JP4861252B2 - Chemical decontamination method before reactor demolition - Google Patents

Chemical decontamination method before reactor demolition Download PDF

Info

Publication number
JP4861252B2
JP4861252B2 JP2007152571A JP2007152571A JP4861252B2 JP 4861252 B2 JP4861252 B2 JP 4861252B2 JP 2007152571 A JP2007152571 A JP 2007152571A JP 2007152571 A JP2007152571 A JP 2007152571A JP 4861252 B2 JP4861252 B2 JP 4861252B2
Authority
JP
Japan
Prior art keywords
chemical decontamination
reactor
anticorrosive
hydrogen peroxide
decontamination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007152571A
Other languages
Japanese (ja)
Other versions
JP2008304353A (en
Inventor
正見 遠田
優美 中根
仁志 酒井
和司 夏井
伸久 松田
仁志 梶沼
一郎 稲見
裕 閏間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Plant Systems and Services Corp
Original Assignee
Toshiba Corp
Toshiba Plant Systems and Services Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Plant Systems and Services Corp filed Critical Toshiba Corp
Priority to JP2007152571A priority Critical patent/JP4861252B2/en
Publication of JP2008304353A publication Critical patent/JP2008304353A/en
Application granted granted Critical
Publication of JP4861252B2 publication Critical patent/JP4861252B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、原子炉解体前の化学除染方法に係り、特に原子炉廃止措置時の解体前の化学除染方法に関する。   The present invention relates to a chemical decontamination method before reactor demolition, and more particularly to a chemical decontamination method before demolition at the time of decommissioning of a reactor.

運転寿命を迎えた商業用軽水炉型原子力発電所は、使用済み燃料を取り出した後、系統除染を行い、安全貯蔵期間(5〜10年)を経た後に解体撤去されることが想定されている。
系統除染は、解体撤去従事者の被ばくを低減するため、放射線量当量率が大きい原子炉圧力容器及び一次冷却材系統が除染対象である。原子炉圧力容器及び一次冷却材系統を一括で除染する大規模な除染には、汚染源である酸化皮膜を有機酸とオゾンを組み合わせた化学除染の適用が考えられている(例えば、特許文献1を参照)。
Commercial light-water reactor nuclear power plants that have reached the operating life are expected to be decontaminated and removed after system decontamination after a spent fuel is removed and after a safe storage period (5 to 10 years). .
System decontamination is intended for decontamination of reactor pressure vessels and primary coolant systems that have a high radiation dose equivalent rate in order to reduce the exposure of workers dismantling and removal. For large-scale decontamination that collectively decontaminates the reactor pressure vessel and the primary coolant system, it is considered to apply chemical decontamination that combines organic acid and ozone to the oxide film that is the source of contamination (for example, patents) Reference 1).

一方、1970年代に運転を開始した商業用軽水炉型原子力発電所は、圧力抑制プール水に水系の防食剤が添加されている場合がある。原子炉解体時、特に原子炉廃止措置時には、圧力抑制プール水に添加された水系防錆剤を無害化処理する必要がある。水系防錆剤には有機防錆剤と無機防錆剤があり、有機防錆剤は有機カルボン酸塩又はアゾール系有機化合物が、無機防錆剤はクロム酸塩(例えば、KCrO)が知られている。有機防錆剤の処理方法は、オゾンにより有機物を分解し無機化(無害化)する方法が知られている。
また、無機防錆剤の処理方法は、ギ酸による酸性条件下で過酸化水素により六価クロムを三価クロムに還元して無害化する方法が知られている(例えば、特許文献1、特許文献2を参照)。
特開2004−233156号公報 特開2005−326361号公報
On the other hand, commercial light water reactor nuclear power plants that started operation in the 1970s may have a water-based anticorrosive agent added to the pressure-suppressed pool water. It is necessary to detoxify the water-based rust inhibitor added to the pressure suppression pool water when the reactor is dismantled, especially when the reactor is decommissioned. Water-based rust inhibitors include organic rust inhibitors and inorganic rust inhibitors, organic rust inhibitors are organic carboxylates or azole organic compounds, and inorganic rust inhibitors are chromates (for example, K 2 CrO 4 ). It has been known. As a method for treating an organic rust inhibitor, a method of decomposing and demineralizing an organic substance with ozone is known.
In addition, as a method for treating an inorganic rust preventive, there are known methods for detoxifying hexavalent chromium by reducing to hexavalent chromium with hydrogen peroxide under acidic conditions with formic acid (for example, Patent Document 1, Patent Document). 2).
JP 2004-233156 A JP 2005-326361 A

しかしながら、圧力抑制プール水は1000m以上の容積を有する。例えば10mの容積を有する処理装置を用いて3日間かけて水系防錆剤を無害化処理した場合、全容積の処理期間は300日以上となり、膨大な日数が必要となる。
本発明は、上述した事情を考慮してなされたもので、圧力抑制プール水中の水系防錆剤の処理期間が短縮可能な原子炉解体前の化学除染方法を提供することを目的とする。
However, the pressure suppression pool water has a volume of 1000 m 3 or more. For example, when an aqueous rust inhibitor is rendered harmless over 3 days using a treatment apparatus having a volume of 10 m 3 , the treatment period for the entire volume is 300 days or more, and a huge number of days are required.
The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a chemical decontamination method before reactor demolition that can shorten the treatment period of the water-based anticorrosive agent in the pressure-suppressed pool water.

上記目的を達成するため、本発明の一実施態様による原子炉解体前の化学除染方法は、原子炉圧力容器内を、化学除染設備から供給される還元性除染液及び酸化性除染液を用いて化学除染を行なう系統除染工程と、化学除染を行なった前記原子炉圧力容器内に、圧力抑制プール内の水系防食剤を含有した廃液(水系防食剤を含有した圧力抑制プール水)を供給する水系防食剤含有廃液供給工程と、前記原子炉圧力容器内に供給された前記廃液中の水系防食剤を分解処理する防食剤処理工程とを有することを特徴とする。   In order to achieve the above object, a chemical decontamination method prior to reactor dismantling according to an embodiment of the present invention includes a reductive decontamination solution and an oxidative decontamination supplied from a chemical decontamination facility in a reactor pressure vessel. System decontamination process that performs chemical decontamination using liquid, and waste liquid that contains water-based anticorrosive agent in the pressure suppression pool in the reactor pressure vessel that has been chemically decontaminated (pressure suppression that contains water-based anticorrosive agent) A water-based anticorrosive-containing waste liquid supply step for supplying (pool water), and an anticorrosive treatment step for decomposing the water-based anticorrosive in the waste liquid supplied into the reactor pressure vessel.

本発明によれば、圧力抑制プール水中の水系防錆剤の処理期間が短縮可能な、原子炉解体前の化学除染方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the chemical decontamination method before the nuclear reactor demolition which can shorten the processing period of the water-system antirust agent in pressure suppression pool water can be provided.

以下に、本発明を実施するための形態について図面に基づいて説明する。本発明はこれらの実施の形態に何ら限定されるものではない。   EMBODIMENT OF THE INVENTION Below, the form for implementing this invention is demonstrated based on drawing. The present invention is not limited to these embodiments.

図1は、本発明の第1の実施形態に係る原子炉解体前の化学除染方法の手順を示すフロー図である。図2は、この実施形態に係る原子炉解体前の化学除染方法に用いられる原子炉圧力容器、原子炉再循環系及び化学除染設備を含む要部構成の一例を模式的に示す図である。ここで、原子炉圧力容器及び原子炉再循環系(原子炉再循環系配管、原子炉再循環系ポンプなどを備えて構成される)が、化学除染設備から供給される還元性除染液及び酸化性除染液を用いる化学除染(工程)、すなわち系統除染の対象となる。図3は、この実施形態に用いられる化学除染設備の一例の要部構成を模式的に示す図である。まず、図2及び図3を参照して、化学除染方法に用いられる原子炉圧力容器、原子炉再循環系及び化学除染設備について説明し、次いで化学除染方法について説明する。   FIG. 1 is a flowchart showing the procedure of a chemical decontamination method before reactor demolition according to the first embodiment of the present invention. FIG. 2 is a diagram schematically illustrating an example of a configuration of main parts including a reactor pressure vessel, a reactor recirculation system, and chemical decontamination equipment used in the chemical decontamination method before reactor demolition according to this embodiment. is there. Here, the reactor pressure vessel and the reactor recirculation system (configured with the reactor recirculation system piping, the reactor recirculation system pump, etc.) are supplied with the reducing decontamination liquid supplied from the chemical decontamination equipment. And chemical decontamination (process) using an oxidative decontamination solution, that is, a system decontamination target. FIG. 3 is a diagram schematically showing a main configuration of an example of the chemical decontamination equipment used in this embodiment. First, the reactor pressure vessel, the reactor recirculation system, and the chemical decontamination equipment used in the chemical decontamination method will be described with reference to FIGS. 2 and 3, and then the chemical decontamination method will be described.

上記のように、原子炉圧力容器1及び原子炉再循環系2が系統除染の対象となる。原子炉再循環系2は、原子炉再循環系配管3、原子炉再循環系ポンプ4、原子炉再循環系出入口弁5などを備えて構成される。原子炉再循環系ポンプ4は、例えば竪形単段斜流うず巻ポンプで、ポンプ軸は2段のメカニカルシールでシールされ、軸封はポンプ軸に設けたポンプによって冷却水を流して冷却する。   As described above, the reactor pressure vessel 1 and the reactor recirculation system 2 are subject to system decontamination. The nuclear reactor recirculation system 2 includes a nuclear reactor recirculation system pipe 3, a nuclear reactor recirculation system pump 4, a nuclear reactor recirculation system inlet / outlet valve 5, and the like. The reactor recirculation system pump 4 is, for example, a saddle type single-stage mixed flow centrifugal pump, the pump shaft is sealed with a two-stage mechanical seal, and the shaft seal is cooled by flowing cooling water using a pump provided on the pump shaft. .

原子炉圧力容器1内の除染液の流動を得るために原子炉再循環系2の原子炉再循環系配管3を原子炉再循環系ポンプ4によって循環させ、原子炉圧力容器1内の底部やジェットポンプ6の底辺近傍の除染液の流速を確保することができる。すなわち、原子炉再循環ポンプ4を運転することにより原子炉圧力容器1内の除染液は原子炉再循環系配管3からジェットポンプライザ管7、ジェットポンプ6を経由して原子炉圧力容器1内の底部に吹き出される。さらにシュラウド8内を上昇し、再びアニュラス部9を下降して原子炉再循環系2に入る。その結果、原子炉圧力容器1内に必要な流動が得られ、除染効率を高めることができる。   In order to obtain the flow of the decontamination liquid in the reactor pressure vessel 1, the reactor recirculation system piping 3 of the reactor recirculation system 2 is circulated by the reactor recirculation system pump 4, and the bottom of the reactor pressure vessel 1 In addition, the flow rate of the decontamination solution near the bottom of the jet pump 6 can be ensured. That is, by operating the reactor recirculation pump 4, the decontamination liquid in the reactor pressure vessel 1 passes from the reactor recirculation system piping 3 through the jet pump riser pipe 7 and the jet pump 6 to the reactor pressure vessel 1. It is blown out at the bottom inside. The inside of the shroud 8 is further raised, the annulus portion 9 is lowered again, and the reactor recirculation system 2 is entered. As a result, a necessary flow can be obtained in the reactor pressure vessel 1 and the decontamination efficiency can be increased.

シュラウド8は上部格子板10と炉心支持板11を保持し、燃料集合体(図示せず)全体を包んで炉心を形成するものである。炉心支持板11は、制御棒駆動機構(CRD)12の制御棒案内管と燃料支持金具を介して燃料集合体を保持する。ジェットポンプ6はシュラウド8と原子力圧力容器1との間に配置され、冷却材を強制循環させる。また、符号13は給水スパージャ、符号14は炉心スプレイ配管(スパージャ)、符号15はオゾナイザー、符号16は散気管を示している。   The shroud 8 holds the upper lattice plate 10 and the core support plate 11 and wraps the entire fuel assembly (not shown) to form a core. The core support plate 11 holds the fuel assembly via the control rod guide tube of the control rod drive mechanism (CRD) 12 and the fuel support fitting. The jet pump 6 is disposed between the shroud 8 and the nuclear pressure vessel 1 and forcibly circulates the coolant. Reference numeral 13 denotes a water supply sparger, reference numeral 14 denotes a core spray pipe (sparger), reference numeral 15 denotes an ozonizer, and reference numeral 16 denotes an air diffuser.

化学除染(系統除染及び後述の水系防食剤の処理)を行なうための仮設除染ループ(系)21は、仮設循環ライン22、仮設循環ポンプ23、化学除染設備25及びスプレイリング24を備えて構成される。仮設除染ループ(系)21は、原子炉圧力容器1の下部より仮設循環ライン22を通して仮設循環ポンプ23にて除染液を抜き出し、化学除染設備25に送る。   A temporary decontamination loop (system) 21 for performing chemical decontamination (system decontamination and treatment of a water-based anticorrosive agent described later) includes a temporary circulation line 22, a temporary circulation pump 23, a chemical decontamination equipment 25, and a spraying 24. It is prepared for. The temporary decontamination loop (system) 21 extracts the decontamination liquid from the lower part of the reactor pressure vessel 1 through the temporary circulation line 22 by the temporary circulation pump 23 and sends it to the chemical decontamination equipment 25.

図3に示すように、化学除染設備25は、オゾナイザー15、有機酸(例えば主としてギ酸含む有機酸)注入装置31、過酸化水素注入装置32、加熱用ヒータ33、紫外線照射装置34、カチオン交換樹脂塔35、カチオン交換樹脂とアニオン交換樹脂とを混合充填した混床樹脂塔36など化学除染を円滑に行う機器を備えて構成される。化学除染設備25は、他の薬剤注入装置(図示せず)を備えることもできる。なお、オゾナイザー15がオゾン(ガス)を仮設循環ライン22に供給する場合には、オゾンガスを混合するミキサー37を備えてもよい。オゾナイザー15によるオゾン(ガス)の添加は、原子炉圧力容器1中に、直接供給するほうが溶液(除染液)中のオゾン濃度を高く維持できるため好ましい。   As shown in FIG. 3, the chemical decontamination equipment 25 includes an ozonizer 15, an organic acid (for example, organic acid mainly containing formic acid) injection device 31, a hydrogen peroxide injection device 32, a heater 33 for heating, an ultraviolet irradiation device 34, and a cation exchange. The apparatus includes a resin tower 35, and a device that smoothly performs chemical decontamination such as a mixed bed resin tower 36 in which a cation exchange resin and an anion exchange resin are mixed and packed. The chemical decontamination equipment 25 can also include other drug injection devices (not shown). When the ozonizer 15 supplies ozone (gas) to the temporary circulation line 22, a mixer 37 for mixing ozone gas may be provided. It is preferable to add ozone (gas) by the ozonizer 15 directly to the reactor pressure vessel 1 because the ozone concentration in the solution (decontamination solution) can be kept high.

カチオン交換樹脂塔35は、カチオン交換樹脂塔35内に充填されたカチオン交換樹脂が、カチオン成分としての放射性核種、例えばコバルトイオン(Co−60、Co−58)などを捕集する。混床樹脂塔36は、除染終了後の被処理液から塩を除去して最終浄化する。なお、仮設循環ライン22内を流れる除染液は、切替弁(図示せず)の調整により、所定の循環ライン内を通液でき、所定の処理が行われる。   In the cation exchange resin tower 35, the cation exchange resin packed in the cation exchange resin tower 35 collects radionuclides such as cobalt ions (Co-60, Co-58) as cation components. The mixed bed resin tower 36 removes salt from the liquid to be treated after the decontamination and finally purifies it. Note that the decontamination liquid flowing in the temporary circulation line 22 can be passed through a predetermined circulation line by adjusting a switching valve (not shown), and a predetermined process is performed.

次に、この実施形態に係る原子炉解体前の化学除染方法について説明する。まず、図2に示すように、沸騰水型原子力発電プラントの原子炉圧力容器1及び原子炉再循環系2を含む一次冷却系を除染対象として解体前系統の化学除染(系統除染)を行なう(図1、ステップ1(以下、「S1」のように称する。))。   Next, the chemical decontamination method before reactor dismantling according to this embodiment will be described. First, as shown in FIG. 2, chemical decontamination of the pre-disassembly system (system decontamination) with the primary cooling system including the reactor pressure vessel 1 and the reactor recirculation system 2 of the boiling water nuclear power plant as the decontamination target. (FIG. 1, step 1 (hereinafter referred to as “S1”)).

この系統除染は以下の工程からなる。まず、原子炉圧力容器1及び原子炉再循環系2を、主成分がギ酸の有機酸による還元性除染液を用いる還元除染を行なう。還元除染は、有機酸(主としてギ酸を含む有機酸)などの還元剤を化学除染設備の有機酸注入装置31から、仮設循環ライン22を介して適量添加して除染液とし、除染液をスプレイリング24を介して原子炉圧力容器1内に供給して行なう。ここで、原子炉再循環系ポンプ4を運転して、除染液を原子炉圧力容器1及び原子炉再循環系2を循環させて除染効率を高める。除染液は、原子炉圧力容器1の下部から、仮設循環ライン22を通じて、仮設循環ポンプ23により抜き出され、化学除染設備25へ送られる。   This system decontamination consists of the following steps. First, the reactor pressure vessel 1 and the reactor recirculation system 2 are subjected to reductive decontamination using a reductive decontamination solution with an organic acid whose main component is formic acid. For reductive decontamination, an appropriate amount of a reducing agent such as an organic acid (an organic acid mainly containing formic acid) is added from the organic acid injection device 31 of the chemical decontamination equipment via the temporary circulation line 22 to obtain a decontamination liquid. The liquid is supplied into the reactor pressure vessel 1 through the spraying 24. Here, the reactor recirculation system pump 4 is operated to circulate the decontamination liquid through the reactor pressure vessel 1 and the reactor recirculation system 2 to increase the decontamination efficiency. The decontamination liquid is extracted from the lower part of the reactor pressure vessel 1 through the temporary circulation line 22 by the temporary circulation pump 23 and sent to the chemical decontamination equipment 25.

この還元除染により、原子炉圧力容器1内や原子炉再循環系2の再循環系配管3の内壁面などに付着している放射性核種を含有する酸化皮膜(酸化物)、例えば鉄の酸化皮膜やそこに取り込まれている放射性核種、例えばCo−60、Co−58などを液中に溶かし出す。   By this decontamination, an oxidation film (oxide) containing a radionuclide adhering to the inside of the reactor pressure vessel 1 or the inner wall surface of the recirculation pipe 3 of the reactor recirculation system 2, for example, oxidation of iron The film and the radionuclide incorporated therein, such as Co-60 and Co-58, are dissolved in the liquid.

ここで、還元性除染液を構成する有機酸としては、ギ酸の他に、例えばギ酸に対し1/10程度の濃度のシュウ酸を加えることができる。シュウ酸を加えることにより鉄の酸化物を容易に溶解することができる。なお、ギ酸とシュウ酸は混合して有機酸として有機酸注入装置31から仮設循環ライン22に注入してもよく、ギ酸とシュウ酸をそれぞれギ酸注入装置(図示せず)31から仮設循環ライン22に注入してもよく、ギ酸とシュウ酸をそれぞれの薬剤注入装置から注入してもよい。   Here, as the organic acid constituting the reductive decontamination solution, for example, oxalic acid having a concentration of about 1/10 of formic acid can be added in addition to formic acid. By adding oxalic acid, the iron oxide can be easily dissolved. Formic acid and oxalic acid may be mixed and injected into the temporary circulation line 22 from the organic acid injection device 31 as an organic acid. Formic acid and oxalic acid are respectively supplied from the formic acid injection device (not shown) 31 to the temporary circulation line 22. Or formic acid and oxalic acid may be injected from respective drug injection devices.

なお、有機酸中の各配合比及びその除染液中の添加量(濃度)は適宜決められる。原子炉圧力容器1内の水(以下「炉水」とも称する。)中に溶出された放射性核種などのコバルトイオンや鉄の酸化膜から溶出された鉄イオンは、仮設循環ライン22を介して化学除染設備25のカチオン交換樹脂塔35へ通して分離除去される。   In addition, each compounding ratio in an organic acid and the addition amount (concentration) in the decontamination liquid are determined suitably. Cobalt ions such as radionuclides and iron ions eluted from the oxide film of iron eluted in the water in the reactor pressure vessel 1 (hereinafter also referred to as “reactor water”) are chemically passed through the temporary circulation line 22. It passes through the cation exchange resin tower 35 of the decontamination equipment 25 and is separated and removed.

次に、鉄の酸化皮膜やそこに取り込まれている放射性核種の液中への溶出が終了した後で、溶液中に残留する主としてギ酸からなる有機酸を、過酸化水素を用いて分解する。過酸化水素は、化学除染設備25の過酸化水素注入装置32を用いて仮設循環ライン22を介して適量添加され、原子炉圧力容器1内に供給される。炉水中に残留する有機酸(主としてギ酸)は、過酸化水素により二酸化炭素(炭酸ガス)と水に分解される。また、分解効率を高める目的で原子炉圧力容器1内の流動に必要な原子炉再循環ポンプ4の運転を行なう。なお、過酸化水素の代わりにオゾンを用いて有機酸を分解することもできる。
この炉水中に過酸化水素又はオゾンが残留している場合には、仮設循環ライン22を介して化学除染設備25の紫外線照射装置34から紫外線を照射して、過酸化水素は酸素と水に分解し、オゾンは酸素に分解できる。
Next, after the elution of the iron oxide film and the radionuclide incorporated therein into the liquid is completed, the organic acid mainly composed of formic acid remaining in the solution is decomposed using hydrogen peroxide. An appropriate amount of hydrogen peroxide is added through the temporary circulation line 22 using the hydrogen peroxide injection device 32 of the chemical decontamination equipment 25 and supplied into the reactor pressure vessel 1. The organic acid (mainly formic acid) remaining in the reactor water is decomposed into carbon dioxide (carbon dioxide) and water by hydrogen peroxide. Further, the reactor recirculation pump 4 necessary for the flow in the reactor pressure vessel 1 is operated for the purpose of increasing the decomposition efficiency. Note that the organic acid can be decomposed using ozone instead of hydrogen peroxide.
When hydrogen peroxide or ozone remains in the reactor water, ultraviolet rays are irradiated from the ultraviolet irradiation device 34 of the chemical decontamination equipment 25 through the temporary circulation line 22, and the hydrogen peroxide is converted into oxygen and water. Decomposes and ozone can be decomposed into oxygen.

その後、酸化性除染液を用いる酸化除染を行なう。この酸化除染は、特に原子炉圧力容器1内や原子炉再循環系2の再循環系配管3の内壁面などの内層のクロム含有率の高い酸化皮膜を溶解させるために行われる。酸化性除染液を構成する酸化剤としては、オゾン(水)、過マンガン酸、過マンガン酸塩(過マンガン酸カリウム)などを使用できるが、マンガンなど金属で行なわれる後処理がオゾン(水)では不要であるためこのオゾン(水)が好ましい。なお、オゾンは自己分解性のある気体で短寿命のため水中にガスを常時注入する必要がある。オゾンガスはオゾナイザー15で発生させ、散気管16を通じて原子炉圧力容器1内に注入する。注入点は、アニュラス部9の上部で原子炉再循環ポンプ4による炉内流動にのせてジェットポンプ6に吸い込ませる。高さ方向の設置位置はジェットポンプに近い方が好ましい。クロム酸化物(酸化皮膜)の溶解が終了したことろで酸化除染は終了する。また、除染効率を高める目的で原子炉圧力容器1内の流動に必要な原子炉再循環ポンプ4の運転を行う。   Thereafter, oxidative decontamination using an oxidative decontamination solution is performed. This oxidative decontamination is performed in particular to dissolve an oxide film having a high chromium content in an inner layer such as the inner wall surface of the reactor pressure vessel 1 or the recirculation piping 3 of the reactor recirculation system 2. As the oxidizing agent constituting the oxidative decontamination solution, ozone (water), permanganic acid, permanganate (potassium permanganate) or the like can be used. However, post-treatment performed with a metal such as manganese is ozone (water). In this case, ozone (water) is preferable. Note that ozone is a self-decomposing gas and has a short life, so it is necessary to always inject the gas into water. Ozone gas is generated by the ozonizer 15 and injected into the reactor pressure vessel 1 through the air diffuser 16. The injection point is sucked into the jet pump 6 on the upper part of the annulus portion 9 by the flow in the reactor by the reactor recirculation pump 4. The installation position in the height direction is preferably close to the jet pump. Oxidation decontamination ends when the dissolution of chromium oxide (oxide film) ends. Further, the reactor recirculation pump 4 necessary for the flow in the reactor pressure vessel 1 is operated for the purpose of increasing the decontamination efficiency.

上記の酸化除染が終了した後の炉水(除染液)に残留する金属イオン(例えば、クロムイオン)は、仮設循環ライン22を経由して化学除染設備25のカチオン交換樹脂塔35へ通して分離除去する。また、この炉水(除染液)をカチオン交換樹脂塔35へ通液する際に、オゾンが残留している場合には、化学除染設備25の紫外線照射装置34から紫外線を照射して、オゾンを酸素に分解できる。このように処理された除染液、すなわち被処理液は、脱塩水として既設の液体廃棄物処理系に排出できる。
以上により、原子炉圧力容器1及び再循環系2の系統除染、すなわち一次冷却系の系統除染が終了する。
Metal ions (for example, chromium ions) remaining in the reactor water (decontamination liquid) after the oxidative decontamination is completed are transferred to the cation exchange resin tower 35 of the chemical decontamination equipment 25 via the temporary circulation line 22. Separation and removal through. Further, when ozone remains, when this reactor water (decontamination liquid) is passed through the cation exchange resin tower 35, ultraviolet rays are irradiated from the ultraviolet irradiation device 34 of the chemical decontamination equipment 25, It can decompose ozone into oxygen. The decontamination liquid treated in this way, that is, the liquid to be treated can be discharged as demineralized water to an existing liquid waste treatment system.
Thus, system decontamination of the reactor pressure vessel 1 and the recirculation system 2, that is, system decontamination of the primary cooling system is completed.

次に、上記の一次冷却系の系統除染を行なった後に、原子炉圧力容器1内で圧力抑制プール水を無害化処理(分解処理)する方法を説明する。
まず、原子炉圧力容器1内に、所定量の圧力抑制プール水を供給する(図1、S2)。図4は、緊急炉心冷却システム(ECCS)系統の要部を模式的に示す概略図である。なお、熱交換器や復水貯蔵タンクなど、圧力抑制プール水を原子炉圧力容器1内に供給する構成以外は省略する。原子炉格納容器41内の底部に存在する圧力抑制プール水は、例えば図4に示すように、圧力抑制プール水の取水口42の開閉により、緊急炉心冷却用配管43を介してスプレイ・ポンプ44によって、供給弁45及び逆止弁46を経由して炉心スプレイ配管(スパージャ)13を通って原子炉圧力容器1内に供給される。原子炉圧力容器1内に供給される圧力抑制プール水の量は適宜決められる。
Next, a method of detoxifying (decomposing) the pressure-suppressed pool water in the reactor pressure vessel 1 after system decontamination of the primary cooling system will be described.
First, a predetermined amount of pressure suppression pool water is supplied into the reactor pressure vessel 1 (FIG. 1, S2). FIG. 4 is a schematic view schematically showing a main part of an emergency core cooling system (ECCS) system. In addition, except the structure which supplies pressure suppression pool water in the reactor pressure vessel 1, such as a heat exchanger and a condensate storage tank, abbreviate | omits. For example, as shown in FIG. 4, the pressure suppression pool water existing at the bottom in the reactor containment vessel 41 is sprayed by the spray pump 44 via the emergency core cooling pipe 43 by opening and closing the intake port 42 of the pressure suppression pool water. Is supplied into the reactor pressure vessel 1 through the core spray pipe (sparger) 13 via the supply valve 45 and the check valve 46. The amount of pressure suppression pool water supplied into the reactor pressure vessel 1 is appropriately determined.

さらに、原子炉圧力容器1内へ酸化剤としてオゾン(ガス)を供給し酸化分解を行う(図1、S3)。所定量の圧力抑制プール水を原子炉圧力容器1中に供給した後に、原子炉再循環系ポンプ4を運転し、原子炉圧力容器1内に流動を起こすとともにオゾナイザー15からオゾンガスを発生させる。オゾンガスは散気管16を介してジェットポンプ6に吸い込まれ、炉内流動に沿って移動する。オゾナイザー15は、上記の一次冷却系の系統除染に使用した化学除染設備25のオゾナイザー15を使用できる。   Further, ozone (gas) is supplied as an oxidizing agent into the reactor pressure vessel 1 to perform oxidative decomposition (FIG. 1, S3). After supplying a predetermined amount of pressure suppression pool water into the reactor pressure vessel 1, the reactor recirculation system pump 4 is operated to cause flow in the reactor pressure vessel 1 and generate ozone gas from the ozonizer 15. The ozone gas is sucked into the jet pump 6 through the air diffuser 16 and moves along the flow in the furnace. As the ozonizer 15, the ozonizer 15 of the chemical decontamination equipment 25 used for the system decontamination of the primary cooling system can be used.

ここで、圧力抑制プール水中の防食剤が有機防食剤の場合には、有機防食剤はオゾンにより以下に説明するように分解される。例えば、有機防食剤の構成成分であるベンゾトリアゾール(C)は、下記(1)式に示す反応により、解裂して、有機酸(例えばカルボン酸)、アンモニウムイオン等を生成する。
+O+11HO → 6HCOO+9H+3NH
+O+6e (1)
さらに、カルボン酸は下記(2)式の反応により二酸化炭素と水に分解し、アンモニウムイオンは下記(3)〜(5)式の反応によりアンモニアを経て硝酸イオンに酸化される。
HCOOH + O → CO + O + HO (2)
NH + OH → NH + HO (3)
NH + O → NO + H + HO (4)
NO + O → NO + O (5)
Here, when the anticorrosive in the pressure suppression pool water is an organic anticorrosive, the organic anticorrosive is decomposed by ozone as described below. For example, benzotriazole (C 6 H 5 N 3 ), which is a component of organic anticorrosives, is cleaved by the reaction shown in the following formula (1) to produce organic acids (for example, carboxylic acids), ammonium ions, etc. To do.
C 6 H 5 N 3 + O 3 + 11H 2 O → 6HCOO + 9H + + 3NH 4 +
+ O 2 + 6e (1)
Furthermore, carboxylic acid is decomposed into carbon dioxide and water by the reaction of the following formula (2), and ammonium ions are oxidized to nitrate ions through ammonia by the reactions of the following formulas (3) to (5).
HCOOH + O 3 → CO 2 + O 2 + H 2 O (2)
NH 4 + OH → NH 3 + H 2 O (3)
NH 3 + O 3 → NO 2 + H + + H 2 O (4)
NO 2 + O 3 → NO 3 + O 2 (5)

以上の(1)〜(5)式の反応を確認するため、オゾンによる有機防食剤の分解試験を実施した。有機防食剤は、原液の組成がベンゾトリアゾール(C)0.2wt%、1−ヒドロキシベンゾトリアゾール(一水和物)(CO・HO)14wt%、3−メチル−5−ピラゾロン(CO)0.3wt%、水酸化ナトリウム(NaOH)4.3wt%であり、これを1500ppmに調整した。有機防食剤の分解試験結果を図5に示す。試験条件は、供給オゾン濃度(供給オゾン量/液量)が1000g・h−1・m−3、温度が50℃である。図5では、pHを三角(△)で、全有機炭素(TOC)濃度を丸(○)で表す。水溶液中の全有機炭素(TOC)濃度は徐々に減少し、2時間で140ppmから8.4ppmまで低下した。一方、水溶液中のpHは6.5から3.3に一旦低下し、その後6.7まで上昇した。水溶液中のpH低下は、上記(1)式に示すようにオゾンの酸化力で有機防食剤が解裂して有機酸を生成したためと考えられる。また、全有機炭素濃度の低下は、(2)式に示すようにオゾンの酸化力で有機酸が二酸化炭素と水に分解したためと考えられる。なお、水溶液中からは硝酸イオンが検出された。硝酸イオンの生成は、(3)式〜(5)式に示すようにアンモニウムイオンがアンモニアを経て硝酸イオンに酸化されたためと考えられる。 In order to confirm the reactions of the above formulas (1) to (5), a decomposition test of an organic anticorrosive with ozone was performed. The organic anticorrosive composition of the stock solution is benzotriazole (C 6 H 5 N 3) 0.2wt%, 1- hydroxybenzotriazole (monohydrate) (C 6 H 5 N 3 O · H 2 O) 14wt% , 3-methyl-5-pyrazolone (C 4 H 6 N 2 O ) 0.3wt%, is sodium hydroxide (NaOH) 4.3 wt%, adjusted it to 1500 ppm. The result of the decomposition test of the organic anticorrosive is shown in FIG. The test conditions are a supply ozone concentration (supply ozone amount / liquid amount) of 1000 g · h −1 · m −3 and a temperature of 50 ° C. In FIG. 5, the pH is represented by a triangle (Δ), and the total organic carbon (TOC) concentration is represented by a circle (◯). The total organic carbon (TOC) concentration in the aqueous solution decreased gradually and decreased from 140 ppm to 8.4 ppm in 2 hours. On the other hand, the pH in the aqueous solution once decreased from 6.5 to 3.3 and then increased to 6.7. The decrease in pH in the aqueous solution is considered to be because the organic anticorrosive was cleaved by the oxidizing power of ozone to generate an organic acid as shown in the above formula (1). Further, the decrease in the total organic carbon concentration is considered to be due to the decomposition of the organic acid into carbon dioxide and water by the oxidizing power of ozone as shown in the formula (2). Nitrate ions were detected in the aqueous solution. The production of nitrate ions is considered to be because ammonium ions were oxidized to nitrate ions via ammonia as shown in formulas (3) to (5).

このように酸化処理された分解廃液は、仮設循環ライン22を経由して化学除染設備25のカチオン交換樹脂塔35に通してカチオン成分を除去することができる。また、分解廃液中にオゾンが残留している場合には、上記のカチオン交換樹脂塔35に通液する前に、化学除染設備25の紫外線照射装置34に通液してオゾンを酸素に分解できる。   The decomposition waste liquid oxidized in this way can be passed through the cation exchange resin tower 35 of the chemical decontamination equipment 25 via the temporary circulation line 22 to remove the cation component. Further, when ozone remains in the decomposition waste liquid, the ozone is decomposed into oxygen by passing through the ultraviolet irradiation device 34 of the chemical decontamination equipment 25 before passing through the cation exchange resin tower 35. it can.

次に、化学除染設備25のギ酸注入装置31より仮設循環ライン22を介して原子炉圧力容器1内に適量のギ酸を注入し、炉水のpHを3以下に調整する(図1、S4)。このギ酸の添加により、水系防食剤のうち、無機防食剤(クロム酸塩(クロメート))は、下記(6)式に示す反応によりクロム酸から二クロム酸に変換される。
2KCrO+4HCOOH → HCr+4HCOOK+HO (6)
ここで、クロム酸と二クロム酸の酸化還元系と標準酸化還元電位(E)を各々、下記式(7)と下記式(8)に示す。
CrO 2−+4HO+3e = Cr(OH)+5OH
=−0.13V (25℃で)(7)
Cr 2−+14H+6e = 2Cr3+ +7H
=+1.33V (25℃で)(8)
クロム酸は酸化還元電位が小さいため、六価クロムは三価クロムに還元され難い。一方、二クロム酸は酸化還元電位が大きいため、次の工程の還元剤の添加により六価クロムは三価クロムに容易に還元される。なお、ギ酸の添加によってpHを3以下にすることにより、上記の反応が促進される。また、反応効率を高める目的で原子炉圧力容器1内の流動に必要な原子炉再循環ポンプ4の運転を行う。
Next, an appropriate amount of formic acid is injected into the reactor pressure vessel 1 through the temporary circulation line 22 from the formic acid injection device 31 of the chemical decontamination equipment 25, and the pH of the reactor water is adjusted to 3 or less (FIG. 1, S4). ). By the addition of this formic acid, the inorganic anticorrosive (chromate (chromate)) in the aqueous anticorrosive is converted from chromic acid to dichromic acid by the reaction shown in the following formula (6).
2K 2 CrO 4 + 4HCOOH → H 2 Cr 2 O 7 + 4HCOOK + H 2 O (6)
Here, the redox system and standard redox potential (E 0 ) of chromic acid and dichromic acid are shown in the following formula (7) and the following formula (8), respectively.
CrO 4 2− + 4H 2 O + 3e = Cr (OH) 3 + 5OH
E 0 = −0.13 V (at 25 ° C.) (7)
Cr 2 O 7 2− + 14H + + 6e = 2Cr 3+ + 7H 2 O
E 0 = + 1.33 V (at 25 ° C.) (8)
Since chromic acid has a low redox potential, hexavalent chromium is difficult to be reduced to trivalent chromium. On the other hand, since dichromic acid has a large redox potential, hexavalent chromium is easily reduced to trivalent chromium by the addition of a reducing agent in the next step. In addition, said reaction is accelerated | stimulated by adding pH to 3 or less by addition of formic acid. Further, the reactor recirculation pump 4 necessary for the flow in the reactor pressure vessel 1 is operated for the purpose of increasing the reaction efficiency.

次に、化学除染設備25の過酸化水素注入装置32より仮設循環ライン22を介して原子炉圧力容器1内に過酸化水素(H)を供給する(図1、S5)。原子炉圧力容器1内の炉水(処理液)中の六価クロムは過酸化水素により三価クロムに還元される。過酸化水素の酸化還元系と標準酸化還元電位を下記(9)式に示す。
+2H+2e = H=−0.68V (25℃で)(9)
過酸化水素の酸化還元電位は二クロム酸よりも小さいため、下記(10)式に示す反応により六価クロムは三価クロムに還元される。
Cr+6HCOOH+H → 2Cr(HCOO)+2O
+5HO (10)
なお、上記の反応効率を高める目的で原子炉圧力容器1内の流動に必要な原子炉再循環ポンプ4の運転を行う。
Next, hydrogen peroxide (H 2 O 2 ) is supplied into the reactor pressure vessel 1 through the temporary circulation line 22 from the hydrogen peroxide injection device 32 of the chemical decontamination equipment 25 (FIG. 1, S5). Hexavalent chromium in the reactor water (treatment liquid) in the reactor pressure vessel 1 is reduced to trivalent chromium by hydrogen peroxide. The redox system of hydrogen peroxide and the standard redox potential are shown in the following formula (9).
O 2 + 2H + + 2e = H 2 O 2 E 0 = −0.68 V (at 25 ° C.) (9)
Since the oxidation-reduction potential of hydrogen peroxide is smaller than that of dichromic acid, hexavalent chromium is reduced to trivalent chromium by the reaction shown in the following formula (10).
H 2 Cr 2 O 7 + 6HCOOH + H 2 O 2 → 2Cr (HCOO) 3 + 2O 2
+ 5H 2 O (10)
Note that the reactor recirculation pump 4 necessary for the flow in the reactor pressure vessel 1 is operated for the purpose of increasing the reaction efficiency.

以上の(6)〜(10)式の反応を確認するため、クロム酸カリウムが100ppm溶解した水溶液にギ酸を7000ppm添加した。次に温度(40〜80℃)をパラメータに過酸化水素を添加して六価クロムを三価クロムに還元した。六価クロムの還元試験結果を図6に示す。過酸化水素の添加量は、六価クロムの還元に必要な化学当量(量論値)の3倍である。六価クロム濃度は、可視・紫外分光光度計(株式会社 島津製作所製、型番:UV−2450)で測定した。温度が50℃以下において、六価クロム濃度は目標濃度である0.5ppm以下に到達した。ただし、温度が80℃では目標濃度に到達しなかった。この原因は、温度が80℃の条件下では過酸化水素によるギ酸の分解反応が優先的に起こったためと考えられる。以上の結果より、ギ酸酸性下で過酸化水素により六価クロムを三価クロムに還元するには、50℃以下が有効であることがわかった。   In order to confirm the reactions of the above formulas (6) to (10), 7000 ppm of formic acid was added to an aqueous solution in which 100 ppm of potassium chromate was dissolved. Next, hydrogen peroxide was added with the temperature (40 to 80 ° C.) as a parameter to reduce hexavalent chromium to trivalent chromium. The reduction test result of hexavalent chromium is shown in FIG. The amount of hydrogen peroxide added is three times the chemical equivalent (stoichiometric value) required for the reduction of hexavalent chromium. The hexavalent chromium concentration was measured with a visible / ultraviolet spectrophotometer (manufactured by Shimadzu Corporation, model number: UV-2450). At a temperature of 50 ° C. or less, the hexavalent chromium concentration reached a target concentration of 0.5 ppm or less. However, the target concentration was not reached when the temperature was 80 ° C. This is presumably because formic acid decomposition reaction with hydrogen peroxide occurred preferentially under the condition of a temperature of 80 ° C. From the above results, it was found that 50 ° C. or less is effective for reducing hexavalent chromium to trivalent chromium with hydrogen peroxide under acidic formic acid.

次に、原子炉圧力容器1内の処理液を仮設循環ライン22を経由して、化学除染設備25の紫外線照射塔34に通液する(図1、S6)。処理液に紫外線を照射すると処理液中に残留する過酸化水素は、下記(11)式に示した反応により水と酸素に分解する。
= HO + 1/2O (11)
なお、紫外線の照射条件などは残留する過酸化水素の濃度などに応じて適宜決められる。
Next, the processing liquid in the reactor pressure vessel 1 is passed through the temporary irradiation line 22 to the ultraviolet irradiation tower 34 of the chemical decontamination equipment 25 (FIG. 1, S6). When the treatment liquid is irradiated with ultraviolet rays, the hydrogen peroxide remaining in the treatment liquid is decomposed into water and oxygen by the reaction shown in the following formula (11).
H 2 O 2 = H 2 O + 1 / 2O 2 (11)
Note that the ultraviolet irradiation conditions and the like are appropriately determined according to the concentration of the remaining hydrogen peroxide.

次に、過酸化水素を分解した後の処理液を、化学除染設備25のカチオン交換樹脂塔35に通液する(図1、S7)。処理液中に残留する、有機防食剤成分中に含まれるナトリウム、無機防食剤のクロム酸塩(クロメート(例えばKCrO))中に含まれるクロムおよびカリウムは下記(12)式から下記(14)式の反応によりカチオン交換樹脂に吸着され、処理液から除去される。
3R−H + HCOONa → 3R−Na + 3HCOOH (12)
3R−H + Cr(HCOO) → R−Cr + 3HCOOH (13)
R−H + HCOOK → R−K + HCOOH (14)
Next, the treatment liquid after decomposing hydrogen peroxide is passed through the cation exchange resin tower 35 of the chemical decontamination equipment 25 (FIG. 1, S7). Sodium contained in the organic anticorrosive component remaining in the treatment liquid, and chromium and potassium contained in the chromate of the inorganic anticorrosive (chromate (for example, K 2 CrO 4 )) are represented by the following formula (12): It is adsorbed on the cation exchange resin by the reaction of formula 14) and removed from the treatment liquid.
3R-H + HCOONa → 3R-Na + 3HCOOH (12)
3R-H + Cr (HCOO) 3 → R 3 -Cr + 3HCOOH (13)
RH + HCOOK → RK + HCOOH (14)

次に、化学除染設備25の過酸化水素注入装置34より仮設循環ライン22を経由して原子炉圧力容器1内に適量の過酸化水素水を供給する(図1、S8)。処理液に残留するギ酸は、過酸化水素の酸化力により二酸化炭素と水に分解される。ギ酸および過酸化水素の酸化還元系および標準酸化還元電位を各々、下記(15)式と下記(16)式に示す。
CO+2H+2e= HCOOH E=−0.12V(25℃で)(15)
+2H+2e = HO E=1.77V(25℃で)(16)
過酸化水素は2つの酸化還元系を有し、ギ酸に対しては酸化剤として作用する。従って、ギ酸は下記式(17)に示す反応により過酸化水素の酸化力で二酸化炭素と水に分解される。
HCOOH + H = CO + 2HO (17)
なお、上記の反応効率を高める目的で原子炉圧力容器1内の流動に必要な原子炉再循環ポンプ4の運転を行う。
Next, an appropriate amount of hydrogen peroxide solution is supplied into the reactor pressure vessel 1 from the hydrogen peroxide injector 34 of the chemical decontamination equipment 25 via the temporary circulation line 22 (FIG. 1, S8). Formic acid remaining in the treatment liquid is decomposed into carbon dioxide and water by the oxidizing power of hydrogen peroxide. The redox system and standard redox potential of formic acid and hydrogen peroxide are shown in the following formula (15) and the following formula (16), respectively.
CO 2 + 2H + + 2e = HCOOH E 0 = −0.12 V (at 25 ° C.) (15)
H 2 O 2 + 2H + + 2e = H 2 O E 0 = 1.77 V (at 25 ° C.) (16)
Hydrogen peroxide has two redox systems and acts as an oxidizing agent for formic acid. Therefore, formic acid is decomposed into carbon dioxide and water by the oxidizing power of hydrogen peroxide by the reaction shown in the following formula (17).
HCOOH + H 2 O 2 = CO 2 + 2H 2 O (17)
Note that the reactor recirculation pump 4 necessary for the flow in the reactor pressure vessel 1 is operated for the purpose of increasing the reaction efficiency.

以上の(11)式〜(17)式の反応を確認するため、過酸化水素によるギ酸の分解試験を実施した。試験結果を図7に示す。図7の縦軸は全有機炭素(TOC)濃度比(任意時間/初期)を示す。反応温度条件は80℃であり、ギ酸の初期濃度は、2000ppmであり、過酸化水素の添加量は、各温度条件ともギ酸の分解に必要な化学当量(量論値)の2〜3倍である。図7では、触媒を添加しないものを星印(*)で、鉄を溶解させて90mg・dm−3で添加したものを丸(○)で、SUS304を表面積500cm・dm−3で添加したものを三角(△)で表す。温度が80℃の条件において、Fe無添加のギ酸水溶液は、全有機炭素(TOC)濃度の減少がほとんど認めらなかった。一方、触媒としてFeがFeイオンとして溶解したギ酸水溶液及びSUS304と接触したギ酸水溶液は、全有機炭素(TOC)濃度が5ppm以下に分解された。 In order to confirm the reactions of the above formulas (11) to (17), a decomposition test of formic acid with hydrogen peroxide was performed. The test results are shown in FIG. The vertical axis in FIG. 7 represents the total organic carbon (TOC) concentration ratio (arbitrary time / initial). The reaction temperature condition is 80 ° C., the initial concentration of formic acid is 2000 ppm, and the amount of hydrogen peroxide added is 2 to 3 times the chemical equivalent (stoichiometric value) required for the decomposition of formic acid in each temperature condition. is there. In FIG. 7, the one without the catalyst is added with an asterisk (*), the iron is dissolved and added at 90 mg · dm −3 with a circle (◯), and SUS304 is added with a surface area of 500 cm 2 · dm −3 . Things are represented by triangles (Δ). Under the condition where the temperature was 80 ° C., the Fe-free formic acid aqueous solution showed almost no decrease in the total organic carbon (TOC) concentration. On the other hand, the formic acid aqueous solution in which Fe was dissolved as Fe ions as a catalyst and the formic acid aqueous solution in contact with SUS304 were decomposed to a total organic carbon (TOC) concentration of 5 ppm or less.

以上の結果より、過酸化水素によるギ酸の分解反応は、(溶液中に溶解した)鉄イオン及び/又はステンレス鋼が触媒となって促進することが分かった。なお、鉄の添加量としては90mg・dm−3が好ましく、ステンレス鋼(SUS304)は、表面積500cm・dm−3以上が好ましい。
なお、上記の鉄イオンやステンレス鋼は、原子炉構成材から溶出する鉄イオンや原子炉構成材であるステンレス鋼を触媒として使用することができる。
From the above results, it was found that the formic acid decomposition reaction with hydrogen peroxide was promoted by iron ions and / or stainless steel (dissolved in the solution) as catalysts. The amount of iron added is preferably 90 mg · dm −3 , and the stainless steel (SUS304) preferably has a surface area of 500 cm 2 · dm −3 or more.
In addition, said iron ion and stainless steel can use the stainless steel which is the iron ion eluted from a nuclear reactor structural material, or a nuclear reactor structural material as a catalyst.

次に、原子炉圧力容器1内の処理液を仮設循環ライン22を介して化学除染設備25の紫外線照射塔34に通液して紫外線を照射する(図1、S9)。処理液に紫外線を照射することにより、処理液に残留する過酸化水素は、上記(11)式に示した反応により水と酸素に分解される。紫外線の照射条件は、残留する過酸化水素の濃度などに応じて適宜決められる。   Next, the treatment liquid in the reactor pressure vessel 1 is passed through the ultraviolet irradiation tower 34 of the chemical decontamination equipment 25 through the temporary circulation line 22 and irradiated with ultraviolet rays (FIG. 1, S9). By irradiating the treatment liquid with ultraviolet light, the hydrogen peroxide remaining in the treatment liquid is decomposed into water and oxygen by the reaction shown in the above formula (11). Ultraviolet irradiation conditions are appropriately determined according to the concentration of the remaining hydrogen peroxide.

次に、過酸化水素を分解した後の処理液を化学除染装置25のカチオン交換樹脂とアニオン交換樹脂とが混在した混床樹脂塔36に通液する(図1、S10)。処理液中に僅かに残留するカチオン成分およびアニオン成分は混床樹脂塔36に回収され、分離される。その結果、このように処理された処理液は脱塩水として既設の液体廃棄物処理系に排出することができる(図1、S11)。   Next, the treatment liquid after decomposing hydrogen peroxide is passed through the mixed bed resin tower 36 in which the cation exchange resin and the anion exchange resin of the chemical decontamination apparatus 25 are mixed (FIG. 1, S10). The cation component and the anion component slightly remaining in the treatment liquid are collected in the mixed bed resin tower 36 and separated. As a result, the treatment liquid treated in this way can be discharged as demineralized water to an existing liquid waste treatment system (FIG. 1, S11).

上記のように、圧力抑制プール水中の水系防食剤を処理するための化学除染設備25は、一次冷却系の系統除染に使用する化学除染設備25と同じ化学除染設備を使用できる。また、上記の系統除染に使用される薬剤、例えばギ酸、オゾンなどが、圧力抑制プール水中の水系防食剤の分解処理のための薬剤と同じ場合には、化学除染設備25中の薬剤注入(添加)装置、例えばギ酸注入装置31なども同じ装置を使用することができ、水系防食剤の処理の装置費用が大幅に低減される。   As described above, the chemical decontamination equipment 25 for treating the water-based anticorrosive agent in the pressure suppression pool water can use the same chemical decontamination equipment as the chemical decontamination equipment 25 used for system decontamination of the primary cooling system. In addition, when the chemicals used for the above system decontamination, such as formic acid and ozone, are the same as the chemicals for decomposing the water-based anticorrosive in the pressure-suppressed pool water, the chemical injection in the chemical decontamination equipment 25 is performed. The same device can be used for the (addition) device, such as the formic acid injection device 31, and the cost of the water-based anticorrosive treatment is greatly reduced.

本実施の形態によれば、有機酸を還元剤(還元性除染液)に用い、オゾン水を酸化剤(酸化性除染液)に用いた化学除染により解体前系統除染を行い、その後に圧力抑制プール水を原子炉圧力容器に供給して圧力抑制プール水中の水系防食剤を無機化及び/又は無害化をすることができるので、専用の処理装置で処理する場合と比較して、圧力抑制プール水の処理期間が大幅に短縮される。
また、上記の解体前系統除染の後に、原子炉圧力容器及び原子炉再循環系を用いて圧力抑制プール水中の水系防食剤を無機化及び/又は無害化を行うため、原子炉圧力容器内及び原子炉再循環系などの一次冷却系から放射性物質がさらに除去される。これにより、この後に実施される原子炉の解体・撤去の際に、作業従事者の被ばくが大幅に低減される。
さらに、圧力抑制プール水中の水系防食剤の無機化及び/又は無害化に、系統除染で使用した化学除染設備と同一の化学除染設備を、特に、同一の薬剤注入設備を使用することができる。その結果、化学除染設備を流用して水系防食剤の処理をすることができるため、水系防食剤の処理の装置費用が大幅に低減される。
According to the present embodiment, the system acid decontamination is performed by chemical decontamination using an organic acid as a reducing agent (reducing decontamination liquid) and ozone water as an oxidizing agent (oxidative decontamination liquid), After that, it is possible to mineralize and / or detoxify the water-based anticorrosive agent in the pressure suppression pool water by supplying the pressure suppression pool water to the reactor pressure vessel, so compared with the case of processing with a dedicated processing device , The treatment period of pressure suppression pool water is greatly shortened.
In addition, after the above decontamination system decontamination, the reactor pressure vessel and the reactor recirculation system are used to mineralize and / or detoxify the water-based anticorrosive agent in the pressure suppression pool water. And radioactive material is further removed from the primary cooling system, such as the reactor recirculation system. This significantly reduces the exposure of workers during the subsequent dismantling and removal of the reactor.
Furthermore, the same chemical decontamination equipment as that used for system decontamination, especially the same chemical injection equipment, should be used for mineralization and / or detoxification of water-based anticorrosives in pressure-suppressed pool water. Can do. As a result, the chemical decontamination equipment can be diverted to treat the aqueous anticorrosive agent, so that the equipment cost for the aqueous anticorrosive agent treatment is greatly reduced.

本発明の第1の実施形態に係る原子炉解体前の化学除染方法の手順を示すフロー図である。It is a flowchart which shows the procedure of the chemical decontamination method before the nuclear reactor demolition which concerns on the 1st Embodiment of this invention. この実施形態に係る原子炉解体前の化学除染方法に用いられる原子炉圧力容器、原子炉再循環系及び化学除染設備を含む要部構成の一例を模式的に示す図である。It is a figure which shows typically an example of a principal part structure containing the reactor pressure vessel, the reactor recirculation system, and chemical decontamination equipment which are used for the chemical decontamination method before the nuclear reactor demolition which concerns on this embodiment. この実施形態に用いられる化学除染設備の一例の要部構成を模式的に示す図である。It is a figure which shows typically the principal part structure of an example of the chemical decontamination equipment used for this embodiment. 緊急炉心冷却システム(ECCS)系統の要部を模式的に示す概略図である。It is the schematic which shows typically the principal part of an emergency core cooling system (ECCS) system | strain. 有機防食剤の分解の結果を示す図(グラフ)である。It is a figure (graph) which shows the result of decomposition | disassembly of an organic anticorrosive. 6価のクロムの還元試験結果を示す図(グラフ)である。It is a figure (graph) which shows the reduction test result of hexavalent chromium. 過酸化水素によるギ酸の分解の結果を示す図(グラフ)である。It is a figure (graph) which shows the result of decomposition | disassembly of formic acid with hydrogen peroxide.

符号の説明Explanation of symbols

1…原子炉圧力容器、2原子炉再循環系、3…原子炉再循環系配管、4…原子炉再循環系ポンプ、5…原子炉再循環系出入口弁、6…ジェットポンプ、7…ジェットポンプライザ管、8…シュラウド、9…アニュラス部、10…上部格子板、11…炉心支持板、12…制御棒駆動機構(CRD)、13…吸水スパージャ、14…炉心スプレイ配管(スパージャ)、15…オゾナイザー、16…散気管、21…仮設除染ループ(系)、22…仮設循環ライン、23…仮設循環ポンプ、24…スプレイリング、25…化学除染設備、31…有機酸注入装置、32…過酸化水素注入装置、33…加熱用ヒータ、34…紫外線照射装置、35…カチオン交換樹脂塔、36…混床樹脂塔、37…ミキサー、41…原子炉格納容器、42…(圧力抑制プール水)の取水口、43…緊急炉心冷却用配管、44…スプレイ・ポンプ、45…供給弁、46…逆止弁。   DESCRIPTION OF SYMBOLS 1 ... Reactor pressure vessel, 2 Reactor recirculation system, 3 ... Reactor recirculation system piping, 4 ... Reactor recirculation system pump, 5 ... Reactor recirculation system inlet / outlet valve, 6 ... Jet pump, 7 ... Jet Pump riser pipe, 8 ... shroud, 9 ... annulus, 10 ... upper lattice plate, 11 ... core support plate, 12 ... control rod drive mechanism (CRD), 13 ... water absorption sparger, 14 ... core spray piping (sparger), 15 DESCRIPTION OF SYMBOLS ... Ozonizer, 16 ... Diffuser, 21 ... Temporary decontamination loop (system), 22 ... Temporary circulation line, 23 ... Temporary circulation pump, 24 ... Spraying, 25 ... Chemical decontamination equipment, 31 ... Organic acid injection apparatus, 32 DESCRIPTION OF SYMBOLS ... Hydrogen peroxide injection | pouring apparatus, 33 ... Heating heater, 34 ... Ultraviolet irradiation apparatus, 35 ... Cation exchange resin tower, 36 ... Mixed bed resin tower, 37 ... Mixer, 41 ... Reactor containment vessel, 42 ... (Pressure suppression Pooh Intake of water), 43 ... emergency core cooling pipe, 44 ... spray pump, 45 ... supply valve, 46 ... check valve.

Claims (12)

原子炉圧力容器内を、化学除染設備から供給される還元性除染液及び酸化性除染液を用いて化学除染を行なう系統除染工程と、
化学除染を行なった前記原子炉圧力容器内に、圧力抑制プール内の水系防食剤を含有した廃液を供給する水系防食剤含有廃液供給工程と、
前記原子炉圧力容器内に供給された前記廃液中の水系防食剤を分解処理する防食剤処理工程と
を有することを特徴とする原子炉解体前の化学除染方法。
A system decontamination process for performing chemical decontamination using a reducing decontamination solution and an oxidative decontamination solution supplied from a chemical decontamination facility in the reactor pressure vessel;
In the reactor pressure vessel that has been subjected to chemical decontamination, an aqueous anticorrosive-containing waste liquid supply step for supplying a waste liquid containing an aqueous anticorrosive in the pressure suppression pool, and
A chemical decontamination method before dismantling the reactor, comprising: an anticorrosive treatment step for decomposing the aqueous anticorrosive agent in the waste liquid supplied into the reactor pressure vessel.
前記防食剤処理工程は、前記系統除染工程に用いた化学除染設備から供給される還元剤及び/又は酸化剤により、水系防食剤を分解処理することを特徴とする請求項1記載の原子炉解体前の化学除染方法。   The said anticorrosive treatment process decomposes | disassembles an aqueous | water-based anticorrosive with the reducing agent and / or oxidizing agent supplied from the chemical decontamination equipment used for the said system | strain decontamination process, The atom of Claim 1 characterized by the above-mentioned. Chemical decontamination method before furnace dismantling. 前記防食剤処理工程における前記水系防食剤はアゾール系有機化合物又は有機カルボン酸塩の1種又は2種以上を含む有機防食剤であり、前記防食剤処理工程が、前記化学除染設備の酸化剤供給装置から酸化剤を原子炉圧力容器内に供給して、有機防食剤の有機物を分解することを特徴とする請求項2記載の原子炉解体前の化学除染方法。   The aqueous anticorrosive in the anticorrosive treatment step is an organic anticorrosive containing one or more of an azole organic compound or an organic carboxylate, and the anticorrosive treatment step is an oxidizing agent for the chemical decontamination equipment. The chemical decontamination method before reactor demolition according to claim 2, wherein an oxidizing agent is supplied from a supply device into the reactor pressure vessel to decompose organic substances of the organic anticorrosive. 前記酸化剤がオゾンであることを特徴とする請求項3記載の原子炉解体前の化学除染方法。   The chemical decontamination method before reactor demolition according to claim 3, wherein the oxidizing agent is ozone. 前記防食剤処理工程における前記水系防食剤はクロム酸塩を含む無機防食剤であり、前記防食剤処理工程が、前記化学除染設備の有機酸供給装置から前記原子炉圧力容器内に有機酸を供給し、次に前記化学除染設備の還元剤供給装置から還元剤を供給して有機酸の酸性条件下で、前記クロム酸塩中の六価クロムを三価クロムに還元することを特徴とする請求項2記載の原子炉解体前の化学除染方法。   The water-based anticorrosive agent in the anticorrosive agent treatment step is an inorganic anticorrosive agent containing chromate, and the anticorrosive agent treatment step introduces an organic acid from the organic acid supply device of the chemical decontamination equipment into the reactor pressure vessel. And then reducing the hexavalent chromium in the chromate to trivalent chromium under the acidic conditions of the organic acid by supplying the reducing agent from the reducing agent supply device of the chemical decontamination equipment. The chemical decontamination method before reactor demolition according to claim 2. 前記有機酸がギ酸であり、前記還元剤が過酸化水素であることを特徴とする請求項5記載の原子炉解体前の化学除染方法。   6. The chemical decontamination method before reactor demolition according to claim 5, wherein the organic acid is formic acid and the reducing agent is hydrogen peroxide. 前記防食剤処理工程は、前記ギ酸の酸性条件下において、温度が50℃以下で、前記過酸化水素により六価クロムを三価クロムに還元することを特徴とする請求項6記載の原子炉解体前の化学除染方法。   The reactor demolition according to claim 6, wherein the anticorrosive treatment step reduces hexavalent chromium to trivalent chromium with the hydrogen peroxide at a temperature of 50 ° C. or less under the acidic condition of the formic acid. Previous chemical decontamination method. 前記防食剤処理工程において六価クロムを三価クロムに還元した後の廃液に残留する過酸化水素を、前記化学除染設備に通液して、前記化学除染設備の紫外線照射装置により紫外線を照射して酸素と水に分解する第1の過酸化水素分解工程をさらに有することを特徴とする請求項6または7記載の原子炉解体前の化学除染方法。 Hydrogen peroxide remaining in the waste liquid after reducing hexavalent chromium to trivalent chromium in the anticorrosive treatment process is passed through the chemical decontamination equipment, and ultraviolet rays are emitted by the ultraviolet irradiation device of the chemical decontamination equipment. 8. The chemical decontamination method before reactor demolition according to claim 6 or 7 , further comprising a first hydrogen peroxide decomposition step of irradiating and decomposing into oxygen and water. 前記第1の過酸化水素分解工程において過酸化水素を分解した後の廃液を、前記化学除染設備のカチオン交換樹脂塔に通液して、前記廃液中のカチオン成分を除去するカチオン成分除去工程をさらに有することを特徴とする請求項8記載の原子炉解体前の化学除染方法。   A cation component removing step of removing the cation component in the waste solution by passing the waste solution after decomposing hydrogen peroxide in the first hydrogen peroxide decomposition step through the cation exchange resin tower of the chemical decontamination equipment. The chemical decontamination method before reactor demolition according to claim 8, further comprising: 前記カチオン成分除去工程においてカチオン成分を除去した後に廃液中に残留するギ酸を、前記化学除染設備の前記過酸化水素供給装置から過酸化水素を供給し、ステンレス鋼及び/又は鉄イオンを触媒として、二酸化炭素と水に分解するギ酸分解工程をさらに有することを特徴とする請求項9記載の原子炉解体前の化学除染方法。   Formic acid remaining in the waste liquid after removing the cation component in the cation component removal step, hydrogen peroxide is supplied from the hydrogen peroxide supply device of the chemical decontamination equipment, and stainless steel and / or iron ions are used as a catalyst. The chemical decontamination method before reactor demolition according to claim 9, further comprising a formic acid decomposition step of decomposing into carbon dioxide and water. 前記ギ酸分解工程においてギ酸を分解した後に廃液中に残留する過酸化水素を、前記化学除染設備に通液して、前記化学除染設備の前記紫外線照射装置により紫外線を照射して二酸化炭素と水に分解する第2の過酸化水素分解工程をさらに有することを特徴とする請求項10記載の原子炉解体前の化学除染方法。   Hydrogen peroxide remaining in the waste liquid after decomposing formic acid in the formic acid decomposition step is passed through the chemical decontamination equipment, and irradiated with ultraviolet rays by the ultraviolet irradiation device of the chemical decontamination equipment to form carbon dioxide. The chemical decontamination method before reactor demolition according to claim 10, further comprising a second hydrogen peroxide decomposition step that decomposes into water. 前記第2の過酸化水素分解工程により過酸化水素を分解した後の廃液を、前記化学除染設備のカチオン交換樹脂とアニオン交換樹脂の混床塔に通液して脱塩処理する脱塩処理工程をさらに有することを特徴とする請求項11記載の原子炉解体前の化学除染方法。   Desalting treatment in which the waste liquid after decomposing hydrogen peroxide in the second hydrogen peroxide decomposing step is passed through a mixed bed tower of a cation exchange resin and an anion exchange resin of the chemical decontamination equipment for desalting treatment. The chemical decontamination method before reactor demolition according to claim 11, further comprising a step.
JP2007152571A 2007-06-08 2007-06-08 Chemical decontamination method before reactor demolition Expired - Fee Related JP4861252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007152571A JP4861252B2 (en) 2007-06-08 2007-06-08 Chemical decontamination method before reactor demolition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007152571A JP4861252B2 (en) 2007-06-08 2007-06-08 Chemical decontamination method before reactor demolition

Publications (2)

Publication Number Publication Date
JP2008304353A JP2008304353A (en) 2008-12-18
JP4861252B2 true JP4861252B2 (en) 2012-01-25

Family

ID=40233206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007152571A Expired - Fee Related JP4861252B2 (en) 2007-06-08 2007-06-08 Chemical decontamination method before reactor demolition

Country Status (1)

Country Link
JP (1) JP4861252B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5422238B2 (en) * 2009-03-23 2014-02-19 株式会社東芝 Construction method and related system for treatment of waste liquid containing rust inhibitor
JP2013076620A (en) * 2011-09-30 2013-04-25 Hitachi-Ge Nuclear Energy Ltd Decontamination method of reactor configuration member
WO2015188044A1 (en) * 2014-06-05 2015-12-10 Infilco Degremont, Inc. Ozone oxidation process for treatment of water containing azoles and azole-type compounds

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5293900A (en) * 1976-02-02 1977-08-06 Hitachi Ltd Purififying method and device for nuclear reactor
JPS6150100A (en) * 1984-08-20 1986-03-12 株式会社日立製作所 Pressure-suppression chamber clad transport system
JP3874884B2 (en) * 1997-05-07 2007-01-31 東芝プラントシステム株式会社 Condensate storage tank purification equipment for nuclear power plants
JP2003098294A (en) * 2001-09-27 2003-04-03 Hitachi Ltd Decontamination method using ozone and apparatus therefor
JP4271079B2 (en) * 2004-05-17 2009-06-03 株式会社東芝 Anticorrosive treatment method and treatment apparatus
JP4088796B2 (en) * 2004-07-29 2008-05-21 株式会社日立プラントテクノロジー Reactor pressure vessel dismantling method

Also Published As

Publication number Publication date
JP2008304353A (en) 2008-12-18

Similar Documents

Publication Publication Date Title
US7889828B2 (en) Suppression method of radionuclide deposition on reactor component of nuclear power plant and ferrite film formation apparatus
JP4567542B2 (en) Method for suppressing radionuclide adhesion to nuclear plant components
US11244770B2 (en) Method of decontaminating a metal surface in a nuclear power plant
US11443863B2 (en) Method for decontaminating metal surfaces of a nuclear facility
TWI503845B (en) Chemical decontamination method of carbon steel components in nuclear power plant
JP4538022B2 (en) Method for suppressing radionuclide adhesion to nuclear plant components and ferrite film forming apparatus
KR20180080284A (en) Decontamination of metallic surfaces of heavy water cooling and deceleration reactors
JP2010266393A (en) Chemical decontamination method
JP4567765B2 (en) Radionuclide adhesion suppression method and film forming apparatus for nuclear plant components
JP4861252B2 (en) Chemical decontamination method before reactor demolition
JP2007192672A (en) Method and device for forming ferrite coating film on surface of carbon steel member in nuclear power plant
JP5500958B2 (en) Method for forming ferrite film on nuclear member, method for suppressing progress of stress corrosion cracking, and ferrite film forming apparatus
JP2008180740A (en) Nuclear power plant constitutive member
JP2009109427A (en) Chemical decontamination method and its device
JP3972050B1 (en) Method for treating solution after formation of ferrite film
JP2009210307A (en) Adhesion suppression method of radioactive nuclide on nuclear power plant constituting member, and ferrite film forming device
JP4271079B2 (en) Anticorrosive treatment method and treatment apparatus
JP6059106B2 (en) Chemical decontamination method for carbon steel components in nuclear power plant
JP4945487B2 (en) Method and apparatus for forming ferrite film on carbon steel member
JP7475171B2 (en) Chemical decontamination method and chemical decontamination apparatus
JP2016003940A (en) Method for suppressing adhesion of radionuclides to carbon steel members of nuclear power plant
JP6751010B2 (en) Method for forming radioactive substance adhesion suppression film
TW202137241A (en) Chemical decontamination method and chemical decontamination apparatus
JP4771994B2 (en) Method for treating solution after formation of ferrite film
JP2007198871A (en) Replacement member for nuclear power plant, and method of handling member for nuclear power plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110815

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111104

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees