JPH05208893A - Single crystal pulling apparatus and controlling method therefor - Google Patents

Single crystal pulling apparatus and controlling method therefor

Info

Publication number
JPH05208893A
JPH05208893A JP3864492A JP3864492A JPH05208893A JP H05208893 A JPH05208893 A JP H05208893A JP 3864492 A JP3864492 A JP 3864492A JP 3864492 A JP3864492 A JP 3864492A JP H05208893 A JPH05208893 A JP H05208893A
Authority
JP
Japan
Prior art keywords
crystal
crucible
crystal pulling
single crystal
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3864492A
Other languages
Japanese (ja)
Inventor
Susumu Maeda
進 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Techxiv Corp
Original Assignee
Komatsu Electronic Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Electronic Metals Co Ltd filed Critical Komatsu Electronic Metals Co Ltd
Priority to JP3864492A priority Critical patent/JPH05208893A/en
Publication of JPH05208893A publication Critical patent/JPH05208893A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain a crystal having decreased thermal strain of crystal near the solid-liquid interface, low crystal defect content and microscopically uniform oxygen concentration by rotating a crystal pull-up shaft relative to a crucible supporting rod. CONSTITUTION:A crucible 53 made of graphite or quartz, etc., is placed in an air-tight vessel 51. A cylindrical graphite heater 59 for melting a polycrystalline semiconductor raw material 57, etc., at a high temperature is placed at the outside of the crucible. The semiconductor raw material 57 melted by the heat of the heater is made to contact with a seed crystal 63 attached to a crystal pull-up shaft 61 and the seed crystal 63 is pulled up while rotating the seed crystal 63 and/or the crucible 53 to effect the growing of a single crystal 64. When the rotational speed of the crucible 53 is set to >=100rpm, the solid-liquid interface is flattened and, as a result, the thermal strain of the crystal near the solid-liquid interface is decreased to obtain a crystal having low defect content. A definite amount of oxygen is constantly supplied by the stirring effect of the melt at a high rotational speed of the crucible to form a crystal having microscopically uniform oxygen concentration in the direction of the crystal length.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、単結晶引上げ装置およ
びその制御方法に係わり、特には、単結晶の品質を維持
する単結晶引上げ装置およびその制御方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single crystal pulling apparatus and its control method, and more particularly to a single crystal pulling apparatus and its control method for maintaining the quality of a single crystal.

【0002】[0002]

【従来の技術】従来、この種の単結晶引上げ装置は図6
に示すように気密容器51を有している。気密容器51
内には、黒鉛あるいは石英(シリカ)等からなるルツボ
53が設けられ、その外側にはルツボ53内に挿入され
た多結晶等の半導体素材57を高温で溶融させるための
円筒形黒鉛発熱体59(黒鉛ヒータ59と言う)が配設
されている。黒鉛ヒータ59の熱によりルツボ53内で
融液された半導体素材57は結晶引上げ軸61に付設し
た種結晶63に接触され、種結晶63またはルツボ53
あるいは両者共回転させながら種結晶63を引上げ単結
晶64を成長させる。融液のかきまぜと温度を均一にす
るために、引上げ軸の回転速度は10rpm〜30rp
mに、ルツボ53の支持軸69の回転速度は3rpm〜
10rpmにして、相対的に通常30rpm以下で回転
している。上記従来例では、減圧用を記しているが大気
圧用も同様に構成されている。
2. Description of the Related Art Conventionally, a single crystal pulling apparatus of this type is shown in FIG.
As shown in FIG. Airtight container 51
A crucible 53 made of graphite, quartz (silica) or the like is provided inside, and a cylindrical graphite heating element 59 for melting the semiconductor material 57 such as polycrystalline material inserted in the crucible 53 at a high temperature is provided outside thereof. A (graphite heater 59) is provided. The semiconductor material 57 melted in the crucible 53 by the heat of the graphite heater 59 is brought into contact with the seed crystal 63 attached to the crystal pulling shaft 61, and the seed crystal 63 or the crucible 53.
Alternatively, the single crystal 64 is grown by pulling the seed crystal 63 while rotating both. The rotation speed of the pulling shaft is 10 rpm to 30 rp in order to make the melt stirring and temperature uniform.
The rotation speed of the support shaft 69 of the crucible 53 is 3 rpm to m.
It is set to 10 rpm, and is usually rotated at 30 rpm or less. In the above-mentioned conventional example, the pressure reduction is described, but the atmospheric pressure is similarly configured.

【0003】[0003]

【発明が解決しようとする課題】ところが、チョコラル
スキー法(以下、CZ法という。)による単結晶引上げ
装置で、通常30rpm以下のルツボ回転範囲では、図
9に示すように固液界面形状が上に凸形状(C)とな
り、また、図10に示すように結晶の成長界面の形状は
熱歪みを発生し易い状況で引上げを行っている。また、
この場合にメルトの対流モード周期が数〜数十秒程度と
なり引上げた結晶の長手方向に酸素濃度にミクロのムラ
が発生するという問題がある。本発明は上記問題に着目
し、単結晶引上げ装置およびその制御方法に係わり、特
には、単結晶の品質を維持する単結晶引上げ装置および
その制御方法の改良に関するものである。
However, in a single crystal pulling apparatus by the Czochralski method (hereinafter referred to as the CZ method), in the crucible rotation range of usually 30 rpm or less, the solid-liquid interface shape becomes higher as shown in FIG. The shape is a convex shape (C), and as shown in FIG. 10, the shape of the crystal growth interface is pulled up in a state where thermal strain is likely to occur. Also,
In this case, there is a problem that the convection mode period of the melt becomes about several to several tens of seconds and microscopic unevenness occurs in the oxygen concentration in the longitudinal direction of the pulled crystal. The present invention focuses on the above problems, and relates to a single crystal pulling apparatus and a control method thereof, and more particularly to an improvement of a single crystal pulling apparatus and a control method thereof for maintaining the quality of a single crystal.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係わる単結晶引上げ装置およびその制御方
法の第1の発明では、結晶引上げ軸とルツボ支持棒を回
転させながらルツボ内の融液あるいは溶液から結晶を成
長させ、結晶引上げ軸にて結晶を引き上げる単結晶引上
げ装置において、結晶引上げ軸とルツボ支持棒とを相対
的に回転させ、単結晶とルツボ内の融液とを100rp
m以上で回転させて単結晶を成長させる。
In order to achieve the above object, in the first invention of the single crystal pulling apparatus and the control method thereof according to the present invention, the inside of the crucible is rotated while rotating the crystal pulling shaft and the crucible support rod. In a single crystal pulling apparatus for growing a crystal from a melt or a solution and pulling the crystal with a crystal pulling shaft, the crystal pulling shaft and the crucible support rod are relatively rotated to bring the single crystal and the melt in the crucible to 100 rp.
Rotate at m or more to grow a single crystal.

【0005】第2の発明では、結晶引上げ軸とルツボ支
持棒を回転させながらルツボ内の融液あるいは溶液から
結晶を成長させ、結晶引上げ軸にて結晶を引き上げる単
結晶引上げ装置において、結晶引上げ軸とルツボ支持棒
とを相対的に100rpm以上の所定値で回転させる指
令を出し、実際の結晶引上げ軸とルツボ支持棒との回転
速度を計測し、指令値と計測値とを比較してその値が所
定値を外れたときに、結晶引上げ軸の回転速度に変更値
を出している。また、第2発明を主体とする第3の発明
では、結晶引上げ軸とルツボ支持棒とを相対的に100
rpm以上で回転させるのに、ルツボ支持棒を結晶引上
げ軸より速く回転させる。
According to the second aspect of the invention, a single crystal pulling apparatus for growing a crystal from a melt or a solution in a crucible while pulling the crystal on the crystal pulling axis while rotating the crystal pulling axis and the crucible support rod is used. And a command to rotate the crucible support rod relative to each other at a predetermined value of 100 rpm or more are measured, the actual rotation speeds of the crystal pulling shaft and the crucible support rod are measured, and the command value and the measured value are compared and the value is compared. When is out of the predetermined value, the rotation speed of the crystal pulling shaft is changed. In addition, in the third invention, which is mainly based on the second invention, the crystal pulling shaft and the crucible support rod are set to be relatively close to each other.
The crucible support rod is rotated faster than the crystal pulling shaft to rotate at rpm or more.

【0006】[0006]

【作用】上記構成によれば、ルツボの回転速度を100
rpm以上とすることで、メルト液面形状が下に凸形状
の放物面となる。したがって、この状態で結晶を引き上
げると通常のルツボ回転速度範囲では固液界面形状が上
に凸形状となっていたのが、メルト液面形状と固液界面
形状とが相殺され、固液界面形状が平坦となる。その結
果、固液界面付近での結晶熱歪みが減少し低欠陥の結晶
が得られる。また、高速のルツボ回転状態ではメルトの
攪拌効果により常に一定の酸素が供給されるので結晶長
さ方向の酸素濃度がミクロに均一な結晶が得られる。さ
らに、ルツボ支持棒を高速で回転することにより単結晶
棒の揺れ、搖動が少なくなるとともに、装置も簡単にな
る。
According to the above structure, the rotation speed of the crucible is 100%.
By setting it to be rpm or more, the melt liquid surface shape becomes a parabolic surface having a downward convex shape. Therefore, when the crystal was pulled in this state, the solid-liquid interface shape was convex upward in the normal crucible rotation speed range, but the melt liquid surface shape and the solid-liquid interface shape were canceled out, and the solid-liquid interface shape was Becomes flat. As a result, crystal thermal strain near the solid-liquid interface is reduced, and a crystal with low defects can be obtained. Further, in a high-speed crucible rotation state, a constant oxygen is constantly supplied by the stirring effect of the melt, so that a crystal having a microscopically uniform oxygen concentration in the crystal length direction can be obtained. Furthermore, by rotating the crucible support rod at a high speed, shaking and swinging of the single crystal rod are reduced, and the device is simplified.

【0007】[0007]

【実施例】以下に、本発明に係わる単結晶製造装置およ
びその制御方法の実施例につき、図面を参照して詳細に
説明する。図1は本発明の単結晶製造装置の第1実施例
である。なお、図1において、従来と同一部品には同一
符号を付して説明を省略する。単結晶製造装置は、例え
ば、図1に示すように気密容器1を有し、気密容器1は
容器1aとベロー等の伸縮部からなる引上げ室1bから
なっている。容器1内には、ルツボ53が設けられ、そ
の外側にはルツボ53内に挿入された多結晶等の半導体
素材57を高温で溶融させるための黒鉛ヒータ59が配
設されている。黒鉛ヒータ59の熱によりルツボ53内
で融液された半導体素材57は結晶引上げ軸3に付設し
た種結晶5に接触され、種結晶5またはルツボ53ある
いは両者共回転させながら種結晶5を引上げ単結晶7を
成長させる。 ルツボ53はルツボ支持棒9により保持
されるとともに、駆動モータ11によりチェーンベルト
13を介して回転される。
Embodiments of a single crystal production apparatus and a control method therefor according to the present invention will be described below in detail with reference to the drawings. FIG. 1 is a first embodiment of a single crystal manufacturing apparatus of the present invention. Note that, in FIG. 1, the same parts as those of the related art are designated by the same reference numerals and the description thereof will be omitted. The single crystal manufacturing apparatus has, for example, an airtight container 1 as shown in FIG. 1, and the airtight container 1 is composed of a container 1a and a pulling chamber 1b composed of a stretchable portion such as a bellows. A crucible 53 is provided in the container 1, and a graphite heater 59 for melting a semiconductor material 57 such as a polycrystalline material inserted in the crucible 53 at a high temperature is arranged outside the crucible 53. The semiconductor material 57 melted in the crucible 53 by the heat of the graphite heater 59 is brought into contact with the seed crystal 5 attached to the crystal pulling shaft 3, and the seed crystal 5 or the crucible 53 or both are rotated to pull up the seed crystal 5. The crystal 7 is grown. The crucible 53 is held by the crucible support rod 9 and is rotated by the drive motor 11 via the chain belt 13.

【0008】引上げ室1bには、前記結晶引上げ軸3を
介して種結晶5を回転する回転装置20が上部に配設さ
れ、回転装置20は回転用モータ21と、チェーンベル
ト23とからなっている。また、引上げ室1bには、成
長した単結晶7を引き上げるための引上げ装置30が配
設され、引上げ装置30は引上げ用モータ31とボール
ネジ33とからなっている。さらに、引上げ室1bに
は、結晶引上げ軸3を支持するベアリング35と、結晶
引上げ軸3の振れあるいは搖動を防止するスライダ37
が収納されている。スライダ37は一端を容器1aに固
定され、他端は引上げ室1bの上部部材39に固設され
るスライダ棒37aと、スライダ棒37aに固設され、
かつ、結晶引上げ軸3を保持するスライダ保持部材37
bからなっている。スライダ棒37aは引上げ装置30
の伸縮に伴いベローとともに、枢密に図示の上下方向に
慴動自在に伸縮するが、スライダ保持部材37bは所定
の位置に固定され結晶引上げ軸3の振れ、および搖動が
生じないようにしている。
A rotating device 20 for rotating the seed crystal 5 via the crystal pulling shaft 3 is disposed in the upper part of the pulling chamber 1b, and the rotating device 20 comprises a rotation motor 21 and a chain belt 23. There is. A pulling device 30 for pulling the grown single crystal 7 is disposed in the pulling chamber 1b, and the pulling device 30 includes a pulling motor 31 and a ball screw 33. Further, in the pulling chamber 1b, a bearing 35 for supporting the crystal pulling shaft 3 and a slider 37 for preventing the swinging or swinging of the crystal pulling shaft 3 are provided.
Is stored. The slider 37 has one end fixed to the container 1a and the other end fixed to the slider rod 37a fixed to the upper member 39 of the pulling chamber 1b, and to the slider rod 37a.
Also, a slider holding member 37 for holding the crystal pulling shaft 3
It consists of b. The slider rod 37a is a pulling device 30.
Along with the expansion and contraction, the bellows pivotally expands and contracts in the vertical direction shown in the figure, but the slider holding member 37b is fixed at a predetermined position so that the crystal pulling shaft 3 does not swing or swing.

【0009】結晶引上げ軸3には引上げ軸用回転センサ
41が、ルツボ支持棒9にルツボ用回転センサ43が配
設され、検出信号はコントローラ40に送られ、各回転
軸の回転速度が検出されている。上記構成において、各
軸はチェーンベルトを介して駆動している実施例を記載
したが、本実施例に囚われることなく、軸直接モータを
配設し、あるいは、歯車を介して駆動しても良い。
The crystal pulling shaft 3 is provided with a pulling shaft rotation sensor 41, and the crucible support rod 9 is provided with a crucible rotation sensor 43. A detection signal is sent to the controller 40 to detect the rotation speed of each rotation shaft. ing. In the above-mentioned configuration, an example in which each shaft is driven via a chain belt is described, but without being limited to this example, a shaft direct motor may be arranged or driven via a gear. ..

【0010】上記構成において、ルツボ53内で融液さ
れた半導体素材57は結晶引上げ軸1に付設した種結晶
3に接触されたのちに成長しながら、静かに単結晶棒は
回転しながら引き上げられて行く。このとき、例えば、
ルツボ支持棒9の回転速度を80rpmとし、結晶引上
げ軸3の回転速度を20rpmとして、ルツボを相対的
に100rpmの回転速度として結晶を成長させた結
果、図2に示すように、メルト液面形状が下に凸形状の
放物面(A)となり、固液界面形状が平坦(B)となっ
ている。その結果、固液界面付近での結晶熱歪みが減少
し、結晶の成長界面の形状は図3に示すように平坦にな
り低欠陥の結晶が得られる。また、高速のルツボ回転状
態ではメルトの攪拌効果により常に一定の酸素が供給さ
れるので結晶長さ方向の酸素濃度が図4に示すようにな
り、また図8に示すようにミクロに均一な結晶が得られ
る。
In the above structure, the semiconductor material 57 melted in the crucible 53 is brought into contact with the seed crystal 3 attached to the crystal pulling shaft 1 and grows while the single crystal rod is gently pulled while rotating. Go. At this time, for example,
Crystals were grown at a rotation speed of the crucible support rod 9 of 80 rpm, a rotation speed of the crystal pulling shaft 3 of 20 rpm, and a crucible rotation speed of 100 rpm. As a result, as shown in FIG. Shows a downwardly convex parabolic surface (A), and the solid-liquid interface shape is flat (B). As a result, the crystal thermal strain near the solid-liquid interface is reduced, the shape of the crystal growth interface is flat as shown in FIG. 3, and a low defect crystal is obtained. Further, in a crucible rotating state at a high speed, a constant oxygen is constantly supplied due to the stirring effect of the melt, so that the oxygen concentration in the crystal length direction is as shown in FIG. 4, and as shown in FIG. Is obtained.

【0011】また、上記の回転をルツボ支持棒9の回転
速度を180rpmとし、結晶引上げ軸3の回転速度を
20rpmとして、ルツボを相対的に200rpmの回
転速度として結晶を成長させた場合もほぼ同様な結果が
得られた。
Also, substantially the same is true when the above-mentioned rotation is performed by setting the rotation speed of the crucible support rod 9 to 180 rpm, the rotation speed of the crystal pulling shaft 3 to 20 rpm, and the crucible to a rotation speed of 200 rpm. Good results were obtained.

【0012】上記実施例において、制御方法を図5のフ
ローチャート図を用いて説明する。ステップ1におい
て、ルツボ支持棒9の回転速度Mrpmの指令を出す。
ステップ2では、結晶引上げ軸1の回転速度Nrpmの
指令を出す。この指令によりルツボ53は相対的に所定
値α(100rpm以上)で回転速度する。
The control method in the above embodiment will be described with reference to the flowchart of FIG. In step 1, a command for the rotation speed Mrpm of the crucible support rod 9 is issued.
In step 2, a command for the rotation speed N rpm of the crystal pulling shaft 1 is issued. By this command, the crucible 53 relatively rotates at a predetermined value α (100 rpm or more).

【0013】このとき、ステップ3で、ルツボ支持棒9
の実際の回転速度Prpmをルツボ用回転センサ43
で、結晶引上げ軸1の回転速度Qrpmを引上げ軸用回
転センサ41で計測する。その検出信号をコントローラ
40に送り、コントローラ40はステツプ4のごとく、
ルツボ53は相対的に所定の指令値で回転速度している
か、否かを判定する。実際の回転速度が指令値である場
合には、ステップ1に戻る。否の場合には、ステップ5
に行き、ルツボ53の所定値の回転速度と実際の回転速
度の差から、実際のルツボ53の回転速度が所定値αに
なるようにコントローラ40内でその差を求め、ステッ
プ5でその差を結晶引上げ軸の回転速度に補正値N1
pmを求め、ステップ2に戻り、ルツボ53の回転速度
が所定値になるように結晶引上げ軸1の回転速度N1
pmの指令を出す。
At this time, in step 3, the crucible support rod 9
The actual rotation speed Prpm of the crucible rotation sensor 43
Then, the rotation speed Qrpm of the crystal pulling shaft 1 is measured by the pulling shaft rotation sensor 41. The detection signal is sent to the controller 40, and the controller 40, like step 4,
The crucible 53 determines whether or not the rotation speed is relatively at a predetermined command value. If the actual rotation speed is the command value, the process returns to step 1. If no, step 5
Then, from the difference between the rotation speed of the crucible 53 having a predetermined value and the actual rotation speed, the difference is obtained in the controller 40 so that the actual rotation speed of the crucible 53 becomes the predetermined value α, and the difference is calculated in step 5. Correction value N 1 r for rotation speed of crystal pulling shaft
pm is obtained, the process returns to step 2, and the rotation speed N 1 r of the crystal pulling shaft 1 is adjusted so that the rotation speed of the crucible 53 becomes a predetermined value.
Issue pm command.

【0014】上記実施例と従来例とを比較テストする
と、図7のルツボの回転速度と固液界面形状、及び図8
のルツボ回転速度と結晶軸方向のミクロな酸素濃度変動
のごとくなる。ルツボ軸の回転速度がほぼ150rpm
よりミクロの軸方向の酸素濃度変動が少なくなる。
When the above-mentioned embodiment and the conventional example are compared and tested, the rotation speed and solid-liquid interface shape of the crucible shown in FIG.
Crucible rotation speed and micro oxygen concentration fluctuation in the crystal axis direction. The rotation speed of the crucible shaft is approximately 150 rpm
The oxygen concentration fluctuation in the micro axial direction is reduced.

【0015】上記実施例のように、ルツボ53の回転速
度が所定値になるように結晶引上げ軸1の回転速度を同
レベルに制御することでも、(例えば、ルツボ53の回
転速度100rpmに誤差が1%あった場合に、結晶引
上げ軸1の回転速度20rpmでは5%になる。)制御
が向上するとともに、結晶引上げ軸1の慣性モーメント
がルツボ支持棒9より小さいため迅速に制御が出来る。
Even if the rotation speed of the crystal pulling shaft 1 is controlled to the same level so that the rotation speed of the crucible 53 becomes a predetermined value as in the above embodiment (for example, the rotation speed of the crucible 53 has an error of 100 rpm). If it is 1%, it will be 5% when the rotation speed of the crystal pulling shaft 1 is 20 rpm.) While the control is improved, the moment of inertia of the crystal pulling shaft 1 is smaller than that of the crucible support rod 9, so that the control can be performed quickly.

【0016】[0016]

【発明の効果】以上説明したように、本発明の単結晶引
上げ装置およびその制御方法では、ルツボの回転速度を
高速回転にすることで、メルト液面形状が下に凸形状の
放物面となり、これによりメルト液面形状と固液界面形
状とが相殺され、固液界面形状が平坦となる。それによ
り固液界面付近での結晶熱歪みが減少し低欠陥の結晶が
得られる。また、高速のルツボ回転状態ではメルトの攪
拌効果により常に一定の酸素が供給されるので結晶長さ
方向の酸素濃度がミクロに均一な結晶が得られる。さら
に、ルツボ支持棒を高速で回転することにより単結晶棒
の揺れ、搖動が少なくなるとともに、結晶引上げ軸の回
転速度を制御しているので回転速度の制御が正確になり
装置も簡単になるという優れた効果が得られる。
As described above, in the apparatus for pulling a single crystal and the method for controlling the same according to the present invention, the crucible is rotated at a high speed so that the melt liquid surface shape becomes a downward parabolic shape. As a result, the melt liquid surface shape and the solid-liquid interface shape are canceled out, and the solid-liquid interface shape becomes flat. As a result, crystal thermal strain near the solid-liquid interface is reduced, and crystals with low defects are obtained. Further, in a high-speed crucible rotation state, a constant oxygen is constantly supplied by the stirring effect of the melt, so that a crystal having a microscopically uniform oxygen concentration in the crystal length direction can be obtained. Furthermore, by rotating the crucible support rod at a high speed, shaking and swinging of the single crystal rod are reduced, and since the rotation speed of the crystal pulling shaft is controlled, the rotation speed can be controlled accurately and the device can be simplified. Excellent effect can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の単結晶引上げ装置の1実施例の概略の
全体構成図である。
FIG. 1 is a schematic overall configuration diagram of an embodiment of a single crystal pulling apparatus of the present invention.

【図2】本発明の単結晶引上げ装置のルツボ部の詳細断
面図である。
FIG. 2 is a detailed cross-sectional view of a crucible portion of the single crystal pulling apparatus of the present invention.

【図3】本発明の結晶の成長界面の形状を示した図であ
る。
FIG. 3 is a diagram showing a shape of a growth interface of a crystal of the present invention.

【図4】本発明の酸素濃度と結晶長さとの関係を示す図
である。
FIG. 4 is a diagram showing a relationship between oxygen concentration and crystal length according to the present invention.

【図5】本発明の本発明の単結晶引上げ装置の回転制御
のフルーチャートを示す図である。
FIG. 5 is a view showing a flow chart of rotation control of the single crystal pulling apparatus of the present invention.

【図6】従来の単結晶引上げ装置の1実施例の概略の全
体構成図である。
FIG. 6 is a schematic overall configuration diagram of an example of a conventional single crystal pulling apparatus.

【図7】従来と本発明のルツボ回転速度と固液界面形状
とを示す図である。
FIG. 7 is a diagram showing a crucible rotation speed and a solid-liquid interface shape according to the related art and the present invention.

【図8】従来と本発明のルツボ回転速度と結晶軸方向の
ミクロな酸素濃度変動を示す図である。
FIG. 8 is a diagram showing a crucible rotation speed and microscopic oxygen concentration fluctuations in the crystal axis direction of the conventional and the present invention.

【図9】従来の単結晶引上げ装置のルツボ部の詳細断面
図である。
FIG. 9 is a detailed sectional view of a crucible portion of a conventional single crystal pulling apparatus.

【図10】従来の結晶の成長界面の形状を示した図であ
る。
FIG. 10 is a diagram showing the shape of a conventional crystal growth interface.

【符号の説明】[Explanation of symbols]

1 気密容器 3 結晶引上げ軸 5 種結晶 7 単結晶 9 ルツボ支持棒 11 駆動モータ 13,23 チェーンベルト 20 回転装置 21 回転用モータ 30 引上げ装置 31 引上げ用モータ 33 ボールネジ 40 コントローラ 41 引上げ軸用回転センサ 43 ルツボ用回転センサ 51 気密容器 53 ルツボ 59 円筒形黒鉛発熱体 1 Airtight container 3 Crystal pulling shaft 5 Seed crystal 7 Single crystal 9 Crucible support rod 11 Drive motor 13,23 Chain belt 20 Rotating device 21 Rotating motor 30 Pulling device 31 Pulling motor 33 Ball screw 40 Controller 41 Rotating sensor for pulling shaft 43 Rotation sensor for crucible 51 Airtight container 53 Crucible 59 Cylindrical graphite heating element

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 結晶引上げ軸とルツボ支持棒を回転させ
ながらルツボ内の融液あるいは溶液から結晶を成長さ
せ、結晶引上げ軸にて結晶を引き上げる単結晶引上げ装
置において、結晶引上げ軸とルツボ支持棒とを相対的に
回転させ、単結晶とルツボ内の融液とを100rpm以
上で回転させて単結晶を成長させることを特徴とする単
結晶引上げ装置。
1. A single crystal pulling apparatus for growing a crystal from a melt or a solution in a crucible while rotating the crystal pulling shaft and the crucible support rod, and pulling the crystal on the crystal pulling shaft, the crystal pulling shaft and the crucible support rod. Is relatively rotated, and the single crystal and the melt in the crucible are rotated at 100 rpm or more to grow the single crystal.
【請求項2】 結晶引上げ軸とルツボ支持棒を回転させ
ながらルツボ内の融液あるいは溶液から結晶を成長さ
せ、結晶引上げ軸にて結晶を引き上げる単結晶引上げ装
置において、結晶引上げ軸とルツボ支持棒とを相対的に
100rpm以上の所定値で回転させる指令を出し、実
際の結晶引上げ軸とルツボ支持棒との回転速度を計測
し、指令値と計測値とを比較してその値が所定値を外れ
たときに、結晶引上げ軸の回転速度に変更値を出すこと
を特徴とする単結晶引上げ装置の制御方法。
2. A single crystal pulling apparatus for growing a crystal from a melt or a solution in a crucible while rotating the crystal pulling shaft and the crucible support rod, and pulling the crystal on the crystal pulling shaft, the crystal pulling shaft and the crucible support rod. And a command to rotate at a predetermined value of 100 rpm or more are measured, the actual rotation speeds of the crystal pulling shaft and the crucible support rod are measured, and the command value and the measured value are compared to obtain a predetermined value. A control method for a single crystal pulling apparatus, which is characterized in that a change value is given to the rotational speed of the crystal pulling shaft when the single crystal pulls up.
【請求項3】 請求項2において、結晶引上げ軸とルツ
ボ支持棒とを相対的に100rpm以上で回転させるの
に、ルツボ支持棒を結晶引上げ軸より速く回転させるこ
とを特徴とする単結晶引上げ装置の制御方法。
3. The single crystal pulling apparatus according to claim 2, wherein the crucible support rod is rotated faster than the crystal pulling shaft in order to rotate the crystal pulling shaft and the crucible supporting rod relatively at 100 rpm or more. Control method.
JP3864492A 1992-01-29 1992-01-29 Single crystal pulling apparatus and controlling method therefor Pending JPH05208893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3864492A JPH05208893A (en) 1992-01-29 1992-01-29 Single crystal pulling apparatus and controlling method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3864492A JPH05208893A (en) 1992-01-29 1992-01-29 Single crystal pulling apparatus and controlling method therefor

Publications (1)

Publication Number Publication Date
JPH05208893A true JPH05208893A (en) 1993-08-20

Family

ID=12530961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3864492A Pending JPH05208893A (en) 1992-01-29 1992-01-29 Single crystal pulling apparatus and controlling method therefor

Country Status (1)

Country Link
JP (1) JPH05208893A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09183694A (en) * 1995-12-27 1997-07-15 Shin Etsu Handotai Co Ltd Single crystal holding device
JP2010285342A (en) * 2009-06-10 2010-12-24 Siltronic Ag Method for pulling silicon single crystal
KR101005947B1 (en) * 2008-11-18 2011-01-06 주식회사 실트론 Crucible support and manufacturing apparatus of silicon crystal ingot having the same
JP2011037667A (en) * 2009-08-11 2011-02-24 Sumco Corp Apparatus for producing single crystal and method for producing single crystal
WO2018003264A1 (en) * 2016-06-27 2018-01-04 株式会社Sumco Silicon monocrystal production method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09183694A (en) * 1995-12-27 1997-07-15 Shin Etsu Handotai Co Ltd Single crystal holding device
KR101005947B1 (en) * 2008-11-18 2011-01-06 주식회사 실트론 Crucible support and manufacturing apparatus of silicon crystal ingot having the same
JP2010285342A (en) * 2009-06-10 2010-12-24 Siltronic Ag Method for pulling silicon single crystal
JP2011037667A (en) * 2009-08-11 2011-02-24 Sumco Corp Apparatus for producing single crystal and method for producing single crystal
WO2018003264A1 (en) * 2016-06-27 2018-01-04 株式会社Sumco Silicon monocrystal production method
US10982350B2 (en) 2016-06-27 2021-04-20 Sumco Corporation Silicon monocrystal production method

Similar Documents

Publication Publication Date Title
US4973377A (en) Crystal diameter controlling method
JPH04149092A (en) Method and device for controlling growth of cone part
US5935326A (en) Apparatus for manufacturing semiconductor single crystals
JPH05208893A (en) Single crystal pulling apparatus and controlling method therefor
JPH10167892A (en) Method for pulling silicon single crystal
JP4013324B2 (en) Single crystal growth method
JPH09175889A (en) Single crystal pull-up apparatus
JP3521070B2 (en) Fibrous crystal production equipment
JPH10167881A (en) Method for pulling semiconductor single crystal
JP3642176B2 (en) Silicon single crystal pulling device
JP2990661B2 (en) Single crystal growth method
KR102492237B1 (en) Method and apparatus for growing silicon single crystal ingot
KR100304291B1 (en) Silicon crystal and its manufacturing apparatus, manufacturing method
JP3011085B2 (en) Single crystal growth method
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JP2006248808A (en) Crystal growth apparatus
JPH09315887A (en) Production of single crystal and device therefor
JP4862863B2 (en) Method for controlling drive unit of single crystal manufacturing apparatus and single crystal manufacturing apparatus
JPH04321590A (en) Growing method of single crystal
JP2717685B2 (en) Method and apparatus for crystal growth by Czochralski method
JP2004203634A (en) Method of producing semiconductor single crystal
JPS6129914B2 (en)
JP2021127275A (en) Single crystal growth device, single crystal growth method, and single crystal
JP2002137985A (en) Crucible for growing oxide single crystal and growing device of oxide single crystal using it
JPS62275088A (en) Crystal pulling up device