JPH05209268A - Plasma treating device - Google Patents
Plasma treating deviceInfo
- Publication number
- JPH05209268A JPH05209268A JP4014737A JP1473792A JPH05209268A JP H05209268 A JPH05209268 A JP H05209268A JP 4014737 A JP4014737 A JP 4014737A JP 1473792 A JP1473792 A JP 1473792A JP H05209268 A JPH05209268 A JP H05209268A
- Authority
- JP
- Japan
- Prior art keywords
- plasma
- magnetic field
- processing apparatus
- plasma processing
- cusp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Physical Vapour Deposition (AREA)
- Chemical Vapour Deposition (AREA)
- ing And Chemical Polishing (AREA)
- Drying Of Semiconductors (AREA)
- Plasma Technology (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、プラズマにより薄膜の
形成あるいは加工等を行なう場合に、プラズマの損失を
防止し均一且つ高密度に発生させることにより、被処理
物を高品質でかつ信頼性の高い薄膜の形成あるいは選択
性、精度に優れた薄膜加工等を実現するためのプラズマ
処理装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention, when forming or processing a thin film by plasma, prevents the loss of plasma and generates it uniformly and at high density so that the object to be processed is of high quality and reliability. TECHNICAL FIELD The present invention relates to a plasma processing apparatus for forming a thin film having high efficiency, thin film processing having excellent selectivity and accuracy, and the like.
【0002】[0002]
【従来の技術】従来のプラズマ処理装置としては、、ス
パッタ成膜の装置として特公昭53−19319号公報
に記載されたものがある。この装置によれば、陰極のタ
−ゲット材料面の裏側に磁気装置の一対の陰極を設け、
前記陰極面に沿って前記磁気装置によって生じる弧状の
磁力線を形成する。そして、陰極に電力を印加して発生
させたプラズマの荷電粒子を前記磁力線によりサイクロ
トロン運動させ拘束することにより、平行平板形のスパ
ッタリング装置に比較して高密度のプラズマを生ぜし
め、高い成膜速度が得られる。2. Description of the Related Art As a conventional plasma processing apparatus, there is one described in Japanese Patent Publication No. 53-19319 as a sputtering film forming apparatus. According to this device, a pair of cathodes of the magnetic device is provided on the back side of the target material surface of the cathode,
Arc-shaped magnetic field lines generated by the magnetic device are formed along the cathode surface. Then, the charged particles of plasma generated by applying electric power to the cathode are subjected to cyclotron motion by the magnetic lines of force and restrained, so that high density plasma is generated as compared with a parallel plate type sputtering apparatus, and a high film formation rate. Is obtained.
【0003】また、CVD(Chemical Vapor Deposit
ion),エッチングの装置では、特開昭62−43335
号公報に記載のようにプラズマの発生にECR(Elect
ronCycltron Resonance)状態でのマイクロ波を使用
するものがある。ECRとは、マイクロ波の周波数と磁
場中を電子が回る回転周波数を一致した状態であり、
2.45GHzのマイクロ波の場合マイクロ波と平行に
875Gaussの磁場を印加する。該条件を満足するとマ
イクロ波はプラズマ密度に係らずプラズマ中を進むこと
ができる。従って、プラズマを高密度とすることができ
低圧力で高速の処理が可能となる。Further, CVD (Chemical Vapor Deposit)
Ion) and etching apparatus are disclosed in JP-A-62-43335.
As described in Japanese Patent Publication No.
Some use microwaves in the ron Cycltron Resonance state. ECR is a state in which the frequency of microwaves matches the rotation frequency of electrons rotating in a magnetic field,
In the case of 2.45 GHz microwave, a magnetic field of 875 Gauss is applied in parallel with the microwave. When the condition is satisfied, the microwave can travel in the plasma regardless of the plasma density. Therefore, the plasma can be made to have a high density, and high-speed processing can be performed at a low pressure.
【0004】[0004]
【発明が解決しようとする課題】マグネトロン方式の場
合プラズマを陰極面上に発生させた弧状の磁力線に閉じ
込めるため、弧状の磁力線に閉じ込められた該領域のプ
ラズマ密度のみが他の電極上の領域に比べ高くなるとい
う不均一な分布となり、さらに本処理方法の場合、基板
側にも電力を印加することでイオンを引込み基板上に堆
積した膜の膜質向上や膜被覆性の向上をするバイアスス
パッタ法を行う場合、発生するプラズマが不均一なため
基板に引き込むイオンの分布も不均一となり基板上で均
質な膜質あるいは均一な表面形状が得られないという問
題があった。In the case of the magnetron system, since the plasma is confined in the arc-shaped magnetic field lines generated on the cathode surface, only the plasma density of the region confined in the arc-shaped magnetic field lines is in the region on the other electrode. In comparison with this processing method, the bias sputtering method improves the film quality and film coverage of the film deposited on the substrate by drawing in ions by applying power to the substrate side as well. However, since the generated plasma is non-uniform, the distribution of ions attracted to the substrate is also non-uniform, and there is a problem that a uniform film quality or a uniform surface shape cannot be obtained on the substrate.
【0005】従って、プラズマを均一に閉じ込めるに
は、(電極上ではなく)空間上にプラズマを発生させ閉じ
込める手段が必要となる。ECR法では、無電極放電で
空間上に発生したプラズマを磁場に沿って輸送して基板
表面にまで運ぶか、あるいは空間上に閉じ込めている。
該空間上のプラズマ閉じ込め手段としては、例えば「核
融合のためのプラズマ物理」宮本健郎著:岩波書店(1
987年)p508に記載のようにカスプ型とミラ−型
の2種に大別される。同軸上に並べた2組のコイルに反
対方向に電流を流すことによって得られる磁場がカスプ
型であり磁力線がプラズマに対して凸形状となり、同方
向に電流を流すことでミラ−磁場が得られその磁力線は
プラズマに対して凹形状になる。しかし、ミラ−磁場の
場合プラズマの形状が円筒上であり、かつ例えば「プラ
ズマ工学」中野義映著:コロナ社(1978年)p26
0に記載のようにプラズマ不安定性が存在するため、今
後さらに進む処理ウエハの大口径化を考慮するとプラズ
マ処理装置への適用は難しい。一方、カスプ磁場の場合
磁力線が円周方向に広がっていく磁場形状でありかつプ
ラズマ安定性の面でも優れており、大面積のプラズマ閉
じ込めにはカスプ磁場を基本にした磁場形状が望まし
い。しかし、カスプ磁場の場合円周方向に線カスプと呼
ばれるプラズマ損失部が存在し、プラズマの拡散による
流失の問題がある。該流失量が大きいと電極上のプラズ
マは均一になってもプラズマ密度が高くならず、さらに
前記したように流失したプラズマが電極と該電極周囲の
壁面との絶縁性を低下させ異常放電が発生したり、ある
いは壁面にイオンが衝突することで電極または壁面材料
からの塵埃の発生の原因となる。また、ECR法はプラ
ズマ発生部で1kGauss 近い磁束密度が必要なため被処
理基板の大口径化が進むのに対して電磁石が大きくなり
装置寸法が大きくなり、且つその取扱いも困難になりつ
つある。更に、磁力線の方向が基板上の半径方向で異な
るためプラズマの密度が均一であっても基板−プラズマ
間の垂直、水平方向のインピ−ダンスの違いによって入
射イオンの量、エネルギ−や方向性に不均一が生じる。
この解決手段としては特開平1−42130のようにマ
イクロ波を空洞共振器に通した後真空中でプラズマを無
磁場で発生させる。但し、プラズマの周辺には多重極カ
スプ磁場を構成しプラズマの周方向への拡散を防止して
いる。しかし、多重極カスプ磁場も上記したようにプラ
ズマ損失部を有することからプラズマ密度の低下、漏洩
プラズマが電極構成部材と衝突することによるコンタミ
の発生等の発生の問題がある。本発明の目的は、被処理
物である基板表面上に強磁場を有することなくプラズマ
を効率よく均一に閉じ込めることにより、塵埃等を発生
させることなく、精度、信頼性が高い処理が行えるプラ
ズマ処理装置を提供することにある。Therefore, in order to uniformly confine the plasma, a means for generating and confining the plasma in the space (not on the electrode) is required. In the ECR method, plasma generated in a space by electrodeless discharge is transported along a magnetic field to the substrate surface or is confined in the space.
As a plasma confinement means in the space, for example, “Plasma physics for nuclear fusion” written by Kenro Miyamoto: Iwanami Shoten (1
(987) p508 and cusp type and mirror type. The magnetic field obtained by passing currents in opposite directions through two sets of coils arranged coaxially is a cusp type, and the lines of magnetic force are convex with respect to the plasma. By passing currents in the same direction, a mirror magnetic field is obtained. The lines of magnetic force are concave with respect to the plasma. However, in the case of a mirror magnetic field, the shape of plasma is cylindrical, and for example, "Plasma Engineering" by Yoshino Nakano: Corona Publishing Co., Ltd. (1978) p26.
Since the plasma instability exists as described in 0, it is difficult to apply it to the plasma processing apparatus in consideration of the further increase in the diameter of the processed wafer in the future. On the other hand, in the case of a cusp magnetic field, the magnetic field lines have a magnetic field shape that spreads in the circumferential direction and are also excellent in terms of plasma stability, and a magnetic field shape based on the cusp magnetic field is desirable for confining a large area plasma. However, in the case of a cusp magnetic field, there is a plasma loss portion called a line cusp in the circumferential direction, and there is a problem of drainage due to plasma diffusion. When the flow-off amount is large, the plasma density does not increase even if the plasma on the electrode becomes uniform, and as described above, the flow-off plasma lowers the insulating property between the electrode and the wall surface around the electrode to cause abnormal discharge. Or the collision of ions with the wall surface causes the generation of dust from the electrode or wall material. Further, the ECR method requires a magnetic flux density close to 1 kGauss in the plasma generating part, and thus the diameter of the substrate to be processed is increased, but the electromagnet is large, the size of the device is large, and its handling is becoming difficult. Furthermore, since the direction of magnetic force lines differs in the radial direction on the substrate, even if the plasma density is uniform, the amount of incident ions, energy, and directionality can be changed by the difference in the impedance in the vertical and horizontal directions between the substrate and plasma. Non-uniformity occurs.
As a means for solving this, as in JP-A-1-42130, after passing a microwave through a cavity resonator, plasma is generated in a vacuum without a magnetic field. However, a multipole cusp magnetic field is formed around the plasma to prevent the plasma from diffusing in the circumferential direction. However, since the multipole cusp magnetic field also has the plasma loss portion as described above, there are problems that the plasma density is lowered, and that leakage plasma collides with the electrode constituent members to cause contamination. An object of the present invention is to perform plasma processing that can perform highly accurate and reliable processing without generating dust and the like by efficiently and uniformly confining plasma without having a strong magnetic field on the surface of a substrate to be processed. To provide a device.
【0006】[0006]
【課題を解決するための手段】上記本発明の目的を達成
するために、本発明のプラズマ処理方法においては、被
処理基板の周辺に効率のよいプラズマの閉じ込めの電磁
界を形成することにある。これを実現するために、本発
明のプラズマ処理装置では、多重極のカスプ磁界に補助
磁界を形成することにより、プラズマ損失部の磁場強度
を増加させプラズマ損失を防止する。In order to achieve the above object of the present invention, in the plasma processing method of the present invention, an efficient electromagnetic field for confining plasma is formed around the substrate to be processed. .. In order to realize this, in the plasma processing apparatus of the present invention, an auxiliary magnetic field is formed in the cusp magnetic field of the multipole to increase the magnetic field strength of the plasma loss portion and prevent plasma loss.
【0007】[0007]
【作用】高周波、あるいはマイクロ波電力によって発生
させたプラズマを被処理基板上で均一化し、且つ均一処
理を実行するには被処理基板周囲にのみプラズマ閉じ込
め手段を有することが必要である。In order to make the plasma generated by the high frequency or microwave power uniform on the substrate to be processed and to carry out the uniform processing, it is necessary to have the plasma confining means only around the substrate to be processed.
【0008】プラズマは正の電荷をもつ粒子(イオン)
と負の電荷をもつ粒子(電子)から成り立っている。従
って、プラズマの拡散は、まず質量の小さい電子の移動
度が大きいため電子が拡散すると正負の電荷のバランス
が崩れ電界が発生し、これによってイオンが移動するパ
タ−ンの繰返しで一般に両極性拡散といわれている。従
って、プラズマの損失を防止するにはイオンあるいは電
子の流失方向への動きを止めれば良いことがわかる。し
かし、より閉じ込め性を向上させるには移動度の大きい
電子の拡散を防止する必要が有る。Plasma is a particle (ion) having a positive charge
And negatively charged particles (electrons). Therefore, in plasma diffusion, since the mobility of electrons with a small mass is large, the balance of positive and negative charges is lost when the electrons diffuse, and an electric field is generated, which generally causes ambipolar diffusion by repeating the pattern of ion movement. It is said that. Therefore, it can be understood that the movement of the ions or electrons in the flow-out direction should be stopped to prevent the plasma loss. However, in order to further improve the confinement property, it is necessary to prevent the diffusion of electrons having high mobility.
【0009】上記のような拡散の防止のために損失方向
の速度成分を減じる一般的方法として磁場を利用する方
法がある。磁場と平行方向にたいしては荷電流子の運動
はなんら拘束を生じないが、垂直方向の運動は拘束され
る。従って、半径方向に向かうほど磁場強度が強くなる
同心円状の磁場分布が望ましい。As a general method for reducing the velocity component in the loss direction to prevent the above diffusion, there is a method using a magnetic field. The motion of the load current element does not cause any restriction in the direction parallel to the magnetic field, but the motion in the vertical direction is restricted. Therefore, a concentric magnetic field distribution in which the magnetic field strength increases in the radial direction is desirable.
【0010】しかし、同心円状の磁場分布の形成には同
心円の中心を円の垂線方向に電流を流す必要が有り、該
部分には被処理基板が位置するため実現は不可能であ
る。同心円状の磁場分布に類似し且つ簡単な磁場構成で
実現できる磁場に多重極カスプ磁場がある。同心円状に
複数個の磁石を磁極を半径方向に交互に配置する。これ
によりプラズマに対して複数個の凹形状の磁場が形成で
き、磁力線の周方向成分がプラズマの半径方向への拡散
を防止する。但し、磁力線が上記磁石に出入りする箇所
では磁力線が半径方向に開いているためプラズマの該箇
所を通じての損失が生じる(図2参照)。このプラズマ損
失を小さくするには、周方向において磁力線の半径方向
成分をできるだけ小さくする必要がある。しかし、磁力
線の分布は該磁力線を発生させる磁石の配置および形状
によって一義的に決まってしまう。さらに、被処理基板
が大きくなるとプラズマ閉じ込め領域を大きくするため
上記多重極カスプ磁場を形成する磁石の半径方向の距離
が大きくなり、隣合う磁石のなす角は2πに近づき、そ
の結果磁力線はゆるやかな弧城を描くようになり、プラ
ズマの損失部がますます大きくなってしまう。該損失部
を小さくするため前記磁石の近傍に補助磁界発生機構を
設け磁石から垂直に延びる磁力線が急激に周方向に向き
を変えるようにする。(図1参照) また、プラズマ発生箇所の周囲に同心円状に近い磁場を
構成する手段としてコイル状に巻いた複数個の電磁石を
周状に配置する方法がある(図4参照)。電磁石の側面
では周状の磁石が発生すると共に磁石の間隙部分ではカ
スプ磁場となりプラズマの周方向への拡散を防止する。However, in order to form a concentric magnetic field distribution, it is necessary to pass a current through the center of the concentric circle in the direction perpendicular to the circle, and this is impossible because the substrate to be processed is located in that portion. There is a multipole cusp magnetic field that is similar to the concentric magnetic field distribution and can be realized with a simple magnetic field configuration. A plurality of magnets are arranged concentrically and the magnetic poles are alternately arranged in the radial direction. Thereby, a plurality of concave magnetic fields can be formed with respect to the plasma, and the circumferential component of the magnetic force lines prevents the plasma from diffusing in the radial direction. However, since the lines of magnetic force open in the radial direction at the place where the lines of magnetic force enter and leave the magnet, plasma loss occurs through the place (see FIG. 2). In order to reduce this plasma loss, it is necessary to reduce the radial component of the magnetic force lines in the circumferential direction as much as possible. However, the distribution of magnetic force lines is uniquely determined by the arrangement and shape of the magnets that generate the magnetic force lines. Further, as the size of the substrate to be processed becomes larger, the plasma confinement region becomes larger, so that the distance between the magnets forming the multipole cusp magnetic field increases in the radial direction, and the angle formed by the adjacent magnets approaches 2π. The arc castle begins to be drawn, and the loss part of the plasma becomes larger. In order to reduce the loss portion, an auxiliary magnetic field generating mechanism is provided in the vicinity of the magnet so that magnetic force lines extending vertically from the magnet suddenly change their directions in the circumferential direction. (See FIG. 1) Further, there is a method of circumferentially arranging a plurality of electromagnets wound in a coil shape as a means for forming a magnetic field close to a concentric circle around the plasma generation site (see FIG. 4). A circumferential magnet is generated on the side surface of the electromagnet, and a cusp magnetic field is generated in the gap between the magnets to prevent plasma from diffusing in the circumferential direction.
【0011】[0011]
【実施例】以下、本発明の1実施例を上げ、図面にもと
ずいて更に詳細に説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below in more detail with reference to the drawings.
【0012】図1は、本発明のプラズマ処理装置を実施
するために、プラズマ発生部の周囲に設ける補助磁界を
有する多重極カスプ磁場の横断面図である。中央に位置
するプラズマ1を囲むように複数個の磁石2を周上に磁
極を反転させて配置する。該磁石の内側両端の近傍には
導線3が紙面に垂直に配置されている。図2は通常の多
重極カスプ磁場を構成した際の磁力線4の形状を示した
ものであるが、該磁力線4はプラズマ1にたいしてゆる
やかな凸形状を示しており、各磁石の中央付近に位置す
るプラズマ損失部の磁場強度は強くならず、プラズマ損
失も大きい。これに対して図1の場合のように補助磁界
用の導線3にカスプ磁場を形成する磁石と同方向の磁力
線が発生する向きに電流を流すと、磁力線4は図中に示
すように矩形に近い形状になりプラズマ損失部近傍にお
ける磁場強度が増加しプラズマ1の損失が防止できる。FIG. 1 is a cross-sectional view of a multipole cusp magnetic field having an auxiliary magnetic field provided around the plasma generating part for implementing the plasma processing apparatus of the present invention. A plurality of magnets 2 are arranged on the circumference with the magnetic poles reversed so as to surround the plasma 1 located at the center. Conductors 3 are arranged perpendicular to the plane of the drawing in the vicinity of both ends inside the magnet. FIG. 2 shows the shape of the magnetic force lines 4 when a normal multipole cusp magnetic field is formed. The magnetic force lines 4 show a gentle convex shape with respect to the plasma 1 and are located near the center of each magnet. The magnetic field strength of the plasma loss portion is not strong and the plasma loss is large. On the other hand, as in the case of FIG. 1, when an electric current is applied to the conductor 3 for the auxiliary magnetic field in a direction in which magnetic lines of force in the same direction as the magnet forming the cusp magnetic field are generated, the magnetic lines of force 4 become rectangular as shown in the figure. The shape is close, and the magnetic field strength in the vicinity of the plasma loss portion increases, so that the loss of the plasma 1 can be prevented.
【0013】図3は、本発明のプラズマ処理装置全体の
縦断面図である。本実施例におけるプラズマ処理装置
は、図3に示すごとく被処理物であるウエハ5を載置す
る電源6と接続され処理室7と絶縁物8により絶縁され
た基板電極9と該電極9に対向するプラズマ発生電極1
0(平行平板型の場合は高周波又は直流電源を接続した
表面処理した金属性の円板、ECR型の場合マイクロ波
によるプラズマ発生源をさす。図3では、平行平板型の
場合を示している。)が電源11と接続され、絶縁物1
2により処理室7と絶縁されて設置している。該電極
9,10を包むような形でプラズマ閉じ込め用の多重極
カスプ磁場を形成する複数個の磁石2が配置されてい
る。さらに、該磁石2とプラズマ1の間には補助磁界を
発生させるためのコイル(図中では省略)及び遮蔽板13
が設置されている。電極9にウエハ5を載置した後、真
空装置14により処理室7全体を真空引きし反応ガスを
処理室7内に導入する。ここで、プラズマ発生電極10
によってウエハ5上にプラズマ1を発生させる。該プラ
ズマ1は多重極カスプ磁場によって周方向の拡散が防止
できるため、プラズマ密度は高くなり且つ均一に近くな
る。しかし、単に極性の異なる磁石2を周上に交互に並
べただけではカスプ損失部部分(特に、磁石から出た磁
力線4が隣合う左右の磁石2に別れる箇所)でのプラズ
マ損失が大きくなってしまう。そこで、補助磁界によっ
て磁力線4の周方向成分を有する領域を伸ばし、カスプ
損失部の磁場強度を強めプラズマの損失を低減させる。
流失したプラズマは処理室7壁面との間に発生したバイ
アス電圧によりプラズマ中のイオンが壁面に衝突し、処
理室壁面に付着しているH2O 等の気相中成分の吸着物
や流失するプラズマとともに運ばれてきた反応ガスのラ
ジカルによる生成物等が前記イオンによりスパッタされ
て気相中に混入し、ウエハ5上での望ましくない不均一
な処理の原因になる。FIG. 3 is a vertical sectional view of the entire plasma processing apparatus of the present invention. As shown in FIG. 3, the plasma processing apparatus of this embodiment is connected to a power source 6 for mounting a wafer 5 to be processed and is opposed to a substrate electrode 9 insulated by a processing chamber 7 and an insulator 8 and the electrode 9. Plasma generating electrode 1
0 (in the case of the parallel plate type, it means a surface-treated metal disk connected to a high frequency or DC power source, and in the case of the ECR type, it means a microwave plasma source. In FIG. 3, the case of the parallel plate type is shown. .) Is connected to the power supply 11 and the insulator 1
2 is installed so as to be insulated from the processing chamber 7. A plurality of magnets 2 for forming a multipole cusp magnetic field for plasma confinement are arranged so as to surround the electrodes 9 and 10. Further, a coil (not shown in the figure) for generating an auxiliary magnetic field between the magnet 2 and the plasma 1 and a shield plate 13
Is installed. After the wafer 5 is placed on the electrode 9, the entire processing chamber 7 is evacuated by the vacuum device 14 to introduce the reaction gas into the processing chamber 7. Here, the plasma generating electrode 10
Plasma 1 is generated on the wafer 5 by. Since the plasma 1 can be prevented from being diffused in the circumferential direction by the multipole cusp magnetic field, the plasma density becomes high and becomes almost uniform. However, simply arranging the magnets 2 having different polarities alternately on the circumference causes a large plasma loss in the cusp loss portion (particularly where the magnetic field lines 4 emitted from the magnets are separated into the left and right magnets 2 adjacent to each other). I will end up. Therefore, the region having the circumferential direction component of the magnetic force lines 4 is extended by the auxiliary magnetic field to increase the magnetic field strength of the cusp loss portion and reduce the plasma loss.
Ions in the plasma collide with the wall surface of the processing chamber 7 due to the bias voltage generated between the plasma and the wall surface of the processing chamber 7, and the adsorbed substances or gas components in the gas phase such as H 2 O adhering to the wall surface of the processing chamber are discharged. Products of radicals of the reaction gas carried along with the plasma are sputtered by the ions and are mixed in the gas phase, which causes undesired non-uniform processing on the wafer 5.
【0014】図4は、本発明の第2の1実施例を示して
いる。第1の1実施例と同様の構成でウエハ上の周囲に
磁石の代わりに複数個の磁場発生装置15が直流電源1
6に接続し配置する。該磁場発生装置15は一定の周上
を中心にした複数個のコイル状の導線からなり隣合うコ
イルには逆方向の電流を電源より流すことでコイルの側
面では周方向に平行な磁力線が得られ、またコイルの隣
合う部分では磁力線は反発しカスプ状の磁場を形成す
る。本方法によればプラズマ損失部の数を減らすことが
できる。また図4ではコイルの数は4個であるが、任意
の偶数個を設置することが可能なこと付記しておく。FIG. 4 shows a second embodiment of the present invention. With the same configuration as the first embodiment, a plurality of magnetic field generators 15 instead of magnets are provided around the periphery of the wafer on the DC power supply 1.
Connect to 6 and place. The magnetic field generator 15 is composed of a plurality of coil-shaped conductors centered around a certain circumference, and a current in the opposite direction is applied to adjacent coils from a power source to obtain magnetic lines of force parallel to the circumference on the side surfaces of the coils. The lines of magnetic force repel each other in adjacent portions of the coil to form a cusp-like magnetic field. According to this method, the number of plasma loss parts can be reduced. Although the number of coils is four in FIG. 4, it should be noted that an arbitrary even number can be installed.
【0015】また、図4の場合、コイルに流す電流を反
転させる機構を電源16設置させる場合も有る。壁面と
プラズマが接するときその界面には電界が生じ、この時
磁界が存在するとフレミングの法則に従ってプラズマは
力を受け電界及び磁界に垂直方向に移動する。本発明の
場合、コイルの内側の遮蔽板には半径方向に電界、ウエ
ハに平行な面上には磁界が生じるため、プラズマにはウ
エハに垂直方向に力が働く。該力は隣合うコイルによっ
て発生する磁力線の向きが異なるためプラズマに働く力
は基板電極、プラズマ発生電極側と交互に成り周辺部の
プラズマの均一性に影響する。特に、プラズマの密度に
敏感に影響するプロセスではCVD等のプラズマ処理で
不均一が生じる場合も考えられる。この時、一定時間ご
とにコイルに流す電流の方向を変えることによってプラ
ズマの周辺に生じる力は基板電極、プラズマ発生電極側
と交互に変わり、平均的にプラズマ密度が一定になりウ
エハの均一処理が可能となる。Further, in the case of FIG. 4, there is also a case where a mechanism for inverting the current flowing through the coil is installed in the power source 16. When the wall surface and plasma come into contact with each other, an electric field is generated at the interface, and when a magnetic field is present at this time, the plasma receives a force according to Fleming's law and moves in a direction perpendicular to the electric field and the magnetic field. In the case of the present invention, an electric field is generated in the radial direction on the shield plate inside the coil, and a magnetic field is generated on a plane parallel to the wafer, so that a force acts on the plasma in a direction perpendicular to the wafer. Since the force has different directions of magnetic force lines generated by the adjacent coils, the force acting on the plasma alternates between the substrate electrode and the plasma generating electrode side and affects the uniformity of plasma in the peripheral portion. In particular, in a process that sensitively affects the density of plasma, nonuniformity may occur in plasma processing such as CVD. At this time, by changing the direction of the current flowing through the coil at regular intervals, the force generated around the plasma alternates between the substrate electrode and the plasma generating electrode side, and the plasma density becomes constant on average, and uniform processing of the wafer is performed. It will be possible.
【0016】[0016]
【発明の効果】以上説明したように、本発明のプラズマ
処理装置を用いてプラズマ処理実施すると、プラズマ処
理中に発生させたプラズマが所定の閉じ込め空間(例え
ば、被処理物であるウエハ表面上)以外に流失してしま
い、プラズマ発生部以外での異常放電の発生、あるいは
壁面でのプラズマからのイオンの衝突等による電極、さ
らに処理室構成部材や該構成部材に含まれる水分等の吸
着物が、スパッタあるいは解離されて処理室の雰囲気中
に混入されることが防止できる。この結果、ウエハ表面
はプラズマ処理中に汚染や異物が付着することがなく、
所定の処理をウエハ面内で均一に、かつ信頼性良く実施
できるため、高精度、高品質の処理が可能となると共
に、歩留まり向上が可能となる。As described above, when plasma processing is performed using the plasma processing apparatus of the present invention, the plasma generated during the plasma processing has a predetermined confined space (for example, on the surface of the wafer that is the object to be processed). In addition to the above, the electrodes are discharged due to the occurrence of abnormal discharge other than in the plasma generation part, or the collision of ions from the plasma on the wall surface, and the adsorbed substances such as the processing chamber constituent members and moisture contained in the constituent members. It is possible to prevent the particles from being sputtered or dissociated and being mixed into the atmosphere of the processing chamber. As a result, the wafer surface is free of contamination and foreign matter during plasma processing,
Since the predetermined processing can be performed uniformly on the wafer surface with high reliability, high-accuracy and high-quality processing can be performed and the yield can be improved.
【図1】本発明の第1の実施例の補助磁界を有する多重
極カスプ磁場横断面図である。FIG. 1 is a cross-sectional view of a multipole cusp magnetic field having an auxiliary magnetic field according to the first embodiment of the present invention.
【図2】通常の多重極カスプ磁場横断面図である。FIG. 2 is a cross-sectional view of a normal multipole cusp magnetic field.
【図3】本発明の第1の実施例を使用したプラズマ処理
装置の縦断面図である。FIG. 3 is a vertical sectional view of a plasma processing apparatus using the first embodiment of the present invention.
【図4】本発明の第2の実施例の多重極カスプ磁場横断
面図である。FIG. 4 is a transverse sectional view of a multipole cusp magnetic field according to a second embodiment of the present invention.
1……プラズマ、2……磁石、3……導線、4……磁力
線、5……ウエハ、6……電源、7……反応室、8……
絶縁物、9……基板電極、10……プラズマ発生電極、
11……電源、12……絶縁物、13……遮蔽板、14
……真空装置、15……磁場発生装置1 ... Plasma, 2 ... Magnet, 3 ... Conductor wire, 4 ... Magnetic field line, 5 ... Wafer, 6 ... Power supply, 7 ... Reaction chamber, 8 ...
Insulator, 9 ... Substrate electrode, 10 ... Plasma generating electrode,
11 ... Power source, 12 ... Insulator, 13 ... Shielding plate, 14
...... Vacuum device, 15 ... Magnetic field generator
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C30B 25/18 9040−4G H05H 1/16 9014−2G // H01L 21/31 C 8518−4M ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location C30B 25/18 9040-4G H05H 1/16 9014-2G // H01L 21/31 C 8518-4M
Claims (4)
1種類以上の反応ガスを、(多重極)カスプ磁場によって
閉じ込めた状態で、該反応ガスを被処理物状に輸送する
ことによって、被処理物上での薄膜の形成、あるいは薄
膜の加工、又は該反応ガスから電力が印加された電極に
イオンを引き込むことによってスパッタ成膜等を行うプ
ラズマ処理装置において、上記カスプ磁場のプラズマ損
失部である磁力線が前記プラズマ処理装置の半径方向に
向かう部分の近傍に該カスプ磁界と異なる磁場発生手段
が具備されて成る構成を特徴とするプラズマ処理装置。1. On the object to be treated, the reaction gas is transported to the object to be treated in a state where at least one kind of the reaction gas turned into plasma by excitation is confined by a (multipole) cusp magnetic field. In the plasma processing apparatus for forming a thin film in, or processing the thin film, or performing sputtering film formation by drawing ions into the electrode to which electric power is applied from the reaction gas, the magnetic force line that is the plasma loss part of the cusp magnetic field is A plasma processing apparatus, characterized in that a magnetic field generating means different from the cusp magnetic field is provided in the vicinity of a portion of the plasma processing apparatus in the radial direction.
数個の永久磁石をプラズマとほぼ同心円上に配置し、該
永久磁石の磁極は周方向に交互に配列することによって
形成したカスプ磁場のプラズマ損失部近傍の磁場形状を
周方向の磁場成分が増加するように該カスプ磁界を補正
する磁場発生手段が具備されて成る構成を特徴とするプ
ラズマ処理装置。2. The plasma processing apparatus according to claim 1, wherein an even number of permanent magnets are arranged substantially concentrically with the plasma, and the magnetic poles of the permanent magnets are alternately arranged in the circumferential direction to form a cusp magnetic field plasma. A plasma processing apparatus comprising a magnetic field generating means for correcting the cusp magnetic field so that the magnetic field shape in the vicinity of the loss portion increases in the circumferential magnetic field component.
カスプ磁界を補正する磁場発生手段が電磁石であり、カ
スプ磁場を構成する磁石両端の内側に該磁石からの磁力
線の向きと同方向の磁力線が発生する方向に電流を流す
ことを特徴とするプラズマ処理装置。3. The plasma processing apparatus according to claim 1, wherein the magnetic field generating means for correcting the cusp magnetic field is an electromagnet, and magnetic field lines in the same direction as the magnetic field lines from the magnet are formed inside both ends of the magnet forming the cusp magnetic field. A plasma processing apparatus characterized in that an electric current is caused to flow in the direction in which the electric field is generated.
スプ磁場の発生手段がコイル状に巻いた電導線複数個を
プラズマとほぼ同心円上に均等に配置した電磁石であ
り、隣合うコイル間には逆方向電流を流したことを特徴
とするプラズマ処理装置。4. A plasma processing apparatus according to claim 1, wherein the cusp magnetic field generating means is an electromagnet in which a plurality of conductive wires wound in a coil shape are evenly arranged substantially concentrically with the plasma, and between adjacent coils. A plasma processing apparatus, wherein a reverse current is applied.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4014737A JPH05209268A (en) | 1992-01-30 | 1992-01-30 | Plasma treating device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4014737A JPH05209268A (en) | 1992-01-30 | 1992-01-30 | Plasma treating device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05209268A true JPH05209268A (en) | 1993-08-20 |
Family
ID=11869438
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4014737A Pending JPH05209268A (en) | 1992-01-30 | 1992-01-30 | Plasma treating device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05209268A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100275831B1 (en) * | 1995-05-30 | 2001-01-15 | 니시히라 쥰지 | Removal method of the inner surface of the vacuum container in the vacuum processing system and its vacuum processing system |
JP2014025117A (en) * | 2012-07-27 | 2014-02-06 | Yuutekku:Kk | Plasma cvd apparatus and method of manufacturing magnetic recording medium |
-
1992
- 1992-01-30 JP JP4014737A patent/JPH05209268A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100275831B1 (en) * | 1995-05-30 | 2001-01-15 | 니시히라 쥰지 | Removal method of the inner surface of the vacuum container in the vacuum processing system and its vacuum processing system |
JP2014025117A (en) * | 2012-07-27 | 2014-02-06 | Yuutekku:Kk | Plasma cvd apparatus and method of manufacturing magnetic recording medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100646266B1 (en) | A plasma processing system for sputter deposition applications | |
KR940008368B1 (en) | Plasma treating apparatus using plasma generated by microwave | |
EP0148504B2 (en) | Method and apparatus for sputtering | |
US4960073A (en) | Microwave plasma treatment apparatus | |
JP3438696B2 (en) | Plasma processing method and apparatus | |
KR100659828B1 (en) | Method and apparatus for ionized physical vapor deposition | |
KR0127663B1 (en) | Apparatus & method for generating plasma of uniform flux density | |
EP0115119A2 (en) | Shaped field magnetron electrode | |
US6439154B2 (en) | Plasma processing apparatus for semiconductors | |
US20040084151A1 (en) | Magnetron plasma etching apparatus | |
EP0978138A1 (en) | Method and apparatus for ionized sputtering of materials | |
US6333601B1 (en) | Planar gas introducing unit of a CCP reactor | |
KR910005733B1 (en) | Plasma treating method and apparatus | |
EP0789506A1 (en) | Apparatus for generating and utilizing magnetically neutral line discharge type plasma | |
JP4408987B2 (en) | Plasma processing equipment for sputter processing | |
JPH05209268A (en) | Plasma treating device | |
JPH04180557A (en) | Plasma treating device | |
JP3225283B2 (en) | Surface treatment equipment | |
JP3088504B2 (en) | Microwave discharge reactor | |
JP4384295B2 (en) | Plasma processing equipment | |
JP3108556B2 (en) | Plasma processing equipment | |
JP2001220671A (en) | Plasma treating system for application to sputter film deposition | |
JPH02156526A (en) | Microwave plasma treating system | |
JPH0578849A (en) | High magnetic field microwave plasma treating device | |
JPH03158471A (en) | Microwave plasma treating device |