JPH05207350A - Camera provideo with infrared-ray cut filter - Google Patents

Camera provideo with infrared-ray cut filter

Info

Publication number
JPH05207350A
JPH05207350A JP4034339A JP3433992A JPH05207350A JP H05207350 A JPH05207350 A JP H05207350A JP 4034339 A JP4034339 A JP 4034339A JP 3433992 A JP3433992 A JP 3433992A JP H05207350 A JPH05207350 A JP H05207350A
Authority
JP
Japan
Prior art keywords
infrared
camera
cut filter
lens
infrared cut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4034339A
Other languages
Japanese (ja)
Inventor
Satoshi Utsunomiya
智 宇都宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Copal Corp
Original Assignee
Nidec Copal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Copal Corp filed Critical Nidec Copal Corp
Priority to JP4034339A priority Critical patent/JPH05207350A/en
Publication of JPH05207350A publication Critical patent/JPH05207350A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the infrared-ray stray light preventing structure of a CCD camera, and to miniaturize the camera. CONSTITUTION:The CCD camera is constituted of an image forming optical system 1 including optical elements arrayed along an optical axis, and an image pickup element such as a CCD 2. An infrared-ray cut filter 7 constituted of a direct infrared ray transmission preventing dielectric multi-layer film is formed on the surface of a specific optical element, for example, a lens 6 in order to interrupt the stray light in an infrared wavelength area. The multi-layer film infrared-ray cut filter 7 can be formed on the surface of a crystal fitter 4, or the surface of a cover glass 5 instead of the lens 6. The multi-layer film infrared-ray cut filter 7 is a hyaline, and the thickness of the film is extremely thin, so that the image forming system 1 can be miniaturized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は複数のレンズ部材等から
構成される結像光学系とCCD等からなる撮像素子とを
備えたカメラに関する。より詳しくは、赤外波長領域の
迷光を遮断する為の構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a camera having an image forming optical system composed of a plurality of lens members and an image pickup device composed of a CCD or the like. More specifically, it relates to a structure for blocking stray light in the infrared wavelength region.

【0002】[0002]

【従来の技術】従来、サーベランスカメラ等の小型ビデ
オカメラの撮像素子としては例えばCCD(Charg
e Coupled Device)が多用されてい
る。このCCD撮像素子は、光電変換により生ずる信号
電荷を1フィールド又は1フレームに近い期間に渡って
蓄積するとともに、これを短時間で転送し映像信号とし
て読み出すものである。CCDは比較的広い感度を有し
ており、可視領域の光に加えて近赤外領域の光にも応答
する。しかしながら、通常の被写体撮影に用いられるビ
デオカメラにおいては赤外入射光は迷光となり、解像度
の低下、ブルーミングスミヤ特性の劣化あるいは画像の
シミやムラといった不具合をもたらす。この為、ビデオ
カメラの光学系には赤外カットフィルタが挿入されてい
た。一般に用いられる赤外カットフィルタは着色ガラス
板であって例えばホヤ製の色ガラスCM−500相当の
ものが用いられていた。
2. Description of the Related Art Conventionally, as an image pickup device of a small video camera such as a surveillance camera, for example, a CCD (Charg) is used.
e Coupled Device) is often used. The CCD image pickup device accumulates signal charges generated by photoelectric conversion for a period close to one field or one frame, and transfers the charges in a short time to read out as a video signal. CCDs have a relatively wide sensitivity and respond to light in the near infrared region in addition to light in the visible region. However, in a video camera used for ordinary photographing of an object, infrared incident light becomes stray light, which causes a problem such as a reduction in resolution, deterioration of blooming smear characteristics, or image stains or unevenness. Therefore, an infrared cut filter is inserted in the optical system of the video camera. A commonly used infrared cut filter is a colored glass plate, for example, a color glass CM-500 made by Hoya Co., Ltd. was used.

【0003】[0003]

【発明が解決しようとする課題】ビデオカメラの用途に
よっては相当程度小型化を図らなければならない場合が
ある。例えば、自動車の後尾に組み込まれる車載用カメ
ラや防犯監視用のサーベランスカメラ等では、10mm程
度のカメラ口径を有する超小型のものが要求されてい
る。カメラ口径ばかりでなく光軸長の縮小も要求されて
いる。しかるに、従来の迷光防止構造では、着色ガラス
板等の単品赤外カットフィルタを光学系に挿入していた
ので、その分だけ余分な収容空間が必要となり、ビデオ
カメラのレンズ系の小型化を阻害していたという問題が
ある。加えて、着色板ガラスを挿入するとその分だけ入
射光に対する透過率の損失が生じる。これを補う為に入
射光量を多くとる必要があり、レンズ系の小型化の妨げ
になってきているという問題点がある。なお、通常用い
られる赤外カットフィルタ用着色ガラス板の厚みは1mm
〜3mm程度である。
Depending on the application of the video camera, it may be necessary to reduce the size to a considerable extent. For example, for an in-vehicle camera incorporated in the tail of an automobile or a surveillance camera for crime prevention, an ultra-small camera having a camera aperture of about 10 mm is required. Not only the camera aperture but also the optical axis length is required to be reduced. However, in the conventional stray light prevention structure, since a single infrared cut filter such as a colored glass plate was inserted into the optical system, an extra storage space was needed for that, which hindered the miniaturization of the video camera lens system. There is a problem that I was doing. In addition, when the colored plate glass is inserted, the transmittance of incident light is lost correspondingly. In order to make up for this, it is necessary to increase the amount of incident light, which has been a hindrance to miniaturization of the lens system. The thickness of the glass plate for infrared cut filter that is usually used is 1mm.
It is about 3 mm.

【0004】[0004]

【課題を解決するための手段】上述した従来の技術の問
題点あるいは課題に鑑み、本発明は近赤外領域の迷光防
止構造を改善しCCDを用いたカメラの小型化を図る事
を目的とする。かかる目的を達成する為に次の手段を講
じた。即ち、光軸に沿って配列された光学要素を含む結
像光学系とCCD等の撮像素子とからなるカメラにおい
て、赤外波長領域の迷光を遮断する為に特定の光学要素
の表面に直接赤外線透過防止誘電体多層膜を設けるとい
う手段を講じた。この多層膜が形成される特定光学要素
としては例えば撮像光学系に含まれるレンズを選択する
事ができる。選択されたレンズは結像光学系において光
軸に対する最大入射角が30°以下となる面を有してい
る事が好ましい。この特定光学要素としては、レンズの
代わりに、撮像素子の直前に配されたカバーガラスであ
っても良い。あるいは、結像光学系の後段に配された水
晶フィルタであっても良い。
SUMMARY OF THE INVENTION In view of the above-mentioned problems or problems of the prior art, an object of the present invention is to improve the structure for preventing stray light in the near infrared region and to downsize a camera using a CCD. To do. The following measures have been taken in order to achieve this purpose. That is, in a camera including an imaging optical system including optical elements arranged along the optical axis and an image pickup device such as a CCD, infrared rays are directly applied to the surface of a specific optical element in order to block stray light in the infrared wavelength region. A means of providing a permeation-preventing dielectric multilayer film was taken. As the specific optical element on which the multilayer film is formed, for example, a lens included in the image pickup optical system can be selected. It is preferable that the selected lens has a surface having a maximum incident angle with respect to the optical axis of 30 ° or less in the image forming optical system. The specific optical element may be a cover glass arranged immediately in front of the image pickup element instead of the lens. Alternatively, it may be a crystal filter arranged in the subsequent stage of the imaging optical system.

【0005】[0005]

【作用】本発明に用いられる赤外線透過防止誘電体多層
膜は干渉フィルタの一種であって、薄膜による光の干渉
を利用して赤外波長領域の光のみを選択的に反射もしく
は吸収するとともに可視部の光を極めて効率良く透過さ
せる。誘電体多層膜は選択された光学要素例えばレンズ
の表面に直接真空蒸着等によって形成される。誘電体多
層膜はたかだか数μmの厚みであるとともに無色透明で
ある。従って、これを用いる事により従来の着色板ガラ
スあるいは赤外線吸収板ガラスが不要となり、カメラの
寸法が小型化できる。従来用いられていた赤外線吸収板
ガラスは一般に銅化合物を含み淡青色に着色していたと
ともに数mm程度の厚みを有していた。
The infrared ray transmission preventing dielectric multilayer film used in the present invention is a kind of interference filter, and it selectively reflects or absorbs only light in the infrared wavelength region by utilizing the interference of light by the thin film and is visible. Part of light is transmitted very efficiently. The dielectric multilayer film is formed by vacuum vapor deposition or the like directly on the surface of a selected optical element such as a lens. The dielectric multilayer film has a thickness of at most several μm and is colorless and transparent. Therefore, by using this, the conventional colored plate glass or infrared absorbing plate glass becomes unnecessary, and the size of the camera can be reduced. The infrared absorbing plate glass used in the past generally contained a copper compound and was colored in a pale blue color and had a thickness of about several mm.

【0006】赤外線透過防止誘電体多層膜は層間の多重
干渉を利用してフィルタ作用を行なうので、入射角に対
する依存性がある。垂直入射光に対しては略完全な遮断
効率を有するが、光軸から傾くにつれて遮断効率が悪く
なる。従って、サーベランスカメラ等の広角カメラに応
用する場合、入射角依存性をなるべく抑える為、赤外線
透過防止誘電体多層膜は最大入射角度が30°以下とな
る面を有している特定レンズの表面に形成する事が好ま
しい。換言すると、結像光学系において、光の入射角度
が最大で30°以下となるレンズ面を最低1面設ける様
に設計で考慮する事が好ましい。
Since the infrared ray transmission preventing dielectric multilayer film performs a filtering function by utilizing the multiple interference between layers, it has a dependency on the incident angle. Although it has a substantially perfect blocking efficiency for vertically incident light, the blocking efficiency becomes worse as it is inclined from the optical axis. Therefore, when applied to wide-angle cameras such as surveillance cameras, in order to suppress the incident angle dependence as much as possible, the infrared ray transmission prevention dielectric multilayer film is formed on the surface of a specific lens having a surface with a maximum incident angle of 30 ° or less. It is preferably formed. In other words, in the imaging optical system, it is preferable to consider in the design so that at least one lens surface having a maximum light incident angle of 30 ° or less is provided.

【0007】レンズ等の特定光学要素表面に形成された
赤外線透過防止誘電体多層膜は、入射光のうち700〜
1000nmの波長を有する近赤外光を選択的に反射させ
る。逆に、400〜600nmの波長を持つ可視光を平均
的に見て90%前後透過させる。この為、かかる光学要
素を用いる事によってCCDに対する迷光を有効に防止
する事が可能になる。光学要素としては、レンズの他に
カバーガラスや水晶フィルタを選んでも同等の作用が得
られる。
The infrared ray transmission preventing dielectric multilayer film formed on the surface of a specific optical element such as a lens is 700 to 700% of the incident light.
Selectively reflects near infrared light having a wavelength of 1000 nm. On the contrary, visible light having a wavelength of 400 to 600 nm is transmitted by about 90% on average. Therefore, by using such an optical element, it is possible to effectively prevent the stray light to the CCD. As the optical element, the same effect can be obtained by selecting a cover glass or a crystal filter in addition to the lens.

【0008】[0008]

【実施例】以下図面を参照して本発明の好適な実施例を
詳細に説明する。図1は本発明にかかる赤外カットフィ
ルタ付カメラの一実施例を示す模式的な部分断面図であ
る。この例は、車載用あるいは防犯監視用に用いられる
超小型且つ広角のサーベランスカメラである。カメラ口
径は10mm程度であり、光軸長は数十mm程度であり、撮
影視野角は120〜130°である。図示する様に、サ
ーベランスカメラは光軸に沿って配列された光学要素を
含む結像光学系1とCCD2からなる撮像素子とで構成
されている。結像光学系1は、集光レンズ、補正レン
ズ、対物レンズ等を含むレンズ系と、視野絞り3と、水
晶フィルタ4と、カバーガラス5等を含んでいる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a schematic partial sectional view showing an embodiment of a camera with an infrared cut filter according to the present invention. This example is an ultra-small and wide-angle surveillance camera used for vehicle installation or crime prevention monitoring. The camera diameter is about 10 mm, the optical axis length is about several tens of mm, and the photographing viewing angle is 120 to 130 °. As shown in the figure, the surveillance camera is composed of an imaging optical system 1 including optical elements arranged along the optical axis, and an image pickup device composed of a CCD 2. The imaging optical system 1 includes a lens system including a condenser lens, a correction lens, an objective lens, etc., a field stop 3, a crystal filter 4, a cover glass 5, and the like.

【0009】本実施例では、特に選択された特定レンズ
6の表面に赤外線透過防止誘電体多層膜からなる赤外カ
ットフィルタ7が形成されている。この多層膜赤外カッ
トフィルタ7は無色透明であるとともに数μm程度の厚
みを有する。従って、実質上結像光学系1の軸長寸法に
影響を及ぼさない。又、カメラ口径寸法にも影響を及ぼ
さない。
In this embodiment, an infrared cut filter 7 made of an infrared transmission preventing dielectric multilayer film is formed on the surface of a particular selected lens 6. The multilayer infrared cut filter 7 is colorless and transparent and has a thickness of about several μm. Therefore, the axial length of the imaging optical system 1 is not substantially affected. In addition, it does not affect the camera aperture size.

【0010】図2は、図1に示すサーベランスカメラの
幾何光学図である。光軸8に沿って平行な入射光9は結
像光学系を介して集光されCCDの結像面10の中央に
像を結ぶ。一方、光軸8に対して60°程度の最大傾斜
角を有する入射光11も結像光学系により集光され、結
像面10の端部に像を結ぶ。この時、多層膜赤外カット
フィルタ7の施された特定レンズ6に対して、最大傾斜
入射光11は光軸8に対して30°以下の傾きで通過す
る。従って、多層膜赤外カットフィルタ7の入射角依存
性を相当程度抑制できる。この様に、最大入射角の小さ
な面を有するレンズを選択して多層膜赤外カットフィル
タ7を形成する事が好ましい。
FIG. 2 is a geometrical optical diagram of the surveillance camera shown in FIG. Incident light 9 parallel to the optical axis 8 is condensed through an image forming optical system and forms an image at the center of the image forming surface 10 of the CCD. On the other hand, the incident light 11 having a maximum inclination angle of about 60 ° with respect to the optical axis 8 is also condensed by the imaging optical system and forms an image at the end of the imaging surface 10. At this time, the maximum inclined incident light 11 passes through the specific lens 6 provided with the multilayer infrared cut filter 7 with an inclination of 30 ° or less with respect to the optical axis 8. Therefore, the incident angle dependence of the multilayer infrared cut filter 7 can be suppressed to a considerable extent. Thus, it is preferable to form the multilayer infrared cut filter 7 by selecting a lens having a surface with a small maximum incident angle.

【0011】図3は図1に示すサーベランスカメラの変
形例である。理解を容易にする為に、対応する構成部品
については対応する参照番号を付している。この例で
は、多層膜赤外カットフィルタ7は水晶フィルタ4の表
面に直接形成されている。この水晶フィルタ4は結像光
学系1の後段に配されており、この面に対する入射角の
幅は30°以下である。水晶フィルタ4はカラービデオ
カメラの場合に必要とされ、水晶の複屈折作用によりモ
アレ縞を打ち消すとともに焦点合わせを行なう。水晶フ
ィルタ4は一般に複数の水晶板を重ねた積層構造を有す
る。板厚や枚数あるいは配列は光学系1の設計条件に応
じて適宜選択される。この例では、3枚の水晶板が用い
られ、その偏光軸は互いに60°の等間隔で交差してい
る。
FIG. 3 shows a modification of the surveillance camera shown in FIG. To facilitate understanding, corresponding components have corresponding reference numbers. In this example, the multilayer infrared cut filter 7 is directly formed on the surface of the crystal filter 4. The crystal filter 4 is arranged in the subsequent stage of the imaging optical system 1, and the width of the incident angle with respect to this surface is 30 ° or less. The crystal filter 4 is required in the case of a color video camera, and cancels Moire fringes and performs focusing by the birefringent action of the crystal. The crystal filter 4 generally has a laminated structure in which a plurality of crystal plates are stacked. The plate thickness, the number of sheets, and the arrangement are appropriately selected according to the design conditions of the optical system 1. In this example, three crystal plates are used, and their polarization axes intersect each other at equal intervals of 60 °.

【0012】図4は図1に示すサーベランスカメラのさ
らに他の変形例を示す。この例では多層膜赤外カットフ
ィルタ7はカバーガラス5の表面に形成されている。こ
のカバーガラス5はCCD2の直前に配置されておりこ
れを保護している。カバーガラス5に対する入射角の幅
はやはり30°以下であり、多層膜赤外カットフィルタ
7の入射角依存性を軽減する為に適した部分である。な
お、理解を容易にする為に図1に対応する部品について
は対応する参照番号を付している。
FIG. 4 shows another modification of the surveillance camera shown in FIG. In this example, the multilayer infrared cut filter 7 is formed on the surface of the cover glass 5. The cover glass 5 is arranged immediately before the CCD 2 and protects it. The width of the incident angle with respect to the cover glass 5 is also 30 ° or less, which is a portion suitable for reducing the incident angle dependence of the multilayer infrared cut filter 7. In order to facilitate understanding, parts corresponding to those in FIG. 1 are designated by corresponding reference numbers.

【0013】次に、図5を参照して図1に示す多層膜赤
外カットフィルタ7の具体的な構成例を説明する。この
例では、特定レンズ6を基板として(屈折率n=1.6
85)その上に通常の真空蒸着を用いて誘電体を多層に
重ねたものである。この例では高屈折率膜材料にTiO
2 を用い低屈折率膜材料にSiO2 を用いた。膜の構成
については、基板面から数えて第1層に調整部Aとして
SiO2 を膜厚d=184.8nmで真空蒸着した。次
に、第2層から第11層にかけて交互部Bとして膜厚d
=85.1nmのTiO2 と膜厚d=136.9nmのSi
2 とを交互に真空蒸着した。さらに、第12層及び第
13層に接合層Cとして膜厚d=93.6nmのTiO2
と膜厚d=150.6nmのSiO2 を蒸着した。さらに
第14層ないし第24層にかけて交互層Dとして膜厚d
=105.5nmのTiO2 と膜厚d=169.8nmのS
iO2 を交互に蒸着した。最後の第25層に調整層Eと
してSiO2 を膜厚d=82.1nmで真空蒸着した。な
お、レンズ部材6の外径寸法は6mmである。
Next, a specific configuration example of the multilayer infrared cut filter 7 shown in FIG. 1 will be described with reference to FIG. In this example, the specific lens 6 is used as a substrate (refractive index n = 1.6
85) On top of that, a dielectric is laminated in multiple layers by using ordinary vacuum deposition. In this example, TiO is used as the high refractive index film material.
2 was used and SiO 2 was used as the low refractive index film material. Regarding the structure of the film, SiO 2 was vacuum-deposited on the first layer as the adjusting part A at a film thickness d = 184.8 nm counting from the substrate surface. Next, as the alternate portion B from the second layer to the eleventh layer, the film thickness d
= 85.1 nm TiO 2 and film thickness d = 136.9 nm Si
Alternately vacuum deposited with O 2 . Further, a TiO 2 film having a film thickness d = 93.6 nm is formed as a bonding layer C on the 12th and 13th layers.
And SiO 2 with a film thickness d = 150.6 nm were vapor deposited. Further, a film thickness d is formed as an alternate layer D over the 14th to 24th layers.
= 105.5 nm TiO 2 and film thickness d = 169.8 nm S
Alternately deposited iO 2 . SiO 2 was vacuum-deposited as a control layer E on the final 25th layer with a film thickness d = 82.1 nm. The outer diameter of the lens member 6 is 6 mm.

【0014】図6に、図5で示した多層膜赤外カットフ
ィルタ7の透過特性を示す。このグラフは横軸に波長
(単位nm)をとってあり、縦軸に透過率(単位%)をと
ってある。グラフから明らかな様に、このフィルタは波
長700nmを境にして、可視光に対して90%以上の透
過率を示すとともに、近赤外線に対しては極めて優れた
遮断特性を有する。なお図5に示した調整層A及びEは
第1のリップル12を抑制する為のものであり、接合層
Cは他のリップル13を平坦化させる為のものである。
FIG. 6 shows the transmission characteristics of the multilayer infrared cut filter 7 shown in FIG. In this graph, the horizontal axis shows the wavelength (unit: nm), and the vertical axis shows the transmittance (unit:%). As is clear from the graph, this filter has a transmittance of 90% or more for visible light with a wavelength of 700 nm as a boundary, and has an extremely excellent blocking property for near infrared rays. The adjustment layers A and E shown in FIG. 5 are for suppressing the first ripple 12, and the bonding layer C is for flattening other ripples 13.

【0015】図5に示した多層膜赤外カットフィルタに
おいては、高屈折率膜材料にTiO2 を用い低屈折膜材
料にSiO2 を用いて通常の真空蒸着により成膜した。
しかしながら、本発明はこの様な材料、構造あるいは製
法により得られた赤外カットフィルタに限られるもので
はない。例えば、高屈折率膜材料にTa2 5 と低屈折
率膜材料にSiO2 の組み合わせを用いイオンプレーテ
ィングでアシスト蒸着を行なっても良い。この時には、
図5で示したTiO2 とSiO2 の組み合わせによる通
常の真空蒸着よりも、短波長側の屈折率分散が小さく且
つ透過率の波長依存性即ち波長シフトが減少する。
In the multilayer infrared cut filter shown in FIG. 5, TiO 2 is used as the high refractive index film material and SiO 2 is used as the low refractive index film material by the ordinary vacuum deposition.
However, the present invention is not limited to the infrared cut filter obtained by such a material, structure or manufacturing method. For example, a combination of Ta 2 O 5 for the high refractive index film material and SiO 2 for the low refractive index film material may be used to perform the assisted deposition by ion plating. At this time,
The refractive index dispersion on the short wavelength side is smaller and the wavelength dependence of the transmittance, that is, the wavelength shift, is smaller than in the ordinary vacuum deposition using the combination of TiO 2 and SiO 2 shown in FIG.

【0016】上述した実施例においては、例えばレンズ
部材に多層膜赤外カットフィルタを形成してカメラに組
み込んでいた。しかしながら、本発明の基本的な概念は
カメラに組み込まれるレンズばかりでなく広く一般のレ
ンズに適用可能なものである。そこで、図7に単品の凸
レンズに多層膜赤外カットフィルタを施した例を示す。
このレンズ部材14の一面側には多層膜赤外カットフィ
ルタ15が施されている。又、対向面側にはAR膜16
が施されている。このAR膜16は増透膜あるいは反射
防止膜として機能する。
In the above-described embodiment, for example, the multilayer infrared cut filter is formed on the lens member and incorporated in the camera. However, the basic concept of the present invention can be applied not only to a lens incorporated in a camera but also to a wide range of general lenses. Therefore, FIG. 7 shows an example in which a multilayer infrared cut filter is applied to a single convex lens.
A multilayer infrared cut filter 15 is provided on one surface side of the lens member 14. Further, the AR film 16 is provided on the facing surface side.
Has been applied. The AR film 16 functions as a transparent film or an antireflection film.

【0017】[0017]

【発明の効果】以上説明した様に、本発明によれば、カ
メラの結像光学系に含まれる特定の光学要素例えばレン
ズの表面に直接多層膜赤外カットフィルタを形成する事
により、CCD等の撮像素子に対する迷光を抑止する事
ができるという効果がある。この多層膜赤外カットフィ
ルタは無色透明である上、膜厚が極めて薄いので結像光
学系1の小型化が可能になるという効果がある。なお、
多層膜赤外カットフィルタが直接形成されたレンズ部材
はカメラばかりでなく、従来の着色赤外吸収ガラス板に
代えて様々な光学装置に応用可能である。
As described above, according to the present invention, by forming a multilayer infrared cut filter directly on the surface of a specific optical element, for example, a lens included in an image forming optical system of a camera, a CCD or the like is formed. There is an effect that stray light to the image pickup device can be suppressed. Since this multilayer infrared cut filter is colorless and transparent and has an extremely thin film thickness, it has an effect that the imaging optical system 1 can be downsized. In addition,
The lens member on which the multilayer infrared cut filter is directly formed can be applied not only to the camera but also to various optical devices in place of the conventional colored infrared absorbing glass plate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる赤外カットフィルタ付カメラの
一例を示す模式的な断面図である。
FIG. 1 is a schematic sectional view showing an example of a camera with an infrared cut filter according to the present invention.

【図2】図1に示すカメラの幾何光学図である。FIG. 2 is a geometrical optical diagram of the camera shown in FIG.

【図3】図1に示すカメラの変形例を示す模式的な断面
図である。
FIG. 3 is a schematic cross-sectional view showing a modified example of the camera shown in FIG.

【図4】同じく他の変形例を示す模式的な断面図であ
る。
FIG. 4 is a schematic sectional view showing another modification of the same.

【図5】図1に示した多層膜赤外カットフィルタの層構
造を示す模式図である。
5 is a schematic diagram showing a layer structure of the multilayer infrared cut filter shown in FIG.

【図6】図5に示す多層膜赤外カットフィルタの透過特
性を示すグラフである。
6 is a graph showing transmission characteristics of the multilayer infrared cut filter shown in FIG.

【図7】多層膜赤外カットフィルタをレンズ表面に直接
適用した例を示す模式図である。
FIG. 7 is a schematic view showing an example in which a multilayer infrared cut filter is directly applied to a lens surface.

【符号の説明】[Explanation of symbols]

1 結像光学系 2 CCD 3 視野絞り 4 水晶フィルタ 5 カバーガラス 6 レンズ 7 多層膜赤外カットフィルタ 1 Imaging Optical System 2 CCD 3 Field Stop 4 Crystal Filter 5 Cover Glass 6 Lens 7 Multilayer Infrared Cut Filter

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 光軸に沿って配列された光学要素を含む
結像光学系と撮像素子とからなるカメラにおいて、赤外
波長領域の迷光を遮断する為に特定の光学要素の表面に
直接赤外線透過防止誘電体多層膜を設けた事を特徴とす
る赤外カットフィルタ付カメラ。
1. In a camera including an imaging optical system including optical elements arranged along an optical axis and an image pickup element, infrared rays are directly applied to a surface of a specific optical element in order to block stray light in an infrared wavelength region. A camera with an infrared cut filter, which is provided with a transmission-preventing dielectric multilayer film.
【請求項2】 該特定光学要素はレンズである事を特徴
とする請求項1に記載の赤外カットフィルタ付カメラ。
2. The camera with an infrared cut filter according to claim 1, wherein the specific optical element is a lens.
【請求項3】 該レンズは結像光学系において光軸に対
する最大入射角度が30°以下となる面を有している事
を特徴とする請求項2に記載の赤外カットフィルタ付カ
メラ。
3. The camera with an infrared cut filter according to claim 2, wherein the lens has a surface having a maximum incident angle of 30 ° or less with respect to the optical axis in the imaging optical system.
【請求項4】 該特定光学要素は撮像素子の直前に配さ
れたカバーガラスである事を特徴とする請求項1に記載
の赤外カットフィルタ付カメラ。
4. The camera with an infrared cut filter according to claim 1, wherein the specific optical element is a cover glass arranged immediately before the image pickup element.
【請求項5】 該特定光学要素は結像光学系の後段に配
された水晶フィルタである事を特徴とする請求項1に記
載の赤外カットフィルタ付カメラ。
5. The camera with an infrared cut filter according to claim 1, wherein the specific optical element is a crystal filter arranged in a subsequent stage of the imaging optical system.
【請求項6】 赤外線透過防止誘電体多層膜によって被
覆されている事を特徴とするレンズ。
6. A lens coated with an infrared ray transmission preventing dielectric multilayer film.
JP4034339A 1992-01-24 1992-01-24 Camera provideo with infrared-ray cut filter Pending JPH05207350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4034339A JPH05207350A (en) 1992-01-24 1992-01-24 Camera provideo with infrared-ray cut filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4034339A JPH05207350A (en) 1992-01-24 1992-01-24 Camera provideo with infrared-ray cut filter

Publications (1)

Publication Number Publication Date
JPH05207350A true JPH05207350A (en) 1993-08-13

Family

ID=12411388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4034339A Pending JPH05207350A (en) 1992-01-24 1992-01-24 Camera provideo with infrared-ray cut filter

Country Status (1)

Country Link
JP (1) JPH05207350A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003101832A (en) * 2001-09-21 2003-04-04 Sony Corp Image pickup optical system and image pickup device
JP2006053361A (en) * 2004-08-12 2006-02-23 Olympus Corp Optical system having a plurality of optical elements and image pickup device provided with the same
JP2006311321A (en) * 2005-04-28 2006-11-09 Matsushita Electric Ind Co Ltd Imaging apparatus, and portable terminal device using the same
JP2007183333A (en) * 2006-01-05 2007-07-19 Fujinon Sano Kk Imaging apparatus
US7256949B2 (en) 2001-12-12 2007-08-14 Nikon Corporation Optical system with wavelength selecting device
JP2007279750A (en) * 2007-04-13 2007-10-25 Nec Corp Incidence preventing film forming method of condenser lens
US7367537B2 (en) 2003-03-25 2008-05-06 Fujifilm Corporation Color-image pickup device in which an R picture signal is relatively enhanced with distance from center of light-reception area
US7411729B2 (en) 2004-08-12 2008-08-12 Olympus Corporation Optical filter, method of manufacturing optical filter, optical system, and imaging apparatus
JP2009058716A (en) * 2007-08-31 2009-03-19 Seiko Epson Corp Illuminating device, monitoring device and image display device
CN102651378A (en) * 2011-02-22 2012-08-29 索尼公司 Imaging device and camera module
WO2013015303A1 (en) * 2011-07-28 2013-01-31 旭硝子株式会社 Optical member
JP2015175865A (en) * 2014-03-13 2015-10-05 セイコーエプソン株式会社 Optical component, method for manufacturing optical component, electronic equipment, and traveling object
JP2015210234A (en) * 2014-04-30 2015-11-24 株式会社島津製作所 Polychromator, and analyzer including the same
US9304236B2 (en) 2009-12-07 2016-04-05 Asahi Glass Company, Limited Optical member, near infrared cut filter, solid-state imaging element, lens for imaging device, and imaging/display device using the same
WO2022100294A1 (en) * 2020-11-10 2022-05-19 Oppo广东移动通信有限公司 Electronic device, and camera device and lens module and camera lens thereof

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003101832A (en) * 2001-09-21 2003-04-04 Sony Corp Image pickup optical system and image pickup device
US7256949B2 (en) 2001-12-12 2007-08-14 Nikon Corporation Optical system with wavelength selecting device
US7508599B2 (en) 2001-12-12 2009-03-24 Nikon Corporation Optical system with wavelength selecting device
US7367537B2 (en) 2003-03-25 2008-05-06 Fujifilm Corporation Color-image pickup device in which an R picture signal is relatively enhanced with distance from center of light-reception area
JP2006053361A (en) * 2004-08-12 2006-02-23 Olympus Corp Optical system having a plurality of optical elements and image pickup device provided with the same
US7411729B2 (en) 2004-08-12 2008-08-12 Olympus Corporation Optical filter, method of manufacturing optical filter, optical system, and imaging apparatus
JP2006311321A (en) * 2005-04-28 2006-11-09 Matsushita Electric Ind Co Ltd Imaging apparatus, and portable terminal device using the same
JP2007183333A (en) * 2006-01-05 2007-07-19 Fujinon Sano Kk Imaging apparatus
JP2007279750A (en) * 2007-04-13 2007-10-25 Nec Corp Incidence preventing film forming method of condenser lens
JP2009058716A (en) * 2007-08-31 2009-03-19 Seiko Epson Corp Illuminating device, monitoring device and image display device
US9304236B2 (en) 2009-12-07 2016-04-05 Asahi Glass Company, Limited Optical member, near infrared cut filter, solid-state imaging element, lens for imaging device, and imaging/display device using the same
CN102651378A (en) * 2011-02-22 2012-08-29 索尼公司 Imaging device and camera module
JP2012175461A (en) * 2011-02-22 2012-09-10 Sony Corp Imaging apparatus and camera module
WO2013015303A1 (en) * 2011-07-28 2013-01-31 旭硝子株式会社 Optical member
CN103718070A (en) * 2011-07-28 2014-04-09 旭硝子株式会社 Optical member
JPWO2013015303A1 (en) * 2011-07-28 2015-02-23 旭硝子株式会社 Optical member
US9322965B2 (en) 2011-07-28 2016-04-26 Asahi Glass Company, Limited Optical member
JP2015175865A (en) * 2014-03-13 2015-10-05 セイコーエプソン株式会社 Optical component, method for manufacturing optical component, electronic equipment, and traveling object
JP2015210234A (en) * 2014-04-30 2015-11-24 株式会社島津製作所 Polychromator, and analyzer including the same
WO2022100294A1 (en) * 2020-11-10 2022-05-19 Oppo广东移动通信有限公司 Electronic device, and camera device and lens module and camera lens thereof

Similar Documents

Publication Publication Date Title
JPH05207350A (en) Camera provideo with infrared-ray cut filter
US7110034B2 (en) Image pickup apparatus containing light adjustment portion with reflection of a portion of light onto adjacent pixels
US8248699B2 (en) Reflection reducing film, optical member and optical system
US8437084B2 (en) Optical low-pass filter
KR102104081B1 (en) Camera structure, information and communication equipment
CN101361373A (en) Solid-state imaging device, signal processing method, and camera
JPH04257261A (en) Solid-state image sensing device
JP4506678B2 (en) Prism optical system and imaging device
US7038722B2 (en) Optical imaging system for suppressing the generation of red-toned ghosting particularly when there is background light
JP2004354735A (en) Light ray cut filter
JP2003161831A (en) Ray cut filter
KR20100117034A (en) Imaging device unit
JPH10210213A (en) Optical device
US20060132641A1 (en) Optical filter and image pickup apparatus having the same
US11422295B2 (en) Image capture device, optical filter film, and method for manufacturing optical filter film
JP2001272633A (en) Optical low pass filter and infrared cut means for optical low pass filter
JP2007304573A (en) Near ultraviolet ray and infrared ray blocking filter, birefringent plate with near ultraviolet ray and infrared ray blocking filter, optical low pass filter and imaging apparatus
JPH08148665A (en) Solid image pickup element
US6545828B2 (en) Optical device with absorption gradient and selective spectral filtering and lens assembly and camera fitted with such a device
JP4848876B2 (en) Solid-state imaging device cover and solid-state imaging device
US20070153115A1 (en) Image pickup device
JP2003279747A (en) Optical low-pass filter and imaging apparatus using the same
JP2000209510A (en) Image pickup device
JPH0516003B2 (en)
JP4853157B2 (en) Antireflection film, optical element, imaging device, and camera