JP4271079B2 - Anticorrosive treatment method and treatment apparatus - Google Patents

Anticorrosive treatment method and treatment apparatus Download PDF

Info

Publication number
JP4271079B2
JP4271079B2 JP2004146663A JP2004146663A JP4271079B2 JP 4271079 B2 JP4271079 B2 JP 4271079B2 JP 2004146663 A JP2004146663 A JP 2004146663A JP 2004146663 A JP2004146663 A JP 2004146663A JP 4271079 B2 JP4271079 B2 JP 4271079B2
Authority
JP
Japan
Prior art keywords
waste liquid
anticorrosive
hydrogen peroxide
organic
formic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004146663A
Other languages
Japanese (ja)
Other versions
JP2005326361A (en
Inventor
正見 遠田
由美 矢板
克美 保坂
秀夫 畠山
仁志 酒井
和司 夏井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004146663A priority Critical patent/JP4271079B2/en
Publication of JP2005326361A publication Critical patent/JP2005326361A/en
Application granted granted Critical
Publication of JP4271079B2 publication Critical patent/JP4271079B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

本発明は、原子力施設から発生する使用済みの冷却水などに含まれる防食剤を処理する防食剤の処理方法および処理装置に関する。   The present invention relates to an anticorrosive treatment method and treatment apparatus for treating an anticorrosive agent contained in used cooling water generated from a nuclear facility.

原子力施設、鉄鋼産業および化学プラントなどでは、機器の冷却に広範囲で冷却水が使用されている。こうした冷却水系の配管や貯槽などの材質は、多くの場合軟鋼で形成されており、この軟鋼の腐食を防止するために冷却水に水系防食剤が添加されている。水系防食剤には、有機のものと無機のものがあり、有機防食剤としては、有機カルボン酸塩およびアゾール系有機化合物が知られており、無機防食剤としては、クロム酸カリウム(クロメート(KCrO))が知られている。 In nuclear facilities, the steel industry and chemical plants, cooling water is widely used for cooling equipment. Such cooling water pipes and storage tanks are often made of mild steel, and a water-based anticorrosive is added to the cooling water to prevent corrosion of the mild steel. There are organic and inorganic water-based anticorrosives, and as organic anticorrosives, organic carboxylates and azole organic compounds are known, and as inorganic anticorrosives, potassium chromate (chromate (Kromate (K 2 CrO 4 )) is known.

原子力施設から発生する使用済みの冷却水には放射性物質が混在しているため、原子力施設から発生する冷却廃水は、セメント固化処理など、最終埋設処分に適合した処理を行う必要がある。   Since used cooling water generated from nuclear facilities contains a mixture of radioactive substances, cooling wastewater generated from nuclear facilities needs to be treated in accordance with the final disposal such as cement solidification.

しかしながら、有機系の液体は、有機物の存在により、セメント固化した際に固化体中に閉じこめられていた放射性物質の浸出(漏洩)速度を速め、周辺環境に悪影響を及ぼすおそれがある。   However, organic liquids may increase the leaching (leakage) rate of radioactive substances confined in the solidified body when cemented due to the presence of organic substances, and may adversely affect the surrounding environment.

このため、有機防食剤は、廃液から除去するか、あるいは有機物を分解して無機化するなどの処理を行う必要があると考えられるが、従来、有機防食剤を分解処理する技術は確立されていない。   For this reason, it is thought that the organic anticorrosive agent needs to be removed from the waste liquid or subjected to a treatment such as decomposing and mineralizing the organic substance. However, conventionally, a technique for decomposing the organic anticorrosive agent has been established. Absent.

また、原子力施設では6価クロムが有害物質に指定されている。このため、6価クロムを含む無機防食剤の使用を中止し、冷却水中に無機防食剤が存在した状態で有機防食剤を追加補充している場合がある。この場合、有機防食剤と無機防食剤が混在した状態となるが、このように有機防食剤と無機防食剤が混在した廃液を処理する技術も確立されていない。   In addition, hexavalent chromium is designated as a hazardous substance in nuclear facilities. For this reason, use of the inorganic anticorrosive containing hexavalent chromium may be stopped, and the organic anticorrosive may be additionally replenished in a state where the inorganic anticorrosive is present in the cooling water. In this case, the organic anti-corrosive agent and the inorganic anti-corrosive agent are mixed, but a technique for treating the waste liquid in which the organic anti-corrosive agent and the inorganic anti-corrosive agent are mixed is not established.

なお、従来6価クロムの処理については、pH調整剤として硫酸などの無機酸を添加し、二価鉄または亜硫酸により6価クロムを3価クロムに還元し、次に苛性ソーダなどのアルカリ剤を添加して3価クロムを水酸化クロムとして沈殿させ廃液から除去する方法が知られている(たとえば、非特許文献1、特許文献1参照。)。   In addition, for conventional hexavalent chromium treatment, an inorganic acid such as sulfuric acid is added as a pH adjuster, hexavalent chromium is reduced to trivalent chromium with divalent iron or sulfurous acid, and then an alkaline agent such as caustic soda is added. Then, a method is known in which trivalent chromium is precipitated as chromium hydroxide and removed from the waste liquid (see, for example, Non-Patent Document 1 and Patent Document 1).

また、硫酸によってpHを調整した後、過酸化水素を用いて6価クロムを3価クロムに還元し、過剰な過酸化水素をカタラーゼによって分解する方法も知られている(たとえば、特許文献2参照)。   Also known is a method in which after adjusting pH with sulfuric acid, hexavalent chromium is reduced to trivalent chromium using hydrogen peroxide, and excess hydrogen peroxide is decomposed by catalase (see, for example, Patent Document 2). ).

しかしながら、このような処理方法は、放射性物質を含む廃棄物における二次廃棄物量の低減という点については考慮されておらず、このような方法を原子力施設から発生する使用済みの冷却水などにおける防食剤の処理に適用しようとすると、無機防食剤の成分であるクロムとカリウムの他に多くの二次廃棄物が発生してしまうという課題が生じる。
編者 公害防止の技術と法規編集委員会,「公害防止の技術と法規[水質編]」,平成8年4月1日,第248〜253頁 特開平10−277565号公報(2−5頁) 特開平09−206763号公報(2−3頁)
However, such a treatment method does not take into consideration the reduction of the amount of secondary waste in the waste containing radioactive materials, and such a method is used for anticorrosion in used cooling water generated from nuclear facilities. If it is going to apply to processing of an agent, the subject that many secondary waste will occur besides chromium and potassium which are ingredients of an inorganic corrosion inhibitor arises.
Editor Pollution Prevention Technology and Regulations Editorial Committee, “Pollution Prevention Technology and Regulations [Water Quality]”, April 1, 1996, pp. 248-253 JP-A-10-277565 (page 2-5) JP 09-206763 A (page 2-3)

上述したとおり、従来においては、原子力施設などにおいて発生した防食剤を含む廃液、特に有機防食剤を含む廃液や、有機防食剤と無機防食剤が混在する廃液の処理を行うに際し、これらの防食剤を処理する有効な方法がなかった。   As described above, conventionally, when treating waste liquid containing anticorrosives generated in nuclear facilities, particularly waste liquids containing organic anticorrosives, or waste liquids containing both organic and inorganic anticorrosives, these anticorrosives are used. There was no effective way to handle.

本発明は、上述の課題を解決するためになされたもので、二次廃棄物の発生量を抑制することができ、かつ、最終埋設処分に適合した防食剤の処理方法および処理装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and provides an anticorrosive treatment method and treatment apparatus that can suppress the generation amount of secondary waste and that is suitable for final disposal. For the purpose.

上記目的を達成するために、本発明の防食剤の処理方法は、放射性物質を含む廃液中に混在する有機防食剤と無機防食剤とを処理する防食剤の処理方法において前記有機防食剤は有機カルボン酸またはアゾール系有機化合物が単独のもの、あるいは有機カルボン酸とアゾール系有機化合物とが混合されたものであり、前記無機防食剤は6価クロムとカリウムを含むものであって、前記廃液にオゾンガスを供給して、前記有機防食剤を分解する分解工程と、前記分解工程後の前記廃液中にpH調整剤としてギ酸を添加して前記廃液のpHを酸性に調整するpH調整工程と、前記pH調整工程後の前記廃液に還元剤として過酸化水素を添加して前記無機防食剤に含まれる6価クロムを3価クロムに還元する還元工程とを有することを特徴とする。 In order to achieve the above object, the processing method of the corrosion inhibitor of the present invention, in the processing method of anticorrosive treating an organic corrosion inhibitor and inorganic anticorrosive mixed in liquid waste containing a radioactive substance, the organic corrosion inhibitor is An organic carboxylic acid or an azole organic compound is used alone, or an organic carboxylic acid and an azole organic compound are mixed, and the inorganic anticorrosive contains hexavalent chromium and potassium, and the waste liquid A decomposition step of decomposing the organic anticorrosive agent by supplying ozone gas, and a pH adjustment step of adjusting the pH of the waste solution to acidic by adding formic acid as a pH adjuster to the waste solution after the decomposition step; A reduction step of reducing the hexavalent chromium contained in the inorganic anticorrosive agent to trivalent chromium by adding hydrogen peroxide as a reducing agent to the waste liquid after the pH adjustment step.

また、本発明の防食剤の処理装置は、放射性物質を含む廃液中に混在する有機防食剤と6価クロムを含む無機防食剤とを処理する防食剤の処理装置であって、前記廃液を貯留する廃液貯留槽と前記廃液貯留槽に貯留された前記廃液を循環する廃液循環機構とを有する廃液収容機構と、前記廃液にオゾンガスを供給して前記有機防食剤を分解するオゾンガス供給機構と、前記廃液にギ酸を供給して前記廃液のpHを酸性に調整するギ酸供給機構と、前記廃液に還元剤として過酸化水素を供給して前記6価クロムを3価クロムに還元する過酸化水素供給機構と、前記廃液に紫外線を照射して残留過酸化水素を分解する紫外線照射機構又は前記廃液にカタラーゼを供給して残留過酸化水素を分解するカタラーゼ供給機構と、前記廃液を通流して前記廃液中の分解生成物をイオン交換樹脂で分離する脱塩機構とを具備したことを特徴とする。 The anticorrosive treatment apparatus of the present invention is an anticorrosive treatment apparatus for treating an organic anticorrosive mixed in a waste liquid containing a radioactive substance and an inorganic anticorrosive containing hexavalent chromium, and stores the waste liquid. A waste liquid storage mechanism that has a waste liquid storage mechanism that circulates the waste liquid stored in the waste liquid storage tank, an ozone gas supply mechanism that supplies ozone gas to the waste liquid and decomposes the organic anticorrosive, and A formic acid supply mechanism for supplying formic acid to the waste liquid to adjust the pH of the waste liquid to acid, and a hydrogen peroxide supply mechanism for supplying hydrogen peroxide as a reducing agent to the waste liquid to reduce the hexavalent chromium to trivalent chromium When the catalase supply mechanism decompose residual hydrogen peroxide by supplying catalase ultraviolet irradiation mechanism or the waste decompose residual hydrogen peroxide by irradiating ultraviolet rays to the waste liquid, the flows through the waste The degradation products in the liquid, characterized by comprising a desalting mechanism for separating an ion exchange resin.

本発明によれば、二次廃棄物の発生量を抑制することができ、かつ、最終埋設処分に適合した防食剤の処理方法および処理装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the generation amount of secondary waste can be suppressed, and the processing method and processing apparatus of the anticorrosive agent suitable for the final embedment disposal can be provided.

以下、本発明の詳細を、実施の形態について図面を参照して説明する。   The details of the present invention will be described below with reference to the drawings.

図1は、本発明の第1の実施形態における防食剤の処理方法の構成を示すものである。同図に示すとおり、本実施形態では、まず、有機防食剤(有機カルボン酸塩もしくはアゾール系有機化合物が単独のもの、または有機カルボン酸塩とアゾール系有機化合物が混合されたもの)が溶解した廃液A1を、有機物分解工程A2に送り、この工程においてオゾンガスの供給A3を行う。これによって廃液A1中の有機物が、オゾンガスの酸化力により酸化されて、炭酸ガスと水に分解される。   FIG. 1 shows the configuration of the anticorrosive treatment method according to the first embodiment of the present invention. As shown in the figure, in this embodiment, first, an organic anticorrosive (an organic carboxylate or an azole organic compound alone or a mixture of an organic carboxylate and an azole organic compound) was dissolved. The waste liquid A1 is sent to the organic matter decomposition step A2, and ozone gas supply A3 is performed in this step. As a result, the organic matter in the waste liquid A1 is oxidized by the oxidizing power of ozone gas and decomposed into carbon dioxide gas and water.

次に、有機物分解工程A2を終了した廃液を脱塩工程A4に送り、ここで廃液中の分解生成物をイオン交換樹脂に吸着させて分離することによって有機防食剤を処理する。   Next, the organic anticorrosive agent is treated by sending the waste liquid that has completed the organic substance decomposition step A2 to the desalting step A4, where the decomposition products in the waste liquid are adsorbed and separated by the ion exchange resin.

図2は、本実施形態に係る防食剤の処理装置の構成を示すものである。同図に示すように、防食剤の処理装置は、処理槽1、オゾン発生器2、循環ライン3を具備している。また、循環ライン3には、過流ポンプ4、ヒーター5が設けられている。さらに、循環ライン3には、カチオン樹脂およびアニオン樹脂からなるイオン交換樹脂を備えた混床樹脂塔6が接続されており、計測機器として、導電率計7、pH計8、酸化還元電位計9が設けられている。   FIG. 2 shows the configuration of the anticorrosive treatment apparatus according to this embodiment. As shown in FIG. 1, the anticorrosive treatment apparatus includes a treatment tank 1, an ozone generator 2, and a circulation line 3. The circulation line 3 is provided with an overflow pump 4 and a heater 5. Further, the circulation line 3 is connected to a mixed bed resin tower 6 having an ion exchange resin made of a cation resin and an anion resin. As a measuring instrument, a conductivity meter 7, a pH meter 8, a redox potential meter 9 are provided. Is provided.

上記構成の防食剤の処理装置では、処理槽1に廃液を供給し、過流ポンプ4により循環ライン3に廃液を循環させる。これとともに、ヒーター5により所定温度に廃液を加熱し、オゾンガス発生器2により発生したオゾンガスを過流ポンプ4によって廃液へ供給する。これによって、廃液中の有機物は、オゾンガスの酸化力により酸化されて分解される。   In the anticorrosive treatment apparatus having the above-described configuration, the waste liquid is supplied to the treatment tank 1, and the waste liquid is circulated through the circulation line 3 by the overflow pump 4. At the same time, the waste liquid is heated to a predetermined temperature by the heater 5, and the ozone gas generated by the ozone gas generator 2 is supplied to the waste liquid by the overflow pump 4. As a result, the organic matter in the waste liquid is oxidized and decomposed by the oxidizing power of ozone gas.

上記の分解反応を確認するため、有機防食剤の分解試験を実施した。有機防食剤は大塚化学株式会社製のシャダンW-2(商品名(有機カルボン酸塩(カリウム塩)とアゾール系有機化合物(カリウム塩)の混合物))を使用した。試験条件は、シャダンW-2の濃度が1000 ppm、オゾンガス供給量が0.6 kg・h-1・m-3、温度が50℃である。 In order to confirm the above decomposition reaction, an organic anticorrosive decomposition test was conducted. Shadan W-2 (trade name (mixture of organic carboxylate (potassium salt) and azole organic compound (potassium salt))) manufactured by Otsuka Chemical Co., Ltd. was used as the organic anticorrosive. The test conditions are: Shadan W-2 concentration of 1000 ppm, ozone gas supply of 0.6 kg · h −1 · m -3 , and temperature of 50 ° C.

試験結果を図3に示す。図3のグラフにおいて、縦軸は有機炭素濃度 (ppm)、横軸は時間(min)を示している。同図に示されるとおり、廃液中の有機炭素濃度は、60分で5 ppm以下に低下した。その他の物質としては、シャダンW-2の成分であるカリウムが、試験前後とも60 ppm検出され、また分解生成物としてアンモニウムイオン(NH )が0.2 ppm検出された。 The test results are shown in FIG. In the graph of FIG. 3, the vertical axis indicates the organic carbon concentration (ppm), and the horizontal axis indicates time (min). As shown in the figure, the organic carbon concentration in the waste liquid decreased to 5 ppm or less in 60 minutes. As other substances, potassium, which is a component of Shadan W-2, was detected at 60 ppm before and after the test, and ammonium ion (NH 4 + ) was detected as 0.2 ppm as a decomposition product.

なお、アンモニウムイオンは、アゾール系有機化合物が分解されたことによって生成されたものと考えられる。ただし、廃液のpHが8〜9のアルカリ性であったので、アンモニウムイオンはアンモニアガスに変化して気体中に移行したものと考えられる。   In addition, it is thought that ammonium ion was produced | generated when the azole organic compound was decomposed | disassembled. However, since the pH of the waste liquid was alkaline of 8 to 9, it is considered that the ammonium ions changed to ammonia gas and transferred into the gas.

次に、分解試験後の廃液を、カチオン樹脂およびアニオン樹脂からなる混床樹脂塔6に通液した。廃液中のカリウムイオンは後述の図7に示すようにカチオン樹脂に吸着され、また廃液に残留するアニオン成分はアニオン樹脂に吸着され、廃液の導電率は飲料水レベルまで低下した。   Next, the waste liquid after the decomposition test was passed through a mixed bed resin tower 6 made of a cation resin and an anion resin. As shown in FIG. 7 to be described later, potassium ions in the waste liquid were adsorbed on the cation resin, and anionic components remaining in the waste liquid were adsorbed on the anion resin, and the conductivity of the waste liquid was reduced to the drinking water level.

以上の結果より、廃液中の有機防食剤成分である有機物は、オゾンにより炭酸ガスと水に分解できることが確認できた。分解処理した廃液は、混床樹脂に通液することにより、分解生成物と放射性物質が除去されるため、処理された廃液は原子力施設の廃棄物処理系で容易に処理することができる。   From the above results, it was confirmed that the organic substance as the organic anticorrosive component in the waste liquid can be decomposed into carbon dioxide gas and water by ozone. The decomposed waste liquid is passed through the mixed bed resin to remove decomposition products and radioactive substances, so that the processed waste liquid can be easily processed in the waste treatment system of the nuclear facility.

次に、本発明の第2の実施形態について説明する。この第2の実施形態は、有機防食剤と無機防食剤(クロメート)が混在した廃液の処理に関するものである。   Next, a second embodiment of the present invention will be described. This 2nd Embodiment is related with the process of the waste liquid in which the organic anticorrosive and the inorganic anticorrosive (chromate) were mixed.

図4は、第2の実施形態における防食剤の処理方法の構成を示すものである。同図に示すとおり、第2の実施形態では、まず、有機防食剤と無機防食剤(クロメート)が混在した廃液B1を、有機物分解工程B2に送り、これに引き続き、pH調整工程B3、還元工程B4、カチオン成分除去工程B5、ギ酸分解工程B6、過酸化水素分解工程B7、脱塩処理工程B8を経由して防食剤の処理が行われる。   FIG. 4 shows the configuration of the anticorrosive treatment method according to the second embodiment. As shown in the figure, in the second embodiment, first, waste liquid B1 in which an organic anticorrosive and an inorganic anticorrosive (chromate) are mixed is sent to an organic matter decomposition step B2, followed by a pH adjustment step B3, a reduction step. The anticorrosive treatment is performed via B4, cationic component removal step B5, formic acid decomposition step B6, hydrogen peroxide decomposition step B7, and desalting treatment step B8.

上記有機物分解工程B2ではオゾンガスの供給B9が行われ、pH調整工程B3ではギ酸の添加B10が行われ、還元工程B4およびギ酸分解工程B6では過酸化水素の添加B11が行われ、過酸化水素分解工程B7では紫外線の照射またはカタラーゼの添加B12が行われる。   In the organic substance decomposition step B2, ozone gas supply B9 is performed, in the pH adjustment step B3, formic acid is added B10, and in the reduction step B4 and formic acid decomposition step B6, hydrogen peroxide is added B11. In step B7, ultraviolet irradiation or catalase addition B12 is performed.

また、図5は、上記の方法を実施するための第2の実施形態における防食剤の処理装置の構成を示すものである。同図に示すように、防食剤の処理装置は、処理槽1、オゾン発生器2、循環ライン3を具備している。また、処理槽1にはギ酸供給部10が設けられ、循環ライン3には、過流ポンプ4、ヒーター5、過酸化水素供給部11、紫外線照射部12が設けられている。さらに、循環ライン3には、カチオン樹脂塔13、混床樹脂塔6が接続されており、計測機器として、導電率計7、pH計8、酸化還元電位計9が設けられている。   Moreover, FIG. 5 shows the structure of the processing apparatus of the anticorrosive agent in 2nd Embodiment for implementing said method. As shown in FIG. 1, the anticorrosive treatment apparatus includes a treatment tank 1, an ozone generator 2, and a circulation line 3. The treatment tank 1 is provided with a formic acid supply unit 10, and the circulation line 3 is provided with an overflow pump 4, a heater 5, a hydrogen peroxide supply unit 11, and an ultraviolet irradiation unit 12. Furthermore, a cation resin tower 13 and a mixed bed resin tower 6 are connected to the circulation line 3, and a conductivity meter 7, a pH meter 8, and an oxidation-reduction potentiometer 9 are provided as measuring instruments.

処理槽1には、有機防食剤(たとえば、大塚化学株式会社製のシャダンW-2(商品名))と無機防食剤(クロメート)が混在した廃液を供給し、過流ポンプ4により廃液を循環させる。また、ヒーター5により所定温度に廃液を加熱し、過流ポンプ4からオゾン発生器2で発生させたオゾンガスを供給する。このようにして行う有機物分解工程B2については前述した第1の実施形態と同様である。   Waste water containing a mixture of organic anti-corrosive agent (for example, Shadan W-2 (trade name) manufactured by Otsuka Chemical Co., Ltd.) and inorganic anti-corrosive agent (chromate) is supplied to the treatment tank 1, and the waste liquid is circulated by the overflow pump 4. Let Further, the waste liquid is heated to a predetermined temperature by the heater 5, and ozone gas generated by the ozone generator 2 is supplied from the overflow pump 4. The organic matter decomposition step B2 performed in this manner is the same as that in the first embodiment described above.

有機物分解工程B4を経た時点で廃液のpHは、8〜9のアルカリ性である。このpHでは、廃液中の6価クロムは(Cr6+)は、(1)式に示すように酸化還元電位が小さく酸化力の弱いクロム酸イオン(CrO 2−)として存在する。
CrO 2−+4HO+3e=Cr(OH)+5OH E°=-0.13V (1)
When the organic matter decomposition step B4 is performed, the pH of the waste liquid is 8-9 alkaline. At this pH, hexavalent chromium in the waste liquid (Cr 6+ ) exists as chromate ions (CrO 4 2− ) having a small redox potential and weak oxidizing power as shown in the formula (1).
CrO 4 2− + 4H 2 O + 3e = Cr (OH) 3 + 5OH E ° = −0.13 V (1)

この電位では、還元剤で3価クロムに還元されないため、廃液のpHを酸性にして(2)式に示す酸化還元電位が大きく酸化力の強いニクロム酸イオン(Cr 2−)を生成する必要がある。
Cr 2−+14H+6e=2Cr3++7HO E°=+1.33V (2)
At this potential, since the reducing agent is not reduced to trivalent chromium, the pH of the waste liquid is acidified to produce nitric acid ion (Cr 2 O 7 2− ) having a large oxidation-reduction potential and strong oxidizing power as shown in formula (2). There is a need to.
Cr 2 O 7 2− + 14H + + 6e = 2Cr 3+ + 7H 2 O E ° = + 1.33 V (2)

このため、ギ酸供給部10よりギ酸(HCOOH)を注入し(B10)、廃液のpHを酸性に調整する。このように、pH調整剤として、炭酸ガスと水に分解可能なギ酸を用いることによって二次廃棄物の発生量を抑制することができる。ギ酸注入により、(3)式に示すように二クロム酸(HCr)が生成する。
2KCrO+4HCOOH=HCr+4KCOOH+HO (3)
For this reason, formic acid (HCOOH) is injected from the formic acid supply unit 10 (B10), and the pH of the waste liquid is adjusted to be acidic. Thus, the amount of secondary waste generated can be suppressed by using formic acid that can be decomposed into carbon dioxide and water as a pH adjuster. By formic acid injection, dichromic acid (H 2 Cr 2 O 7 ) is generated as shown in formula (3).
2K 2 CrO 4 + 4HCOOH = H 2 Cr 2 O 7 + 4KCOOH + H 2 O (3)

この状態で、過酸化水素供給部11から過酸化水素(H)を添加すると、(4)式に示す反応により、二クロム酸の6価クロムは3価クロムに還元される。
Cr+6HCOOH+H
=2Cr(COOH)+2O+5HO (4)
In this state, when hydrogen peroxide (H 2 O 2 ) is added from the hydrogen peroxide supply unit 11, hexavalent chromium of dichromic acid is reduced to trivalent chromium by the reaction shown in the formula (4).
H 2 Cr 2 O 7 + 6HCOOH + H 2 O 2
= 2Cr (COOH) 3 + 2O 2 + 5H 2 O (4)

この反応を確認するため、過酸化水素による6価クロムの還元試験を実施した。試験条件は、6価クロム濃度が150 ppmになるようにKCrOを溶解し、その溶液にギ酸を5000 ppm添加して廃液を酸性にした。次に過酸化水素を徐々に添加し、6価クロムを3価クロムに還元した。試験結果を図6に示す。図中の縦軸は6価クロム濃度 (ppm)、横軸は規定濃度比(H添加濃度/初期Cr6+濃度)を示す。廃液中の6価クロム濃度は、過酸化水素の添加量が約4規定濃度比で0.5 ppm以下に低下した。 In order to confirm this reaction, a reduction test of hexavalent chromium with hydrogen peroxide was performed. As test conditions, K 2 CrO 4 was dissolved so that the hexavalent chromium concentration was 150 ppm, and 5000 ppm of formic acid was added to the solution to make the waste solution acidic. Next, hydrogen peroxide was gradually added to reduce hexavalent chromium to trivalent chromium. The test results are shown in FIG. In the figure, the vertical axis represents the hexavalent chromium concentration (ppm), and the horizontal axis represents the specified concentration ratio (H 2 O 2 addition concentration / initial Cr 6+ concentration). The concentration of hexavalent chromium in the waste liquid decreased to 0.5 ppm or less when the amount of hydrogen peroxide added was about 4N.

次に、還元処理した廃液をカチオン樹脂塔13に通液した。有機防食剤シャダンW-2(商品名)の成分であるカリウムイオン、無機防食剤(クロメート)の成分であるクロムおよびカリウムは(5),(6)式の反応により、カチオン樹脂に吸着され、廃液から除去される。
3R-H+Cr(COOH)=R-Cr+3HCOOH (5)
R-H+KCOOH=R-K+HCOOH (6)
Next, the reduced waste liquid was passed through the cation resin tower 13. Potassium ions, which are components of the organic anticorrosive agent Shadan W-2 (trade name), and chromium and potassium, which are components of the inorganic anticorrosive agent (chromate), are adsorbed to the cationic resin by the reactions of the formulas (5) and (6). Removed from waste liquid.
3R-H + Cr (COOH) 3 = R 3 -Cr + 3HCOOH (5)
R-H + KCOOH = R-K + HCOOH (6)

この反応を確認するため、カチオン樹脂によるクロムおよびカリウムの分離試験を実施した。
試験結果を図7に示す。図の縦軸はクロムおよびカリウムの濃度比(各濃度/初期濃度)、横軸はカチオン樹脂塔への通水量 (L・h-1)である。通水量11 L・h-1において、クロムは除染係数3700、カリウムは5900が得られた。なお、この時のクロム濃度およびカリウム濃度は0.1 ppm以下であった。
In order to confirm this reaction, a separation test of chromium and potassium with a cationic resin was performed.
The test results are shown in FIG. The vertical axis in the figure is the chromium / potassium concentration ratio (each concentration / initial concentration), and the horizontal axis is the amount of water flow (L · h −1 ) to the cationic resin tower. At a water flow rate of 11 L · h −1 , a decontamination factor of 3700 for chromium and 5900 for potassium were obtained. The chromium concentration and potassium concentration at this time were 0.1 ppm or less.

次に過酸化水素供給部11より過酸化水素を供給し、廃液に残留するギ酸を分解した。過酸化水素は(7),(8)式に示すように相手の酸化還元電位によって還元剤または酸化剤として作用する。
→O+2H+2e E°=-0.68V (7)
+2H+2e→HO E°=-1.77V (8)
Next, hydrogen peroxide was supplied from the hydrogen peroxide supply unit 11 to decompose formic acid remaining in the waste liquid. Hydrogen peroxide acts as a reducing agent or an oxidizing agent depending on the redox potential of the partner as shown in the equations (7) and (8).
H 2 O 2 → O 2 + 2H + + 2e - E ° = -0.68V (7)
H 2 O 2 + 2H + + 2e → H 2 O E ° = −1.77 V (8)

したがって、過酸化水素はギ酸に対して酸化剤として作用し、(9)式に示す反応によりギ酸は炭酸ガス(CO)と水に分解される。
HCOOH+H=CO+2HO (9)
Accordingly, hydrogen peroxide acts as an oxidizing agent for formic acid, and formic acid is decomposed into carbon dioxide (CO 2 ) and water by the reaction shown in the formula (9).
HCOOH + H 2 O 2 = CO 2 + 2H 2 O (9)

ギ酸の分解反応を確認するため、過酸化水素によるギ酸の分解試験を実施した。試験条件はギ酸濃度5000ppm、温度60℃、過酸化水素添加濃度はギ酸濃度の2倍当量である。試験結果を図8に示す。図の縦軸は有機炭素濃度 (ppm)、横軸は時間 (h)を示す。廃液中の有機炭素濃度は4時間の試験で5ppm以下に低下した。   In order to confirm the decomposition reaction of formic acid, a decomposition test of formic acid with hydrogen peroxide was conducted. The test conditions are a formic acid concentration of 5000 ppm, a temperature of 60 ° C., and the hydrogen peroxide addition concentration is equivalent to twice the formic acid concentration. The test results are shown in FIG. The vertical axis in the figure represents the organic carbon concentration (ppm), and the horizontal axis represents time (h). The concentration of organic carbon in the effluent decreased to 5 ppm or less after a 4-hour test.

次に、ギ酸分解後の残留過酸化水素を分解するため、紫外線照射部12から廃液に紫外線を照射した。過酸化水素は(10)式の反応により水と酸素に分解される。
=HO+(1/2)O (10)
Next, in order to decompose the residual hydrogen peroxide after decomposition of formic acid, the waste liquid was irradiated with ultraviolet rays from the ultraviolet irradiation unit 12. Hydrogen peroxide is decomposed into water and oxygen by the reaction of the formula (10).
H 2 O 2 = H 2 O + (1/2) O 2 (10)

この反応を確認するため、紫外線による残留過酸化水素の分解試験を実施した。試験条件は、過酸化水素の濃度が28ppm、紫外線の出力容量(出力/液量)が10w/Lである。試験結果を図9に示す。図の縦軸は過酸化水素濃度 (ppm)、横軸は時間 (h)を示す。廃液中の残留過酸化水素の濃度は3時間で検出下限値0.5ppm以下に低下した。   In order to confirm this reaction, a decomposition test of residual hydrogen peroxide by ultraviolet rays was performed. The test conditions were a hydrogen peroxide concentration of 28 ppm and an ultraviolet output capacity (output / liquid volume) of 10 w / L. The test results are shown in FIG. The vertical axis in the figure represents the hydrogen peroxide concentration (ppm), and the horizontal axis represents time (h). The concentration of residual hydrogen peroxide in the waste liquid fell below the lower limit of detection of 0.5 ppm in 3 hours.

次に、残留過酸化水素を分解した後の廃液は、カチオン樹脂およびアニオン樹脂からなる混床樹脂塔6に通水した。廃液には有機防食剤の有機物を分解した後の未分解成分(アンモニウムイオン、有機炭素など)が残留している。この残留物は混床樹脂に通水することで除去でき、廃液の導電率は飲料水レベルまで低下した。   Next, the waste liquid after decomposing the residual hydrogen peroxide was passed through a mixed bed resin tower 6 made of a cation resin and an anion resin. In the waste liquid, undecomposed components (ammonium ions, organic carbon, etc.) after decomposing organic substances of the organic anticorrosive remain. This residue could be removed by passing water through the mixed bed resin, and the waste liquid conductivity was reduced to the drinking water level.

以上の結果より、有機防食剤成分である有機物をオゾンにより分解し、その後に無機防食剤成分である6価クロムはギ酸と過酸化水素により3価クロムに還元できることが確認できた。また、防食剤成分である3価クロム、カリウムはギ酸酸性下でカチオン樹脂により分離でき、添加したギ酸は過酸化水素により、残留過酸化水素は紫外線により分解できることが確認できた。したがって、防食剤の処理のために添加した薬剤は二次廃棄物とならないため、二次廃棄物の発生量を大幅に抑制することができる。また、廃液中に残留する塩(放射性物質を含む)は、カチオン樹脂および混床樹脂で除去できるため、廃液は原子力施設の廃棄物処理系で容易に処理することができる。   From the above results, it was confirmed that the organic substance as the organic anticorrosive component was decomposed with ozone, and then the hexavalent chromium as the inorganic anticorrosive component could be reduced to trivalent chromium with formic acid and hydrogen peroxide. Further, it was confirmed that the anticorrosive components trivalent chromium and potassium can be separated by cationic resin under formic acid acidity, the added formic acid can be decomposed by hydrogen peroxide, and the residual hydrogen peroxide can be decomposed by ultraviolet rays. Therefore, since the chemical | medical agent added for the process of the anticorrosive agent does not turn into secondary waste, the generation amount of secondary waste can be suppressed significantly. Further, since salts (including radioactive substances) remaining in the waste liquid can be removed by the cationic resin and the mixed bed resin, the waste liquid can be easily treated in the waste treatment system of the nuclear facility.

次に、第3の実施形態について図10、図11を参照して説明する。   Next, a third embodiment will be described with reference to FIGS.

第3の実施形態は、紫外線照射のかわりに、カタラーゼを用いて過酸化水素を分解したことを除いては第2の実施形態と同一同じである。したがって、第2の実施形態と同一部分の重複した説明は省略し、異なる部分である、残留過酸化水素をカタラーゼで分解する装置の構成および作用を説明する。   The third embodiment is the same as the second embodiment except that hydrogen peroxide is decomposed using catalase instead of ultraviolet irradiation. Therefore, the description of the same part as in the second embodiment is omitted, and the configuration and operation of an apparatus for decomposing residual hydrogen peroxide with catalase, which is a different part, will be described.

図10は有機防食剤および無機防食剤が混在した廃液の処理装置を示す。その構成は図5の装置とほぼ同じであるが、廃液に残留する過酸化水素をカタラーゼで分解するため、処理槽1にカタラーゼ供給部14が付設され、紫外線照射部12が削除されている。   FIG. 10 shows a waste liquid treatment apparatus in which an organic corrosion inhibitor and an inorganic corrosion inhibitor are mixed. The configuration is almost the same as that of the apparatus of FIG. 5, but in order to decompose the hydrogen peroxide remaining in the waste liquid with catalase, a catalase supply unit 14 is attached to the treatment tank 1 and the ultraviolet irradiation unit 12 is omitted.

カタラーゼは過酸化水素分解剤として良く知られており、前記した(10)式に示す反応により過酸化水素を水と酸素に分解する。   Catalase is well known as a hydrogen peroxide decomposing agent, and decomposes hydrogen peroxide into water and oxygen by the reaction shown in the above formula (10).

この反応を確認するため、廃液に残留する過酸化水素の分解試験を実施した。試験条件は、ギ酸分解後のpHが5.5、残留過酸化水素濃度が30 ppm、温度が室温であり、カタラーゼは、洛東化成工業株式会社製のエンチロンKAT-50(商品名)を使用した。   In order to confirm this reaction, a decomposition test of hydrogen peroxide remaining in the waste liquid was conducted. As test conditions, pH after formic acid decomposition was 5.5, residual hydrogen peroxide concentration was 30 ppm, temperature was room temperature, and Entilon KAT-50 (trade name) manufactured by Nitto Kasei Kogyo Co., Ltd. was used as the catalase.

試験結果を図11に示す。図の縦軸は過酸化水素濃度 (ppm)、横軸は時間 (min)を示す。同図に示されるとおり、過酸化水素は30分で検出下限値0.5 ppm以下に低下した。   The test results are shown in FIG. The vertical axis in the figure represents the hydrogen peroxide concentration (ppm), and the horizontal axis represents time (min). As shown in the figure, hydrogen peroxide decreased to the lower limit of detection of 0.5 ppm or less in 30 minutes.

次に、残留過酸化水素を分解した後の廃液を、カチオン樹脂およびアニオン樹脂からなる混床樹脂塔6に通水したところ、前述の第2の実施形態と同様に廃液の導電率は飲料水レベルまで低下した。   Next, when the waste liquid after decomposing the residual hydrogen peroxide was passed through the mixed bed resin tower 6 made of a cation resin and an anion resin, the conductivity of the waste liquid was equal to that of the drinking water as in the second embodiment. Reduced to level.

なお、カタラーゼは三菱ガス化学製株式会社製のアスクスーパー(商品名)、長瀬産業株式会社のレオネット(商品名)を使用しても同様の結果が得られた。   In addition, the same result was obtained even if the catalase was used by Ask Super (trade name) manufactured by Mitsubishi Gas Chemical Co., Ltd. and Leonetto (trade name) manufactured by Nagase Sangyo Co., Ltd.

以上の結果より、廃液に残留する過酸化水素はカタラーゼにより短時間で分解できることが確認できた。したがって、カタラーゼを用いることによって、紫外線照射による過酸化水素の分解処理と比較して処理工期の短縮、装置費用の低減が可能である。   From the above results, it was confirmed that hydrogen peroxide remaining in the waste liquid could be decomposed in a short time by catalase. Therefore, by using catalase, the treatment period can be shortened and the cost of the apparatus can be reduced as compared with the decomposition treatment of hydrogen peroxide by ultraviolet irradiation.

次に、前述した第2の実施形態により廃液を処理した場合と、比較例の場合とで、廃液処理の際の二次廃棄物発生量を比較評価した。処理対象の有機防食剤は大塚化学製のシャダンW-2(商品名)で濃度が1000 ppm、無機防食剤(クロメート)の6価クロム濃度が150 ppm、廃液量が1000 mである。 Next, the amount of secondary waste generated during waste liquid treatment was comparatively evaluated between the case where the waste liquid was treated according to the second embodiment described above and the case of the comparative example. The organic anticorrosive to be treated is Shadan W-2 (trade name) manufactured by Otsuka Chemical, the concentration is 1000 ppm, the hexavalent chromium concentration of the inorganic anticorrosive (chromate) is 150 ppm, and the amount of waste liquid is 1000 m 3 .

比較例では、シャダンW-2(商品名)成分の有機物をオゾンにより分解し、6価クロムを亜硫酸水素ナトリウムにより還元した。この比較例の詳細手順を以下に示す。   In the comparative example, the organic substance of the Shadan W-2 (trade name) component was decomposed with ozone, and hexavalent chromium was reduced with sodium bisulfite. The detailed procedure of this comparative example is shown below.

廃液に硫酸(HSO)を添加しpH2に調整すると、(11)式に示す様に二クロム酸を生成する。
2KCrO+3HSO=HCr+2KSO+HSO (11)
When sulfuric acid (H 2 SO 4 ) is added to the waste liquid to adjust to pH 2, dichromic acid is generated as shown in the formula (11).
2K 2 CrO 4 + 3H 2 SO 4 = H 2 Cr 2 O 7 + 2K 2 SO 4 + H 2 SO 4 (11)

次に、亜硫酸水素ナトリウム(NaHSO)を添加すると(12)式に示すように6価クロムは3価クロムに還元される。
2HCr+NaHSO+3HSO
=2Cr(SO+3NaSO+8HO (12)
Next, when sodium bisulfite (NaHSO 3 ) is added, hexavalent chromium is reduced to trivalent chromium as shown in the formula (12).
2H 2 Cr 2 O 7 + NaHSO 3 + 3H 2 SO 4
= 2Cr 2 (SO 4 ) 3 + 3Na 2 SO 4 + 8H 2 O (12)

この後、混床樹脂塔に通水し、(13)〜(15)式に示すようにカチオン成分はカチオン樹脂(R-H)に、(16)式に示すようにアニオン成分はアニオン樹脂(R-OH)に吸着させる。
6R-H+Cr(SO=2R-Cr+3HSO (13)
2R-H+KSO+=2R-K+HSO (14)
2R-H+NaSO=2R-Na+HSO (15)
2R-OH+HSO=R-SO+2HO (16)
Thereafter, water is passed through the mixed bed resin tower, the cation component is converted into the cation resin (RH) as shown in the formulas (13) to (15), and the anion component is set as the anion resin (R--) as shown in the formula (16). OH).
6R-H + Cr 2 (SO 4) 3 = 2R 3 -Cr + 3H 2 SO 4 (13)
2R-H + K 2 SO 4 + = 2R-K + H 2 SO 4 (14)
2R—H + Na 2 SO 4 = 2R—Na + H 2 SO 4 (15)
2R—OH + H 2 SO 4 = R 2 —SO 4 + 2H 2 O (16)

したがって、比較例では (13)〜(16)式の右辺に示される成分(廃棄物)のうち、(13),(14)式に示される防食剤成分から起因する廃棄物(R-Cr,R-K)の他に、(15),(16)式に示されるpH調整剤(硫酸)と還元剤(亜硫酸水素ナトリウム)から起因する二次廃棄物(R-Na,R-SO)が発生する。 Therefore, in the comparative example, among the components (wastes) shown on the right side of the formulas (13) to (16), the waste (R 3 —Cr resulting from the anticorrosive component shown in the formulas (13) and (14) , RK) and secondary waste (R-Na, R 2 -SO) derived from the pH adjuster (sulfuric acid) and reducing agent (sodium hydrogen sulfite) represented by the formulas (15) and (16) 4 ) occurs.

一方、第2の実施形態では、pH調整剤(ギ酸)と還元剤(過酸化水素)は分解できるため、発生する廃棄物は、(5)式および(6)式に示すように防食剤成分から起因する廃棄物(R-Cr,R-K)のみである。 On the other hand, in the second embodiment, since the pH adjusting agent (formic acid) and the reducing agent (hydrogen peroxide) can be decomposed, the generated waste is an anticorrosive component as shown in the equations (5) and (6). Only waste (R 3 -Cr, RK) resulting from

これらの方法における二次廃棄物発生量を試算した結果を図12に示す。図12から明らかなように、本実施形態における廃棄物発生量は比較例の1/5程度である。   FIG. 12 shows the results of trial calculation of the amount of secondary waste generated in these methods. As is apparent from FIG. 12, the amount of waste generated in this embodiment is about 1/5 of the comparative example.

以上のように、本実施形態では、廃液処理に伴って発生する廃棄物は、防食剤成分のクロムおよびカリウムから起因する廃棄物のみであるが、比較例ではこれにpH調整剤および還元剤から起因する二次廃棄物が追加される。したがって、本実施形態では比較例に比べて廃液処理に伴う廃棄物発生量を大幅に低減することができる。   As described above, in the present embodiment, the waste generated due to the waste liquid treatment is only the waste resulting from the anticorrosive components chromium and potassium, but in the comparative example, from the pH adjuster and the reducing agent. The resulting secondary waste is added. Therefore, in this embodiment, compared with the comparative example, the amount of waste generated due to waste liquid treatment can be greatly reduced.

本発明の第1の実施形態の防食剤の処理方法の工程を示す図。The figure which shows the process of the processing method of the anticorrosive of the 1st Embodiment of this invention. 本発明の第1の実施形態の防食剤の処理装置の構成を示す図。The figure which shows the structure of the processing apparatus of the anticorrosive of the 1st Embodiment of this invention. 本発明の第1の実施形態において有機物をオゾンにより分解処理した結果を示す図。The figure which shows the result of having decomposed | disassembled the organic substance with ozone in the 1st Embodiment of this invention. 本発明の第2の実施形態の防食剤の処理方法の工程を示す図。The figure which shows the process of the processing method of the anticorrosive of the 2nd Embodiment of this invention. 本発明の第2の実施形態の防食剤の処理装置の構成を示す図。The figure which shows the structure of the processing apparatus of the anticorrosive of the 2nd Embodiment of this invention. 本発明の第2の実施形態において6価クロムを還元した結果を示す図。The figure which shows the result of having reduced hexavalent chromium in the 2nd Embodiment of this invention. 本発明の第2の実施形態においてカチオン樹脂によりクロムおよびカリウムを除去した結果を示す図。The figure which shows the result of having removed chromium and potassium with the cationic resin in the 2nd Embodiment of this invention. 本発明の第2の実施形態において過酸化水素によりギ酸を分解した結果を示す図。The figure which shows the result of having decomposed | disassembled formic acid with hydrogen peroxide in the 2nd Embodiment of this invention. 本発明の第2の実施形態において紫外線により過酸化水素を分解した結果を示す図。The figure which shows the result of having decomposed | disassembled hydrogen peroxide with the ultraviolet-ray in the 2nd Embodiment of this invention. 本発明の第3の実施形態の防食剤の処理装置の構成を示す図。The figure which shows the structure of the processing apparatus of the anticorrosive of the 3rd Embodiment of this invention. 本発明の第3の実施形態においてカタラーゼにより過酸化水素を分解した結果を示す図。The figure which shows the result of having decomposed | disassembled hydrogen peroxide by the catalase in the 3rd Embodiment of this invention. 本発明の第2の実施形態と比較例の廃棄物発生量を試算した結果を示す図。The figure which shows the result of having calculated the waste generation amount of the 2nd Embodiment of this invention and a comparative example.

符号の説明Explanation of symbols

A1…廃液(有機防食剤)、A2…分解工程、A3…オゾンガス供給、A4…脱塩工程。   A1 ... Waste liquid (organic anticorrosive), A2 ... Decomposition step, A3 ... Ozone gas supply, A4 ... Desalination step.

Claims (4)

放射性物質を含む廃液中に混在する有機防食剤と無機防食剤とを処理する防食剤の処理方法において
前記有機防食剤は有機カルボン酸またはアゾール系有機化合物が単独のもの、あるいは有機カルボン酸とアゾール系有機化合物とが混合されたものであり、前記無機防食剤は6価クロムとカリウムを含むものであって、
前記廃液にオゾンガスを供給して、前記有機防食剤を分解する分解工程と、
前記分解工程後の前記廃液中にpH調整剤としてギ酸を添加して前記廃液のpHを酸性に調整するpH調整工程と、
前記pH調整工程後の前記廃液に還元剤として過酸化水素を添加して前記無機防食剤に含まれる6価クロムを3価クロムに還元する還元工程と
を有することを特徴とする防食剤の処理方法。
In the processing method of the anticorrosive which processes the organic anticorrosive and the inorganic anticorrosive mixed in the waste liquid containing the radioactive substance,
The organic anticorrosive is an organic carboxylic acid or an azole organic compound alone, or a mixture of an organic carboxylic acid and an azole organic compound, and the inorganic anticorrosive contains hexavalent chromium and potassium. There,
A decomposition step of decomposing the organic anticorrosive by supplying ozone gas to the waste liquid;
A pH adjusting step of adjusting the pH of the waste liquid to acid by adding formic acid as a pH adjuster to the waste liquid after the decomposition step;
A reduction step of adding hydrogen peroxide as a reducing agent to the waste liquid after the pH adjustment step to reduce hexavalent chromium contained in the inorganic anticorrosive agent to trivalent chromium. Method.
前記廃液に残留するカチオン成分を、カチオン交換樹脂で分離するカチオン成分除去工程をさらに有することを特徴とする請求項記載の防食剤の処理方法。 Processing method according to claim 1, wherein the anticorrosive agent characterized in that it further comprises a cationic component removing step of the cationic component remaining in the waste liquid are separated by cation exchange resins. 前記カチオン成分除去工程の後に前記廃液に残留するギ酸を、過酸化水素を用いて炭酸ガスと水に分解するギ酸分解工程と、
前記ギ酸分解工程の後に前記廃液に残留する過酸化水素を、紫外線照射又はカタラーゼにより、酸素と水とに分解する過酸化水素分解工程と、
前記過酸化水素分解工程の後に前記廃液中の残留物をイオン交換樹脂で除去する脱塩工程とをさらに有することを特徴とする請求項記載の防食剤の処理方法。
Formic acid remaining in the waste liquid after the cationic component removing step, the formic acid decomposition step of decomposing into a carbon dioxide and water with hydrogen peroxide,
Hydrogen peroxide remaining in the waste liquid after the formic acid decomposition step is decomposed into oxygen and water by ultraviolet irradiation or catalase,
The anticorrosive treatment method according to claim 2 , further comprising a desalting step of removing residues in the waste liquid with an ion exchange resin after the hydrogen peroxide decomposition step .
放射性物質を含む廃液中に混在する有機防食剤と6価クロムを含む無機防食剤とを処理する防食剤の処理装置であって、
前記廃液を貯留する廃液貯留槽と前記廃液貯留槽に貯留された前記廃液を循環する廃液循環機構とを有する廃液収容機構と、
前記廃液にオゾンガスを供給して前記有機防食剤を分解するオゾンガス供給機構と、
前記廃液にギ酸を供給して前記廃液のpHを酸性に調整するギ酸供給機構と、
前記廃液に還元剤として過酸化水素を供給して前記6価クロムを3価クロムに還元する過酸化水素供給機構と
前記廃液に紫外線を照射して残留過酸化水素を分解する紫外線照射機構又は前記廃液にカタラーゼを供給して残留過酸化水素を分解するカタラーゼ供給機構と、
前記廃液を通流して前記廃液中の分解生成物をイオン交換樹脂で分離する脱塩機構と
を具備したことを特徴とする防食剤の処理装置。
An anticorrosive treatment apparatus for treating an organic anticorrosive mixed in a waste liquid containing radioactive material and an inorganic anticorrosive containing hexavalent chromium,
A waste liquid storage mechanism having a waste liquid storage tank for storing the waste liquid and a waste liquid circulation mechanism for circulating the waste liquid stored in the waste liquid storage tank;
An ozone gas supply mechanism for decomposing the organic anticorrosive by supplying ozone gas to the waste liquid;
A formic acid supply mechanism that adjusts the pH of the waste liquid to acidic by supplying formic acid to the waste liquid;
A hydrogen peroxide supply mechanism that supplies hydrogen peroxide as a reducing agent to the waste liquid to reduce the hexavalent chromium to trivalent chromium ;
An ultraviolet irradiation mechanism that decomposes residual hydrogen peroxide by irradiating the waste liquid with ultraviolet light, or a catalase supply mechanism that decomposes residual hydrogen peroxide by supplying catalase to the waste liquid;
An anticorrosive treatment apparatus, comprising: a desalting mechanism for flowing the waste liquid and separating a decomposition product in the waste liquid with an ion exchange resin .
JP2004146663A 2004-05-17 2004-05-17 Anticorrosive treatment method and treatment apparatus Expired - Lifetime JP4271079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004146663A JP4271079B2 (en) 2004-05-17 2004-05-17 Anticorrosive treatment method and treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004146663A JP4271079B2 (en) 2004-05-17 2004-05-17 Anticorrosive treatment method and treatment apparatus

Publications (2)

Publication Number Publication Date
JP2005326361A JP2005326361A (en) 2005-11-24
JP4271079B2 true JP4271079B2 (en) 2009-06-03

Family

ID=35472826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004146663A Expired - Lifetime JP4271079B2 (en) 2004-05-17 2004-05-17 Anticorrosive treatment method and treatment apparatus

Country Status (1)

Country Link
JP (1) JP4271079B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4861252B2 (en) * 2007-06-08 2012-01-25 株式会社東芝 Chemical decontamination method before reactor demolition
JP5412805B2 (en) 2008-11-19 2014-02-12 栗田工業株式会社 Azole copper anticorrosive water treatment method
JP5422238B2 (en) * 2009-03-23 2014-02-19 株式会社東芝 Construction method and related system for treatment of waste liquid containing rust inhibitor
JP2014052251A (en) * 2012-09-06 2014-03-20 Ihi Corp Water treatment method for pressure suppression chamber pool water
JP6986884B2 (en) * 2017-07-20 2021-12-22 日立Geニュークリア・エナジー株式会社 Iodine removal system and iodine removal method for contaminated water
CN111995037A (en) * 2020-07-15 2020-11-27 华电电力科学研究院有限公司 Circulating water carbon steel corrosion inhibitor collaborative dosing system of thermal power plant

Also Published As

Publication number Publication date
JP2005326361A (en) 2005-11-24

Similar Documents

Publication Publication Date Title
US7622627B2 (en) System and method for chemical decontamination of radioactive material
US6635232B1 (en) Method of chemically decontaminating components of radioactive material handling facility and system for carrying out the same
KR100566725B1 (en) Chemical decontamination method
US11443863B2 (en) Method for decontaminating metal surfaces of a nuclear facility
JP2010266393A (en) Chemical decontamination method
JP4271079B2 (en) Anticorrosive treatment method and treatment apparatus
JP4131814B2 (en) Method and apparatus for chemical decontamination of activated parts
SK282036B6 (en) Method and device for disposing of a solution containing an organic acid, device for performing of this method
JP4083607B2 (en) Radioactive chemical decontamination method and apparatus
JP4861252B2 (en) Chemical decontamination method before reactor demolition
JP2008036591A (en) Method and apparatus for decomposing organic acid in waste liquid
JPH1164590A (en) Solid waste treatment method
JP7212478B2 (en) MEMBRANE FILTRATION SYSTEM AND MEMBRANE FILTRATION METHOD
JP3759930B2 (en) Waste liquid treatment method and apparatus
JP4277736B2 (en) Method for treating water containing organic arsenic compound
TW201837924A (en) Chemical decontamination method
JP2015081891A (en) Method and apparatus for purifying nuclear-power-generation used fuel pool water, and method and apparatus for treating used fuel pool water
CN112655055B (en) Method for conditioning ion exchange resins and apparatus for carrying out the method
JP3656602B2 (en) Treatment method of chemical decontamination waste liquid
CN108780669B (en) Method for treating purified waste water from metal surfaces, waste water treatment plant and use of a waste water treatment plant
JPS6218230B2 (en)
JPH09234471A (en) Treatment of waste liquid containing organic nitrogen compound
JPS61157539A (en) Decomposition treatment of ion exchange resin
JP2019166459A (en) Water treatment device and water treatment method
JP2014124600A (en) Wastewater treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4271079

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5