxidation method: Oxidative decomposition by electrode reaction (Oxidizing agent such as ozone may be used together) (4) Catalytic oxidation method: Oxidizing agent using metal salt or metal as catalyst Disassemble with. (5) Photocatalytic oxidation method: ultraviolet rays (hereinafter referred to as "UV")
Under irradiation such as oxidative decomposition using a metal salt or a semiconductor catalyst. (6) UV wet oxidation method: UV + chlorine oxidizer, UV + H
2 O 2 , UV + ozone, UV + ozone + ultrasonic waves, UV +
H 2 O 2 + ozone.

【0004】これらの方法のうち、「酸化剤添加法」は
シュウ酸、クエン酸、EDTAなどの有機酸の分解は殆
どできない。又、「湿式酸化法」は完全酸化が可能であ
るが、高圧、高温が必要であることから原子力発電所の
放射線管理区域内での適用は難しい。又、「電解酸化
法」は電気を流す必要上対象液にある程度の電導度が必
要なため、電解質の添加が必要となり最終廃棄物量を増
加させること、並びに水分解による水素ガス発生による
危険があることから適用は困難である。又、フェントン
処理に代表される「触媒酸化法」は最終廃棄物増加原因
となる金属塩や金属を多量に必要とし、かつ除染剤の主
成分である有機酸の分解性能が悪いことなど問題が多
い。又、「光触媒酸化法」は反応速度を増加させるため
には触媒を粉体などにして分散させる必要があり、その
回収装置の付帯が必要なことや、半導体が光を吸収して
電子が励起した後の正孔による酸化反応であることか
ら、電子を消費するために水分解による水素発生等が必
然的に起こるため安全上問題がある。さらに、又「UV
湿式酸化法」は有機酸の分解速度も速く、酸化剤以外に
はほとんど薬剤を用いないため最終廃棄物を増加させる
こともなく最も有望な方法であり、その中でもUVとオ
ゾンを併用する方法が最も分解速度が速いという利点が
ある。
Among these methods, the "oxidant addition method" can hardly decompose organic acids such as oxalic acid, citric acid and EDTA. Further, although the "wet oxidation method" is capable of complete oxidation, it is difficult to apply it in the radiation controlled area of a nuclear power plant because it requires high pressure and high temperature. In addition, since the "electrolytic oxidation method" requires the flow of electricity and requires a certain degree of conductivity in the target liquid, it is necessary to add an electrolyte and increase the amount of final waste, and there is a risk of hydrogen gas generation due to water decomposition. Therefore, it is difficult to apply. In addition, the "catalytic oxidation method" represented by Fenton treatment requires a large amount of metal salts and metals that cause an increase in final waste, and has a problem of poor decomposition performance of the organic acid that is the main component of the decontaminating agent. There are many. In addition, in the "photocatalytic oxidation method", in order to increase the reaction rate, it is necessary to disperse the catalyst in the form of powder, etc., it is necessary to attach a recovery device for it, and the semiconductor absorbs light and electrons are excited. Since it is an oxidation reaction due to holes after that, hydrogen is inevitably generated due to water decomposition due to consumption of electrons, which is a safety problem. In addition, "UV
The “wet oxidation method” is the most promising method because it does not increase the amount of final waste because it uses only a high rate of decomposition of organic acids and hardly uses chemicals other than oxidizing agents. Among them, the method of using UV and ozone together It has the advantage of the fastest decomposition rate.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記技術水準
に鑑み、除染剤中のキレート剤、特に、シュウ酸、クエ
ン酸、EDTAを比較的短時間で分解し、使用薬品の減
少、二次廃棄物の減少をも可能にした原子力発電設備の
一次系機器除染廃液中のキレート剤の分解方法を提供し
ようとするものである。
In view of the above-mentioned state of the art, the present invention decomposes a chelating agent in a decontaminating agent, particularly oxalic acid, citric acid, and EDTA, in a relatively short time to reduce the amount of chemicals used. An object of the present invention is to provide a method for decomposing a chelating agent in a decontamination waste liquid of a primary system of a nuclear power generation facility that enables reduction of secondary waste.

【0006】[0006]

【課題を解決するための手段】本発明は原子力発電設備
の一次系機器除染廃液にオゾンを添加して攪拌すると同
時に、紫外線を照射することを特徴とする除染廃液中の
キレート剤の分解方法である。
DISCLOSURE OF THE INVENTION The present invention is characterized by irradiating ultraviolet rays at the same time as ozone is added to a decontamination waste liquid of a primary system of a nuclear power generation facility and stirred, and decomposition of a chelating agent in the decontamination waste liquid is carried out. Is the way.

【0007】本発明によれば、シュウ酸、クエン酸、E
DTAを含む除染液にO3 を吹き込み、併せて水銀ラン
プによるUVを液中で放出させることにより、有機性炭
素(以下、TOCという)として検出限界値(約0.1
ppm)以下まで分解することができる。
According to the invention, oxalic acid, citric acid, E
O 3 was blown into a decontamination solution containing DTA, and UV from a mercury lamp was also emitted in the solution to detect organic carbon (hereinafter referred to as TOC) at a detection limit value (about 0.1).
(ppm) or less can be decomposed.

【0008】分解条件としては除染廃液量500ミリリ
ットルに対し、水銀ランプ:5〜20W/リットル、O
3 吹き込み量:0.5〜2gO3 /リットル・時、分解
(処理)時間:0.5〜3時間で可能である。
As decomposition conditions, for a decontamination waste liquid amount of 500 ml, a mercury lamp: 5 to 20 W / liter, O
3 Blow-in amount: 0.5 to 2 g O 3 / liter · hour, decomposition (treatment) time: 0.5 to 3 hours.

【0009】[0009]

【作用】本発明は反応槽にキレート剤含有廃液を入れ、
反応槽の下部からオゾンガスを噴出させながら、同槽に
設けられた水銀ランプのUVを照射することによって、
キレート剤のジカルボン酸を酸化、分解させることがで
きる。
The present invention puts a chelating agent-containing waste liquid in the reaction tank,
By irradiating the UV of a mercury lamp provided in the same tank while ejecting ozone gas from the lower part of the reaction tank,
The dicarboxylic acid of the chelating agent can be oxidized and decomposed.

【0010】H2 2 やオゾンにUVを照射すると、種
々の反応が起こるが、主たる反応として次の反応が起こ
ると言われている。 有機物であるキレート剤はこのヒドロキシラジカル(O
H・)の酸化力により酸化される。
When H 2 O 2 and ozone are irradiated with UV, various reactions occur, but it is said that the following reactions occur as the main reactions. The chelating agent that is an organic substance is the hydroxyl radical (O
It is oxidized by the oxidizing power of H.).

【0011】オゾンにUVを照射すると一度H2 2
生じ、そのH2 2 がUVによりOH・に分解されるた
め、溶解度で濃度が決まるオゾンより幾らでも添加濃度
を上げることが可能なH2 2 の方が有機物の分解速度
が大きいように考えられるが、実際はH2 2 の自己分
解速度が遅いため、UV−オゾン法に較べ分解速度が遅
い。
When ozone is irradiated with UV, H 2 O 2 is once generated and the H 2 O 2 is decomposed by UV into OH. Therefore, it is possible to increase the addition concentration to any extent as compared with ozone whose concentration is determined by the solubility. It seems that H 2 O 2 has a higher decomposition rate of organic substances, but in reality, the decomposition rate of H 2 O 2 is slower, and thus the decomposition rate is slower than that of the UV-ozone method.

【0012】[0012]

【実施例】本発明の一実施例を図1によって説明する。
図1に示した装置において、1は反応槽、2は水銀ラン
プ、3はO3 発生器、4はガラスフィルタ、5はマグネ
ットスターラであり、その他に電源、酸素ボンベ、流量
計、サンプリングコック、O3 濃度計、O3 ガス吸収塔
が設けられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIG.
In the apparatus shown in FIG. 1, 1 is a reaction tank, 2 is a mercury lamp, 3 is an O 3 generator, 4 is a glass filter, 5 is a magnetic stirrer, and a power source, an oxygen cylinder, a flow meter, a sampling cock, An O 3 concentration meter and an O 3 gas absorption tower are provided.

【0013】反応槽1にキレート含有液を入れ、こゝへ
3 発生器3からのオゾンをガラスフィルタ4を通じて
ガス状で注入し、併せ水銀ランプ2より発生するUVを
液中に照射する。マグネットスターラ5は反応槽1中の
液を攪拌するために設けてある。これにより、キレート
は分解されるが、この時、余剰のオゾンが大気中に放出
されることを防ぐために、O3 ガス吸収塔を設けるべき
である。
A chelate-containing liquid is placed in the reaction tank 1, ozone from the O 3 generator 3 is injected into the liquid gas through the glass filter 4, and UV generated by the mercury lamp 2 is irradiated into the liquid. The magnetic stirrer 5 is provided for stirring the liquid in the reaction tank 1. As a result, the chelate is decomposed, but at this time, an O 3 gas absorption tower should be provided in order to prevent excess ozone from being released into the atmosphere.

【0014】(実験1)上記装置を用いて、シュウ酸、
クエン酸の分解試験を行った。分解試験の条件は下記の
通りである。 有機物 : シュウ酸、クエン酸 濃 度 : ≒200mg−TOC/リットル 液 量 : 500ミリリットル 温 度 : 25℃ 水銀ランプ : 4.9W×4本 ランプケース径 : 14mmφ 攪拌回転数 : 1000rpm
(Experiment 1) Using the above apparatus, oxalic acid,
A citric acid decomposition test was performed. The conditions of the decomposition test are as follows. Organic matter: Oxalic acid, citric acid Concentration: ≈200 mg-TOC / liter Liquid amount: 500 ml Temperature: 25 ° C. Mercury lamp: 4.9 W × 4 lamp case diameter: 14 mmφ Stirring speed: 1000 rpm

【0015】この結果、シュウ酸分解結果を図2に、ま
たクエン酸分解結果を図3に示す。図2、図3におい
て、横軸は分解時間、縦軸はC(分解後TOC濃度)/
0 (初期TOC濃度)であって、TOC残存率を示
す。
As a result, the results of oxalic acid decomposition are shown in FIG. 2 and the results of citric acid decomposition are shown in FIG. 2 and 3, the horizontal axis is the decomposition time, and the vertical axis is C (TOC concentration after decomposition) /
C 0 (initial TOC concentration), indicating the TOC residual rate.

【0016】図2、図3の結果から、オゾンに更にH2
2 を添加して酸化力を強めようとしても、かえってシ
ュウ酸、クエン酸の分解は遅くなることが明らかとな
り、またH2 2 とUVとの併用によるよりも本発明方
法の方が優れていることが判る。
From the results shown in FIGS. 2 and 3, ozone is further added with H 2
Even if O 2 is added to increase the oxidizing power, it becomes clear that the decomposition of oxalic acid and citric acid is delayed, and the method of the present invention is superior to the combination of H 2 O 2 and UV. You can see that

【0017】(実験2)次に、下記の条件でUV−O3
酸化法におけるオゾン供給量の影響確認試験を行った。 有機物 : クエン酸 濃 度 : 200mg−TOC/リットル 液 量 : 500ミリリットル 温 度 : 25℃ 水銀ランプ : 4.9W×4本 ランプケース径 : 14mmφ 攪拌回転数 : 1000rpm ガス供給量 : 20リットル/h
(Experiment 2) Next, UV-O 3 was prepared under the following conditions.
A test for confirming the influence of the ozone supply amount in the oxidation method was conducted. Organic matter: Citric acid Concentration: 200 mg-TOC / liter Liquid amount: 500 ml Temperature: 25 ° C. Mercury lamp: 4.9 W × 4 lamp case diameter: 14 mmφ Stirring speed: 1000 rpm Gas supply: 20 l / h

【0018】この結果を図4に示す。図4において、横
軸は供給オゾン量(g/リットル・h)、縦軸は100
%分解時間(h)を示す。この図4より、オゾン量が多
いと分解時間が短いことが判る。
The results are shown in FIG. In FIG. 4, the horizontal axis represents the amount of ozone supplied (g / liter · h), and the vertical axis represents 100.
The% decomposition time (h) is shown. It can be seen from FIG. 4 that the decomposition time is short when the amount of ozone is large.

【0019】(実験3)次に、下記の条件でUV−O3
酸化法におけるUV強度の影響確認試験を行った。 有機物 : シュウ酸、クエン酸 濃 度 : 200mg−TOC/リットル 液 量 : 500ミリリットル 温 度 : 25℃ 水銀ランプ : 4.9W ランプケース径 : 14mmφ 攪拌回転数 : 1000rpm ガス供給量 : 20リットル/h オゾン供給量 : 2.24g/リットル・h
(Experiment 3) Next, UV-O 3 was prepared under the following conditions.
A test for confirming the influence of UV intensity in the oxidation method was conducted. Organic matter: Oxalic acid, citric acid Concentration: 200 mg-TOC / liter Liquid amount: 500 ml Temperature: 25 ° C. Mercury lamp: 4.9 W Lamp case diameter: 14 mmφ Stirring speed: 1000 rpm Gas supply amount: 20 l / h Ozone Supply amount: 2.24 g / liter · h

【0020】この結果を図5に示す。図5において、横
軸はランプ数(本)、すなわちUV強度を示し、縦軸は
100%分解時間(h)を示す。この図5より、液量5
00ミリリットルではUVは4.9W×2=9.8W程
度で十分であることが判る。
The results are shown in FIG. In FIG. 5, the horizontal axis represents the number of lamps (lines), that is, UV intensity, and the vertical axis represents 100% decomposition time (h). From this FIG.
It can be seen that UV of 4.9 W × 2 = 9.8 W is sufficient for 00 ml.

【0021】(実験4)さらに、次に下記の条件でUV
−O3 酸化法における液中のシュウ酸、クエン酸の濃度
と分解時間の関係の確認試験を行った。 液 量 : 500ミリリットル 温 度 : 25℃ 水銀ランプ : 4.9W×4本 ランプケース径 : 14mmφ ガス供給量 : 20リットル/h オゾン供給量 : 2.24g/リットル・h 攪拌回転数 : 1000rpm
(Experiment 4) Further, next, under the following conditions, UV
A test for confirming the relationship between the concentration of oxalic acid and citric acid in the liquid and the decomposition time in the —O 3 oxidation method was conducted. Liquid amount: 500 ml Temperature: 25 ° C. Mercury lamp: 4.9 W × 4 lamp case diameter: 14 mmφ Gas supply amount: 20 l / h Ozone supply amount: 2.24 g / l · h Stirring speed: 1000 rpm

【0022】この結果を図6に示す。図6において、横
軸はクエン酸、シュウ酸の濃度(mg−TOC/リット
ル)、縦軸は液中のTOC濃度が検出限界となる分解所
要時間(h)を示す。この図6より、クエン酸、シュウ
酸の濃度が高い場合には分解所要時間が当然長時間にな
ることが判る。
The results are shown in FIG. In FIG. 6, the horizontal axis represents the concentration of citric acid and oxalic acid (mg-TOC / liter), and the vertical axis represents the time required for decomposition (h) at which the TOC concentration in the liquid becomes the detection limit. It can be seen from FIG. 6 that the time required for decomposition naturally becomes long when the concentration of citric acid and oxalic acid is high.

【0023】[0023]

【発明の効果】本発明によれば、原子力発電設備の一次
系機器除染廃液中のキレート剤の分解を完全に行うこと
ができ、このことから原子力発電所で使用した除染剤を
固化剤で固化体とし、埋設処分を行なうことが可能とな
る。
According to the present invention, it is possible to completely decompose the chelating agent in the decontamination waste liquid of the primary system equipment of the nuclear power generation facility. From this fact, the decontamination agent used in the nuclear power plant is solidified. It becomes a solid and can be buried.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施するに適した装置の一態様の説明
図。
FIG. 1 is an illustration of an embodiment of an apparatus suitable for implementing the present invention.

【図2】シュウ酸の分解実験における本発明の効果を立
証する図表。
FIG. 2 is a chart demonstrating the effect of the present invention in an oxalic acid decomposition experiment.

【図3】クエン酸の分解実験における本発明の効果を立
証する図表。
FIG. 3 is a diagram demonstrating the effect of the present invention in a citric acid decomposition experiment.

【図4】本発明のUV−O3 酸化法におけるオゾン供給
量の影響確認試験の結果を示す図表。
FIG. 4 is a chart showing the results of an effect confirmation test of the ozone supply amount in the UV-O 3 oxidation method of the present invention.

【図5】本発明のUV−O3 酸化法におけるUV強度の
影響確認試験の結果を示す図表。
FIG. 5 is a chart showing the results of a test for confirming the influence of UV intensity in the UV-O 3 oxidation method of the present invention.

【図6】本発明のUV−O3 酸化法におけるシュウ酸、
クエン酸の濃度と分解時間の関係を示す図表。
FIG. 6 Oxalic acid in the UV-O 3 oxidation method of the present invention,
A chart showing the relationship between the concentration of citric acid and the decomposition time.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 稲垣 雄三 兵庫県神戸市兵庫区小松通五丁目1番16号 株式会社神菱ハイテック内 (72)発明者 中安 巖 兵庫県高砂市荒井町新浜二丁目8番25号 高菱エンジニアリング株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yuzo Inagaki 5-16 Komatsudori, Hyogo-ku, Kobe, Hyogo Prefecture Shinbishi Hitec Co., Ltd. No. 25 Takanishi Engineering Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 原子力発電設備の一次系機器除染廃液に
オゾンを添加して攪拌すると同時に、紫外線を照射する
ことを特徴とする除染廃液中のキレート剤の分解方法。
1. A method for decomposing a chelating agent in a decontamination waste liquid, which comprises adding ozone to a decontamination waste liquid of a primary system of a nuclear power generation facility and stirring the mixture while irradiating ultraviolet rays.
JP1573892A 1992-01-31 1992-01-31 Cracking method for chelating agent in decontaminated waste liquid Pending JPH05209997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1573892A JPH05209997A (en) 1992-01-31 1992-01-31 Cracking method for chelating agent in decontaminated waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1573892A JPH05209997A (en) 1992-01-31 1992-01-31 Cracking method for chelating agent in decontaminated waste liquid

Publications (1)

Publication Number Publication Date
JPH05209997A true JPH05209997A (en) 1993-08-20

Family

ID=11897105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1573892A Pending JPH05209997A (en) 1992-01-31 1992-01-31 Cracking method for chelating agent in decontaminated waste liquid

Country Status (1)

Country Link
JP (1) JPH05209997A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07140296A (en) * 1993-11-15 1995-06-02 Morikawa Sangyo Kk Treating method of chelating agent solution containing radioactive contaminant
US5848363A (en) * 1995-12-27 1998-12-08 Framatome Process and device for treatment of an aqueous effluent containing an organic load
US7087120B1 (en) 2002-11-21 2006-08-08 Kabushiki Kaisha Toshiba System and method for chemical decontamination of radioactive material
US7713402B2 (en) 2000-12-21 2010-05-11 Kabushiki Kaisha Toshiba Method for treating a chemical decontamination solution

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07140296A (en) * 1993-11-15 1995-06-02 Morikawa Sangyo Kk Treating method of chelating agent solution containing radioactive contaminant
US5848363A (en) * 1995-12-27 1998-12-08 Framatome Process and device for treatment of an aqueous effluent containing an organic load
US7713402B2 (en) 2000-12-21 2010-05-11 Kabushiki Kaisha Toshiba Method for treating a chemical decontamination solution
US7087120B1 (en) 2002-11-21 2006-08-08 Kabushiki Kaisha Toshiba System and method for chemical decontamination of radioactive material
US7622627B2 (en) 2002-11-21 2009-11-24 Kabushiki Kaisha Toshiba System and method for chemical decontamination of radioactive material
US7772451B2 (en) 2002-11-21 2010-08-10 Kabushiki Kaisha Toshiba System and method for chemical decontamination of radioactive material

Similar Documents

Publication Publication Date Title
US7622627B2 (en) System and method for chemical decontamination of radioactive material
US5258124A (en) Treatment of contaminated waste waters and groundwaters with photolytically generated hydrated electrons
US7531708B2 (en) Mediated electrochemical oxidation for decontamination
JP3399530B2 (en) Contaminated water treatment method
JP2000081498A (en) Method and device for chemical decontaminating for structural part of radiation handling facility
JP4131814B2 (en) Method and apparatus for chemical decontamination of activated parts
JP3657747B2 (en) Decomposition method of ion exchange resin
JP2003014890A (en) Disposal method for radioactivated graphite and its system
JPH05209997A (en) Cracking method for chelating agent in decontaminated waste liquid
JP2004286471A (en) Method and device for chemical decontamination of radioactivity
JPH09159798A (en) Bubble decontamination and method for treating decontamination waste liquid
JPH1199394A (en) Method for removing organic matter in water
JP3840073B2 (en) Method and apparatus for treating chemical decontamination liquid
JP2008089451A (en) Method and device for treating laundry waste liquid
JP4861252B2 (en) Chemical decontamination method before reactor demolition
JP2000237774A (en) Ozone/ultraviolet ray separated circulation device
KR101196434B1 (en) Decontamination method of radioactive contaminant-deposited metal using micro bubble, and an apparatus of such a decontamination therefor
JP2001070958A (en) Partitioned type ozone/ultraviolet circulating oxidation treatment apparatus
JPH11231097A (en) Chemical decontamination method
JP2020144108A (en) Method and device for purifying tritium-containing raw water
JP4477869B2 (en) Method for treating waste liquid containing organic matter, especially radioactive liquid waste
US6716402B2 (en) Dissolution and decontamination process
JP2009162687A (en) Method for removing radioactive contaminant
JP2000065989A (en) Method for chemical decontamination of radioactive contaminant
JP5096652B2 (en) Treatment agent and treatment method for aluminum member surface

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000307