JPH0520891B2 - - Google Patents

Info

Publication number
JPH0520891B2
JPH0520891B2 JP59080127A JP8012784A JPH0520891B2 JP H0520891 B2 JPH0520891 B2 JP H0520891B2 JP 59080127 A JP59080127 A JP 59080127A JP 8012784 A JP8012784 A JP 8012784A JP H0520891 B2 JPH0520891 B2 JP H0520891B2
Authority
JP
Japan
Prior art keywords
ray
chamber
plasma
discharge space
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59080127A
Other languages
Japanese (ja)
Other versions
JPS60225426A (en
Inventor
Yasuo Kato
Yoshio Watanabe
Seiichi Murayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59080127A priority Critical patent/JPS60225426A/en
Publication of JPS60225426A publication Critical patent/JPS60225426A/en
Publication of JPH0520891B2 publication Critical patent/JPH0520891B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70033Production of exposure light, i.e. light sources by plasma extreme ultraviolet [EUV] sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • G03F7/70841Constructional issues related to vacuum environment, e.g. load-lock chamber

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はプラズマX線露光装置に係り、特に、
放電によつて軟X線を発生するプラズマX線源を
用いた、サブミクロンのパターンを転写するのに
好適なプラズマX線露光装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a plasma X-ray exposure apparatus, and in particular,
The present invention relates to a plasma X-ray exposure apparatus suitable for transferring submicron patterns using a plasma X-ray source that generates soft X-rays by discharge.

〔発明の背景〕[Background of the invention]

プラズマX線源には種々の方式が存在するが、
プラズマフオーカスとかガスパフ型スパークのよ
うな大気圧より低い圧力の気体の放電を利用する
方式が、X線発生効率が高く、電極の寿命が長い
ので、X線露光装置に適していると考えられる。
There are various types of plasma X-ray sources, but
Methods that utilize gas discharge at a pressure lower than atmospheric pressure, such as plasma focus or gas puff type sparks, are considered suitable for X-ray exposure equipment because they have high X-ray generation efficiency and long electrode life. .

通常このような露光装置では、ベリリウムなど
のX線透過率が高い材料を用いたX線透過窓を放
電管に設け、この窓を通してX線を、大気中また
はヘリウムで空気を置換した露光室に導入して露
光を行なつている。
Typically, in such exposure equipment, an X-ray transparent window made of a material with high X-ray transmittance, such as beryllium, is installed in the discharge tube, and the X-rays are transmitted through this window into the atmosphere or into an exposure chamber where the air has been replaced with helium. It is installed and exposed.

しかし、波長が0.5nm以上の軟X線では、吸収
係数が著しく高いために、X線透過窓の吸収によ
つて、利用できるX線の照度が大幅に低下すると
いう問題がある。また、X線透過窓には、放電に
よつて電子やイオン、電極からの蒸発物や飛散物
などが衝突し、X線透過窓が損傷あるいは汚染さ
れ、透過率が低下したり不均一になつて、X線照
度が低下し、あるいはムラが生じる。このため
に、X線透過窓を頻繁に交換することが必要にな
るが、この場合、前記の通常の露光装置では、X
線透過窓には大気圧に近い圧力が加わつているこ
とから、X線透過窓を交換するたびごとに、放電
管内を大気圧にすることが必要になるという問題
がある。
However, since soft X-rays with a wavelength of 0.5 nm or more have a significantly high absorption coefficient, there is a problem in that the usable X-ray illuminance is significantly reduced due to absorption by the X-ray transmission window. In addition, electrons, ions, evaporated matter and scattered objects from the electrodes collide with the X-ray transmitting window due to discharge, damaging or contaminating the X-ray transmitting window, resulting in a decrease in transmittance or unevenness. As a result, the X-ray illuminance decreases or becomes uneven. For this reason, it is necessary to frequently replace the X-ray transmission window, but in this case, the above-mentioned normal exposure equipment
Since a pressure close to atmospheric pressure is applied to the X-ray transmission window, there is a problem in that it is necessary to bring the inside of the discharge tube to atmospheric pressure each time the X-ray transmission window is replaced.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、プラズマX線源を用いた露光
装置における上記した諸問題を解消し、ウエハ面
におけるX線の照度が高く、照度のムラがなく、
ウエハの処理速度即ちスループツトが高いプラズ
マX線露光装置を提供することにある。
An object of the present invention is to solve the above-mentioned problems in an exposure apparatus using a plasma X-ray source, to achieve high X-ray illuminance on the wafer surface, and to eliminate uneven illuminance.
An object of the present invention is to provide a plasma X-ray exposure apparatus that has a high wafer processing speed, that is, a high throughput.

〔発明の概要〕[Summary of the invention]

本発明の特徴は、ガスを大気より低い圧力に充
填あるいは注入した放電空間内にプラズマを形成
して軟X線を発生するプラズマX線源を備え、こ
の軟X線を露光室に導いて試料を露光するプラズ
マX線露光装置において、上記露光室をX線透過
膜を介して上記放電空間と隣接する予備室と試料
が装着される試料室とに分離し、かつ、少なくと
も上記予備室圧力を上記放電空間に等しいかより
低い圧力に排気する構成とするにある。
A feature of the present invention is that it is equipped with a plasma X-ray source that generates soft X-rays by forming plasma in a discharge space filled with or injected with gas at a pressure lower than that of the atmosphere. In a plasma X-ray exposure apparatus for exposing a sample, the exposure chamber is separated into a preliminary chamber adjacent to the discharge space and a sample chamber in which a sample is mounted through an X-ray transmission film, and at least the preliminary chamber pressure is reduced. The discharge space is configured to be evacuated to a pressure equal to or lower than that of the discharge space.

〔発明の実施例〕[Embodiments of the invention]

以下、第1図に示す断面図を用いて本発明の一
実施例を説明する。これは、プラズマフオーカス
方式のプラズマX線源を備えた例である。第1図
において、1はプラズマフオーカスX線源の陽
極、2は陽極1と同軸状に配置された陰極であ
り、両者はガラス3によつて絶縁されている。こ
れらは、チヤンバ4の一方の端面部に装着され、
チヤンバ4の内部には、ネオン、アルゴン、クリ
プトンなどのガスが0.1〜1Torrの圧力に封入さ
れていて放電空間7を形成している。陽極1と陰
極2間には、充電されたコンデンサ5がスイツチ
6を介して接続され、スイツチ6の短絡により、
コンデンサ5に蓄えられた電圧が瞬間的に電極間
に印加されるようになつている。はじめに、ガラ
ス3の沿面で放電が起こり、プラズマが発生す
る。プラズマのイオンと電子は、電界に引かれて
運動すると同時に陽極1、陰極2間の空間に存在
する環状の磁場から力を受けて電極と平行に、両
電極の開放端に向つて運動する。プラズマが電極
の端を過ぎると、磁場の圧力を受けてフオーカス
し、中心の軸上に高温高密度のプラズマのホツト
スポツトが発生して、軟X線を放射する。
Hereinafter, one embodiment of the present invention will be described using the cross-sectional view shown in FIG. This is an example equipped with a plasma X-ray source of plasma focus type. In FIG. 1, 1 is an anode of a plasma focus X-ray source, 2 is a cathode disposed coaxially with the anode 1, and both are insulated by a glass 3. These are attached to one end face of the chamber 4,
Inside the chamber 4, a gas such as neon, argon, krypton, etc. is sealed at a pressure of 0.1 to 1 Torr to form a discharge space 7. A charged capacitor 5 is connected between the anode 1 and the cathode 2 via a switch 6, and when the switch 6 is short-circuited,
The voltage stored in the capacitor 5 is momentarily applied between the electrodes. First, a discharge occurs along the surface of the glass 3, and plasma is generated. The ions and electrons of the plasma are attracted by the electric field and move, and at the same time they receive force from the annular magnetic field that exists in the space between the anode 1 and the cathode 2, and move parallel to the electrodes toward the open ends of both electrodes. When the plasma passes the edge of the electrode, it is focused under the pressure of the magnetic field, and a hot spot of high-temperature, high-density plasma is generated on the central axis, emitting soft X-rays.

X線透過膜8を介して放電空間7と隣接する位
置に設けられる予備室10と、露光しようとする
試料が装着される試料室10′とで露光室を形成
しており、本実施例では予備室10及び試料室1
0′はいずれも真空に近い圧力に排気されている。
試料室10′にある12は露光用のX線マスク、
13はレシストを塗布されたウエハである。本実
施例では、予備室10と試料室10′との間にゲ
ートバルブ11が設けられる。これは、ウエハ1
3の交換を、放電空間7と独立に行なうことを可
能とするためで、露光を行なう場合にはゲートバ
ルブ11を開いてX線を照射し、ウエハ13を交
換する場合には、ゲートバルブ11を閉じて試料
室10′を大気圧に戻して、フランジ14を開い
てウエハ13を交換する。交換が終了したら試料
室10′は排気されて、ゲートバルブ11が開か
れる。
An exposure chamber is formed by a preliminary chamber 10 provided adjacent to the discharge space 7 through an X-ray transparent film 8, and a sample chamber 10' in which a sample to be exposed is mounted. Preliminary room 10 and sample room 1
0' are all evacuated to a pressure close to vacuum.
12 in the sample chamber 10' is an X-ray mask for exposure;
13 is a wafer coated with resist. In this embodiment, a gate valve 11 is provided between the preliminary chamber 10 and the sample chamber 10'. This is wafer 1
This is to enable the exchange of wafers 3 and 3 to be performed independently of the discharge space 7. When performing exposure, the gate valve 11 is opened and X-rays are irradiated, and when the wafer 13 is exchanged, the gate valve 11 is opened. is closed, the sample chamber 10' is returned to atmospheric pressure, the flange 14 is opened, and the wafer 13 is replaced. When the exchange is completed, the sample chamber 10' is evacuated and the gate valve 11 is opened.

15はプラズマ絞り、16は荷電粒子偏向器で
プラズマのX線透過膜8への衝突を阻止するため
に設けてある。それでもX線透過膜8は、損傷を
受けたり、汚れが付着するので交換することが必
要となる。放電空間7に封入されているガスは放
電を繰返すと、不純元素が混入して、発光の効率
が低下するために、適当な周期で排気され、新し
いガスが封入される。本実施例によれば、この排
気の時間に、X線透過膜8が交換さる。即ち、放
電空間7が排気されると、放電空間7と予備室1
0との間に圧力差がなくなるので、X線透過膜8
の押さえ金具9′が緩められ、X線透過膜8の巻
上げ機構9が作動して、新しいX線透過膜に交換
される。交換が終ると押え金具9′が押しつけら
れ、放電空間7は、予備室10とは隔離されて、
ガスが充填される。この時期に合わせてウエハ1
3の交換を行なつて次の露光の準備をすると、無
駄な時間を省くことができる。なお、17,1
8,19はそれぞれ放電空間7、予備室10、試
料室10′に設けた排気及び給気用の配管である。
15 is a plasma aperture, and 16 is a charged particle deflector, which is provided to prevent plasma from colliding with the X-ray transparent film 8. Even so, the X-ray transmissive membrane 8 may be damaged or contaminated and must be replaced. When the gas sealed in the discharge space 7 is repeatedly discharged, impurity elements are mixed in and the efficiency of light emission decreases, so the gas is evacuated at appropriate intervals and new gas is filled. According to this embodiment, the X-ray transmission membrane 8 is replaced during this evacuation time. That is, when the discharge space 7 is evacuated, the discharge space 7 and the preliminary chamber 1 are
Since there is no pressure difference between
The presser metal fitting 9' is loosened, the winding mechanism 9 for the X-ray transparent membrane 8 is operated, and the X-ray transparent membrane 8 is replaced with a new X-ray transparent membrane. When the replacement is completed, the presser metal fitting 9' is pressed, and the discharge space 7 is isolated from the preliminary chamber 10.
Filled with gas. Wafer 1
By performing the exchange described in step 3 and preparing for the next exposure, wasted time can be saved. In addition, 17,1
Reference numerals 8 and 19 are exhaust and air supply pipes provided in the discharge space 7, the preliminary chamber 10, and the sample chamber 10', respectively.

上記実施例では、露光室を形成する予備室10
と試料室10′との間にゲートバルブ11を設け
て、ウエハ13の交換を放電空間7と独立に行な
えるようにしているが、他の実施例として、ゲー
トバルブ11に代つてX線透過窓を設け、試料室
10′を大気圧に保つたまま露光できるようにす
る変形が可能である。この場合に設けるX線透過
窓11は、損傷を受けないので、交換する必要は
ないが、予備室10と試料室10′との間の圧力
差に耐える強度を保つ必要がある。また、大気圧
とすることによつて試料室10′におけるX線の
減衰が問題となるならば、X線透過窓11とウエ
ハ13の距離を近づけるとか、試料室10′内の
空気をヘリウムで置換するなどの措置を採ればよ
い。
In the above embodiment, the preliminary chamber 10 forming the exposure chamber
A gate valve 11 is provided between the gate valve 11 and the sample chamber 10' so that the wafer 13 can be exchanged independently of the discharge space 7. However, in another embodiment, an X-ray transmitting A modification is possible in which a window is provided so that exposure can be performed while maintaining the sample chamber 10' at atmospheric pressure. The X-ray transmission window 11 provided in this case is not damaged and does not need to be replaced, but it is necessary to maintain the strength to withstand the pressure difference between the preliminary chamber 10 and the sample chamber 10'. If the attenuation of X-rays in the sample chamber 10' becomes a problem due to atmospheric pressure, the distance between the X-ray transmission window 11 and the wafer 13 may be reduced, or the air in the sample chamber 10' may be filled with helium. You can take measures such as replacing it.

また、予備室10の圧力は上述実施例では真空
に近い圧力に選ばれるとしたが、予備室10の圧
力を、放電空間7に等しいかこれに近い圧力に選
ぶこともできる。予備室10と放電空間7の圧力
が等しい場合には、X線透過膜8の交換を、放電
空間7の排気時まで待たずに行なうことができる
利点がある。
Further, although the pressure in the preliminary chamber 10 is selected to be close to vacuum in the above-described embodiment, the pressure in the preliminary chamber 10 may be selected to be equal to or close to that of the discharge space 7. When the pressures in the preliminary chamber 10 and the discharge space 7 are equal, there is an advantage that the X-ray transparent membrane 8 can be replaced without waiting until the discharge space 7 is evacuated.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、プラズマ
X線源からX線透過膜で隔離された予備室と、こ
の予備室と開閉機構あるいはX線透過窓を介して
隣接する試料室とで露光室を形成し、少なくとも
予備室圧力を放電空間に等しいかより低い圧力と
する構成としたことにより、露光室におけるX線
の吸収、散乱を減らすことが可能となる。X線透
過膜の厚さは、従来装置では760Torrの圧力差に
耐える必要があつたのに対し、本発明を実施すれ
な約1Torrの圧力差に耐えればよくなり、従来使
われていた数10μm厚のベリリウムを数μm厚の
ポリマに変えることが可能になり、膜におけるX
線の減衰を大幅に低減することができるととも
に、X線透過膜の価格の大幅な低減が可能とな
る。また、本発明によれば、放電空間のガスを排
気する時間に、プラズマによつて損傷を受けたX
線透過膜を交換することが容易になつて、常にム
ラのない強いX線照度を得ることが可能となり、
X線透過膜の交換に要する時間を短縮してウエハ
の処理速度即ちスループツトを上げることができ
る。さらに、本発明において、放電空間と試料室
との間に配置される予備室の圧力を真空に近い圧
力として用いる場合には、放電空間のプラズマの
運動による衝撃波が、X線透過膜を介して、試料
室9X線マスクに伝わることを防止でき、X線マ
スクが応力を受けて変位を起すのを防げるように
なり、精度の点からも顕著な効果を発揮すること
ができる。
As described above, according to the present invention, the preliminary chamber is isolated from the plasma X-ray source by an X-ray transparent film, and the sample chamber adjacent to this preliminary chamber via the opening/closing mechanism or the X-ray transparent window is used for exposure. By forming a chamber and setting at least the preliminary chamber pressure to a pressure equal to or lower than that of the discharge space, absorption and scattering of X-rays in the exposure chamber can be reduced. The thickness of the X-ray transmissive membrane was required to withstand a pressure difference of 760 Torr in the conventional device, but with the present invention, it only has to withstand a pressure difference of about 1 Torr, and the thickness of the X-ray transmitting membrane was reduced to several tens of micrometers, which was conventionally used. It is now possible to change beryllium thick to several micrometers thick polymer, and the X
Attenuation of rays can be significantly reduced, and the price of the X-ray transparent membrane can be significantly reduced. Further, according to the present invention, during the time to exhaust gas in the discharge space, X
It has become easier to replace the radiation transmitting membrane, making it possible to always obtain uniform and strong X-ray illuminance.
By shortening the time required to replace the X-ray transparent membrane, the processing speed of wafers, that is, the throughput can be increased. Furthermore, in the present invention, when the pressure in the preliminary chamber disposed between the discharge space and the sample chamber is used as a pressure close to vacuum, shock waves due to the movement of plasma in the discharge space are transmitted through the X-ray transparent membrane. The X-ray mask can be prevented from being transmitted to the X-ray mask in the sample chamber 9, and the X-ray mask can be prevented from being displaced due to stress, and a remarkable effect can be exhibited in terms of accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例装置の断面図であ
る。 <符号の説明>、1……陽極、2……陰極、4
……チヤンバ、5……コンデンサ、7……放電空
間、8……X線透過膜、9……巻上げ機構、9′
……押え金具、10……予備室、10′……試料
室、11……ゲートバルブ又はX線透過窓、12
……X線マスク、13……ウエハ、14……フラ
ンジ、15……プラズマ絞り、16……荷電粒子
偏向器、17,18,19……配管。
FIG. 1 is a sectional view of an apparatus according to an embodiment of the present invention. <Explanation of symbols>, 1... Anode, 2... Cathode, 4
... Chamber, 5 ... Capacitor, 7 ... Discharge space, 8 ... X-ray transmission membrane, 9 ... Winding mechanism, 9'
... Holding metal fitting, 10 ... Preparation chamber, 10' ... Sample chamber, 11 ... Gate valve or X-ray transmission window, 12
... X-ray mask, 13 ... wafer, 14 ... flange, 15 ... plasma aperture, 16 ... charged particle deflector, 17, 18, 19 ... piping.

Claims (1)

【特許請求の範囲】 1 ガスを大気より低い圧力に充填あるいは注入
した放電空間内にプラズマを形成して軟X線を発
生するプラズマX線源を備え、この軟X線を露光
室に導いて試料を露光するプラズマX線露光装置
において、上記露光室をX線透過膜を介して上記
放電空間と隣接する予備室と試料が装着される試
料室とに分離し、少なくとも上記予備室圧力を上
記放電空間に等しいかより低い圧力に排気したこ
とを特徴とするプラズマX線露光装置。 2 特許請求の範囲第1項に記載のプラズマX線
露光装置において、前記X線透過膜が、前記放電
空間と前記予備室との圧力差がないときに交換機
構が作動して新しい部分の膜に交換されるX線透
過膜であることを特徴とするプラズマX線露光装
置。 3 特許請求の範囲第1項あるいは第2項に記載
のプラズマX線露光装置において、前記露光室の
予備室と試料室とが開閉機構によつて分離されて
いることを特徴とするプラズマX線露光装置。 4 特許請求の範囲第1項あるいは第2項に記載
のプラズマX線露光装置において、前記露光室の
予備室と試料室とがX線透過窓によつて分離され
ており、上記試料室が大気圧に近い圧力に保たれ
ていることを特徴とするプラズマX線露光装置。
[Claims] 1. A plasma X-ray source that generates soft X-rays by forming plasma in a discharge space filled or injected with gas at a pressure lower than that of the atmosphere, and that guides the soft X-rays to an exposure chamber. In a plasma X-ray exposure apparatus that exposes a sample, the exposure chamber is separated into a preparatory chamber adjacent to the discharge space and a sample chamber in which a sample is mounted via an X-ray transmission film, and at least the preparatory chamber pressure is adjusted to the above level. A plasma X-ray exposure apparatus characterized in that the discharge space is evacuated to a pressure equal to or lower than that of the discharge space. 2. In the plasma X-ray exposure apparatus according to claim 1, when the X-ray transmissive film is replaced with a new part of the film by operating the exchange mechanism when there is no pressure difference between the discharge space and the preliminary chamber. 1. A plasma X-ray exposure apparatus characterized in that the X-ray transmission film is replaced by an X-ray transmissive film. 3. The plasma X-ray exposure apparatus according to claim 1 or 2, characterized in that the preliminary chamber of the exposure chamber and the sample chamber are separated by an opening/closing mechanism. Exposure equipment. 4. In the plasma X-ray exposure apparatus according to claim 1 or 2, a preliminary chamber of the exposure chamber and a sample chamber are separated by an X-ray transmission window, and the sample chamber is large. A plasma X-ray exposure device characterized by being maintained at a pressure close to atmospheric pressure.
JP59080127A 1984-04-23 1984-04-23 Plasmic x-ray exposure equipment Granted JPS60225426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59080127A JPS60225426A (en) 1984-04-23 1984-04-23 Plasmic x-ray exposure equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59080127A JPS60225426A (en) 1984-04-23 1984-04-23 Plasmic x-ray exposure equipment

Publications (2)

Publication Number Publication Date
JPS60225426A JPS60225426A (en) 1985-11-09
JPH0520891B2 true JPH0520891B2 (en) 1993-03-22

Family

ID=13709548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59080127A Granted JPS60225426A (en) 1984-04-23 1984-04-23 Plasmic x-ray exposure equipment

Country Status (1)

Country Link
JP (1) JPS60225426A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3029151U (en) * 1996-03-19 1996-09-27 拓也 坂本 One-touch type tape attachment / detachment holding device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3029151U (en) * 1996-03-19 1996-09-27 拓也 坂本 One-touch type tape attachment / detachment holding device

Also Published As

Publication number Publication date
JPS60225426A (en) 1985-11-09

Similar Documents

Publication Publication Date Title
US4771447A (en) X-ray source
US4119855A (en) Non vacuum soft x-ray lithographic source
US5898269A (en) Electron sources having shielded cathodes
JPS6222527B2 (en)
EP0182665B1 (en) Method of projecting a photoelectron image
GB2142158A (en) Electron lithography masks
JPH0520891B2 (en)
JPWO2006035748A1 (en) EUV generator
JPS61163547A (en) X-ray pickup window
US2745966A (en) Electron-diffraction apparatus
EP0093970A1 (en) Soft X-ray generator
US3700950A (en) X-ray tube
JPH07254539A (en) Electron beam exposure device
JPH01265443A (en) X-ray aligner
JPS5913336A (en) X-ray exposure device
US3604776A (en) High-voltage, low-background electronic camera
JPH0426206B2 (en)
JPS61292322A (en) Electron beam transfer equipment
JPH01225118A (en) X-ray exposure device
JPS58116731A (en) X-ray irradiation
Hughey et al. Instrumentation for XUV lithography at SURF-II
JPS6132521A (en) Method for x-ray exposure and device thereof
JPS59188123A (en) X-ray exposure device
JPS61216323A (en) Electron image transfer process
JPH0817715A (en) X-ray apparatus using sr light source