JP2015210234A - Polychromator, and analyzer including the same - Google Patents

Polychromator, and analyzer including the same Download PDF

Info

Publication number
JP2015210234A
JP2015210234A JP2014093772A JP2014093772A JP2015210234A JP 2015210234 A JP2015210234 A JP 2015210234A JP 2014093772 A JP2014093772 A JP 2014093772A JP 2014093772 A JP2014093772 A JP 2014093772A JP 2015210234 A JP2015210234 A JP 2015210234A
Authority
JP
Japan
Prior art keywords
light
wavelength
correction member
focus correction
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014093772A
Other languages
Japanese (ja)
Other versions
JP6273996B2 (en
Inventor
正章 北脇
Masaaki Kitawaki
正章 北脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2014093772A priority Critical patent/JP6273996B2/en
Publication of JP2015210234A publication Critical patent/JP2015210234A/en
Application granted granted Critical
Publication of JP6273996B2 publication Critical patent/JP6273996B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a polychromator and an analyzer including the polychromator which are capable of preventing an adverse effect caused by unwanted light and detecting light of each wavelength at high output and high resolution.SOLUTION: A focus correction member 14 is arranged between a diffraction grating 11 and a detector 12. In a process of allowing light from the diffraction grating 11 to penetrate through the focus correction member 14, a focal position of light of each wavelength to the detector 12 is corrected. A non-fluorescent multilayer film filter 15 which performs total reflection to light of a predetermined wavelength is vapor deposited on the focus correction member 14. By making light of a predetermined wavelength perform total reflection by the multilayer film filter 15, unwanted light can be removed, and the multilayer film filter 15 itself does not become a stray light source because the multilayer film filter 15 is non-fluorescent. Therefore, by appropriately correcting a focal position of light of each wavelength by the focus correction member 14 while an adverse effect due to unwanted light is prevented, light of each wavelength can be detected at high output and high resolution.

Description

本発明は、回折格子により分光された各波長の光を検出器で検出するためのポリクロメータ及びこれを備えた分析装置に関するものである。   The present invention relates to a polychromator for detecting light of each wavelength separated by a diffraction grating with a detector and an analysis apparatus including the polychromator.

分光測定器の一種として、試料から透過した光を入口スリットから入射した後、回折格子により分光し、各波長の光をそれぞれ検出器で検出するポリクロメータが知られている(例えば、下記特許文献1参照)。ポリクロメータを備えた分析装置においては、例えば光源から試料に測定光を照射し、試料からの透過光又は反射光をポリクロメータの検出器で波長ごとに受光することにより、試料の分析を行うことができる。   As a kind of spectrometer, a polychromator is known in which light transmitted from a sample is incident from an entrance slit, then is split by a diffraction grating, and each wavelength of light is detected by a detector (for example, the following patent document) 1). In an analyzer equipped with a polychromator, for example, the sample is analyzed by irradiating the sample with measurement light from a light source and receiving transmitted light or reflected light from the sample for each wavelength with a detector of the polychromator. Can do.

図3は、従来のポリクロメータ100の構成例を示した概略図である。ポリクロメータ100には、回折格子101及び検出器102の他、スリット103や光学フィルタ104などが備えられている。   FIG. 3 is a schematic diagram showing a configuration example of a conventional polychromator 100. The polychromator 100 is provided with a slit 103, an optical filter 104, and the like in addition to the diffraction grating 101 and the detector 102.

試料からの光は、スリット103を通過して回折格子101に入射する。回折格子101は、入射した光を波長ごとの光に分光し、検出器102側へと導く。検出器102側へと導かれた各波長の光は、光学フィルタ104を透過する過程で、二次光や迷光などの不要な光が除去された後、検出器102に入射する。   Light from the sample passes through the slit 103 and enters the diffraction grating 101. The diffraction grating 101 separates the incident light into light for each wavelength and guides it to the detector 102 side. The light of each wavelength guided to the detector 102 side enters the detector 102 after unnecessary light such as secondary light and stray light is removed in the process of passing through the optical filter 104.

検出器102の受光面121には、例えば複数の受光素子が設けられており、各波長の光をそれぞれ異なる受光素子で受光することができる。光学フィルタ104は、薄い平板状の部材であり、検出器102の受光面121に対して平行になるように、回折格子101と検出器102との間に配置されている。   For example, a plurality of light receiving elements are provided on the light receiving surface 121 of the detector 102, and light of each wavelength can be received by different light receiving elements. The optical filter 104 is a thin flat plate-like member, and is disposed between the diffraction grating 101 and the detector 102 so as to be parallel to the light receiving surface 121 of the detector 102.

光学フィルタ104は、例えばガラスにより形成された平板状の基板の表面に、光学薄膜を成膜することにより構成されている。光学フィルタ104には、吸収型と反射型とがあり、吸収型の色ガラスフィルタが従来から一般的に使用されている。近年では、特定の波長領域で高い透過率又は反射率を有する誘電体多層膜フィルタが用いられる場合もある(例えば、下記特許文献2参照)。   The optical filter 104 is configured by forming an optical thin film on the surface of a flat substrate formed of glass, for example. The optical filter 104 includes an absorption type and a reflection type, and an absorption type colored glass filter is generally used conventionally. In recent years, a dielectric multilayer filter having a high transmittance or reflectance in a specific wavelength region may be used (for example, see Patent Document 2 below).

特開2000−55733号公報JP 2000-55733 A 特開2008−20563号公報JP 2008-20563 A

上記のような従来のポリクロメータ100では、回折格子101において分光された各波長の光が、それぞれ対応する受光素子側に向かって集光される。このとき、図3に示すように、検出器102の受光面121に焦点P101が合致する波長の光もあれば、受光面121よりも手前側に焦点P102がずれたり、受光面121よりも奥側に焦点P103がずれたりする波長の光もある。   In the conventional polychromator 100 as described above, the light of each wavelength dispersed by the diffraction grating 101 is condensed toward the corresponding light receiving element side. At this time, as shown in FIG. 3, if there is light having a wavelength at which the focal point P <b> 101 matches the light receiving surface 121 of the detector 102, the focal point P <b> 102 may be shifted to the near side of the light receiving surface 121. There is also light with a wavelength that causes the focal point P103 to shift to the side.

検出器102の受光面121に対する各波長の光の焦点位置は、検出器102の各受光素子における受光量や分解能に影響を与えるため、非常に重要である。そこで、回折格子101と光学フィルタ104との間に、各波長の光の焦点位置を補正するための焦点補正部材を配置することが考えられる。   The focal position of light of each wavelength with respect to the light receiving surface 121 of the detector 102 is very important because it affects the amount of light received and the resolution of each light receiving element of the detector 102. Therefore, it is conceivable to arrange a focus correction member for correcting the focal position of light of each wavelength between the diffraction grating 101 and the optical filter 104.

ここで、光学フィルタ104として色ガラスフィルタやアセテートフィルタなどを用いた場合には、当該光学フィルタ104が蛍光を発生し、迷光源となるおそれがある。一方、光学フィルタ104として誘電体多層膜フィルタを用いた場合には、当該光学フィルタ104から蛍光は発生しないが、当該光学フィルタ104で反射した特定波長の光が焦点補正部材で再度反射し、当該光学フィルタ104と干渉した結果、不要な光が検出器102に入射するおそれがある。   Here, when a colored glass filter, an acetate filter, or the like is used as the optical filter 104, the optical filter 104 may generate fluorescence and become a stray light source. On the other hand, when a dielectric multilayer filter is used as the optical filter 104, no fluorescence is generated from the optical filter 104, but light of a specific wavelength reflected by the optical filter 104 is reflected again by the focus correction member, As a result of interference with the optical filter 104, unnecessary light may enter the detector 102.

このように、従来のポリクロメータ100では、検出器102に不要な光が入射するのを防止し、かつ、各波長の光の焦点位置を補正することが困難であった。そのため、不要な光による悪影響を防止しつつ、高出力かつ高分解能で各波長の光を検出するのには限界があった。   As described above, in the conventional polychromator 100, it is difficult to prevent unnecessary light from entering the detector 102 and to correct the focal position of light of each wavelength. Therefore, there has been a limit to detecting light of each wavelength with high output and high resolution while preventing adverse effects due to unnecessary light.

本発明は、上記実情に鑑みてなされたものであり、不要な光による悪影響を防止しつつ、高出力かつ高分解能で各波長の光を検出することができるポリクロメータ及びこれを備えた分析装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and a polychromator capable of detecting light of each wavelength with high output and high resolution while preventing adverse effects due to unnecessary light, and an analyzer provided with the polychromator The purpose is to provide.

本発明に係るポリクロメータは、入口スリットと、回折格子と、検出器と、焦点補正部材と、多層膜フィルタとを備える。前記回折格子は、前記入口スリットから入射する光を分光させる。前記検出器は、前記回折格子により分光された各波長の光を検出する。前記焦点補正部材は、前記回折格子と前記検出器との間に配置され、前記回折格子からの光を透過させる過程で、前記検出器に対する各波長の光の焦点位置を補正する。前記多層膜フィルタは、非蛍光性であり、前記焦点補正部材に成膜され、所定の波長の光を全反射させる。   The polychromator according to the present invention includes an entrance slit, a diffraction grating, a detector, a focus correction member, and a multilayer filter. The diffraction grating splits light incident from the entrance slit. The detector detects light of each wavelength separated by the diffraction grating. The focus correction member is disposed between the diffraction grating and the detector, and corrects the focal position of the light of each wavelength with respect to the detector in the process of transmitting the light from the diffraction grating. The multilayer filter is non-fluorescent, is formed on the focus correction member, and totally reflects light having a predetermined wavelength.

このような構成によれば、焦点補正部材により検出器に対する各波長の光の焦点位置を補正することができる。また、多層膜フィルタで所定の波長の光を全反射させることにより、不要な光を除去することができるとともに、当該多層膜フィルタが非蛍光性であるため、多層膜フィルタ自体が迷光源となることがない。   According to such a configuration, the focus position of the light of each wavelength with respect to the detector can be corrected by the focus correction member. Moreover, unnecessary light can be removed by totally reflecting light of a predetermined wavelength with the multilayer filter, and the multilayer filter itself is a stray light source because the multilayer filter is non-fluorescent. There is nothing.

特に、多層膜フィルタが焦点補正部材に成膜されることにより、多層膜フィルタと焦点補正部材とが一体的に構成されているため、多層膜フィルタで反射した所定の波長の光が焦点補正部材で干渉するのを防止することができる。したがって、不要な光による悪影響を防止しつつ、焦点補正部材で各波長の光の焦点位置を適切に補正することにより、高出力かつ高分解能で各波長の光を検出することができる。   Particularly, since the multilayer filter and the focus correction member are integrally formed by forming the multilayer filter on the focus correction member, the light of a predetermined wavelength reflected by the multilayer filter is the focus correction member. Can prevent interference. Therefore, the light of each wavelength can be detected with high output and high resolution by appropriately correcting the focal position of the light of each wavelength with the focus correction member while preventing the adverse effect due to unnecessary light.

また、多層膜フィルタと焦点補正部材とを一体的に構成することにより、部品点数を削減することができるとともに、回折格子及び検出器に対する位置合わせを同時に行うことができるため、メンテナンス性も向上する。   In addition, by integrally configuring the multilayer filter and the focus correction member, the number of parts can be reduced, and the alignment with respect to the diffraction grating and the detector can be performed at the same time, so that maintainability is also improved. .

前記多層膜フィルタは、屈折率の異なる複数種類の膜が前記焦点補正部材に順次成膜されることにより構成されていてもよい。   The multilayer filter may be configured by sequentially forming a plurality of types of films having different refractive indexes on the focus correction member.

このような構成によれば、屈折率の異なる複数種類の膜を焦点補正部材に順次成膜させるだけの簡単な構成により、多層膜フィルタと焦点補正部材とを一体的に構成することができる。   According to such a configuration, the multilayer filter and the focus correction member can be integrally configured with a simple configuration in which a plurality of types of films having different refractive indexes are simply formed on the focus correction member.

前記焦点補正部材は、凹湾曲面からなる入射面と、平面からなる出射面とを有していてもよい。この場合、前記多層膜フィルタは、前記焦点補正部材の出射面に成膜されていていてもよい。   The focus correction member may have an entrance surface made of a concave curved surface and an exit surface made of a flat surface. In this case, the multilayer filter may be formed on the emission surface of the focus correction member.

このような構成によれば、凹湾曲面からなる入射面により、各波長の光の焦点位置を適切に補正することができるとともに、平面からなる出射面に多層膜フィルタを良好に成膜させることができる。   According to such a configuration, the focal position of the light of each wavelength can be appropriately corrected by the incident surface made of a concave curved surface, and the multilayer filter can be satisfactorily formed on the flat emission surface. Can do.

また、出射面側に多層膜フィルタが成膜されるため、焦点補正部材が蛍光性を有する場合であっても、当該焦点補正部材で発生した蛍光を多層膜フィルタで除去することができる。したがって、不要な光による悪影響を効果的に防止することができる。   In addition, since the multilayer filter is formed on the exit surface side, even when the focus correction member has fluorescence, the fluorescence generated by the focus correction member can be removed by the multilayer filter. Therefore, adverse effects due to unnecessary light can be effectively prevented.

本発明に係る分析装置は、前記ポリクロメータを備え、試料からの光を前記ポリクロメータにより測定する。   The analyzer according to the present invention includes the polychromator, and measures light from a sample with the polychromator.

本発明によれば、不要な光による悪影響を防止しつつ、焦点補正部材で各波長の光の焦点位置を適切に補正することにより、高出力かつ高分解能で各波長の光を検出することができる。   According to the present invention, it is possible to detect light of each wavelength with high output and high resolution by appropriately correcting the focal position of the light of each wavelength with the focus correction member while preventing adverse effects due to unnecessary light. it can.

本発明の一実施形態に係る分析装置の構成例を示した概略図である。It is the schematic which showed the structural example of the analyzer which concerns on one Embodiment of this invention. ポリクロメータの具体的構成について説明するための概略図である。It is the schematic for demonstrating the specific structure of a polychromator. 従来のポリクロメータの構成例を示した概略図である。It is the schematic which showed the structural example of the conventional polychromator.

図1は、本発明の一実施形態に係る分析装置の構成例を示した概略図である。この分析装置は、ポリクロメータ1及び光源2を備えており、光源2から試料Sに光を照射することにより、試料Sからの透過光又は反射光をポリクロメータ1で測定することができる。   FIG. 1 is a schematic diagram illustrating a configuration example of an analyzer according to an embodiment of the present invention. The analyzer includes a polychromator 1 and a light source 2, and the light transmitted from the sample S or reflected light from the sample S can be measured by the polychromator 1 by irradiating the sample S with light from the light source 2.

ポリクロメータ1には、回折格子11、検出器12、スリット13、焦点補正部材14及び多層膜フィルタ15などが備えられている。試料Sからの光のうちスリット13を通過した光は、回折格子101で反射した後、焦点補正部材14及び多層膜フィルタ15を透過して、検出器12で受光される。   The polychromator 1 includes a diffraction grating 11, a detector 12, a slit 13, a focus correction member 14, a multilayer filter 15, and the like. Of the light from the sample S, the light that has passed through the slit 13 is reflected by the diffraction grating 101, passes through the focus correction member 14 and the multilayer filter 15, and is received by the detector 12.

この例における回折格子11は、反射型回折格子であり、スリット13側から入射する光を凹面状の回折格子面で反射させることにより、波長ごとの光に分光することができる。回折格子11により分光された各波長の光は、検出器12により波長ごとに受光され、各波長の受光強度が検出される。検出器12は、例えばフォトダイオードアレイ、CCD(Charge Coupled Device)センサ又はCMOS(Complementary Metal-Oxide Semiconductor)センサなどにより構成することができる。   The diffraction grating 11 in this example is a reflection type diffraction grating, and the light incident from the slit 13 side is reflected by the concave diffraction grating surface, so that it can be split into light for each wavelength. The light of each wavelength dispersed by the diffraction grating 11 is received for each wavelength by the detector 12, and the received light intensity of each wavelength is detected. The detector 12 can be composed of, for example, a photodiode array, a CCD (Charge Coupled Device) sensor, a CMOS (Complementary Metal-Oxide Semiconductor) sensor, or the like.

本実施形態では、回折格子11と検出器12との間に、一体的に構成された焦点補正部材14及び多層膜フィルタ15が配置されている。焦点補正部材14は、例えば石英ガラスにより構成されている。また、多層膜フィルタ15は、例えば誘電体多層膜により構成されている。   In the present embodiment, the focus correction member 14 and the multilayer filter 15 that are integrally formed are disposed between the diffraction grating 11 and the detector 12. The focus correction member 14 is made of, for example, quartz glass. The multilayer filter 15 is made of, for example, a dielectric multilayer film.

図2は、ポリクロメータ1の具体的構成について説明するための概略図である。焦点補正部材14は、凹湾曲面からなる入射面41と、平面からなる出射面42とを有している。回折格子11からの光は、入射面41から焦点補正部材14に入射し、当該焦点補正部材14を透過して出射面42から出射される。   FIG. 2 is a schematic diagram for explaining a specific configuration of the polychromator 1. The focus correction member 14 has an incident surface 41 formed of a concave curved surface and an output surface 42 formed of a flat surface. The light from the diffraction grating 11 enters the focus correction member 14 from the incident surface 41, passes through the focus correction member 14, and is emitted from the emission surface 42.

検出器12の受光面21には、例えば複数の受光素子(図示せず)が設けられており、回折格子11で分光された各波長の光をそれぞれ異なる受光素子で受光することができる。焦点補正部材14は、その出射面42が検出器12の受光面121に対して平行になるように配置される。   The light receiving surface 21 of the detector 12 is provided with, for example, a plurality of light receiving elements (not shown), and light of each wavelength dispersed by the diffraction grating 11 can be received by different light receiving elements. The focus correction member 14 is disposed such that its emission surface 42 is parallel to the light receiving surface 121 of the detector 12.

焦点補正部材14の入射面41が凹湾曲面(例えば凹球面)で構成されることにより、回折格子11からの光は、入射面41における入射位置に応じた角度で屈折する。この入射面41の形状を適切に設定することにより、回折格子11で分光された各波長の光が焦点補正部材14を透過する過程で、それらの各波長の光の焦点位置を補正することができる。   By forming the incident surface 41 of the focus correction member 14 as a concave curved surface (for example, a concave spherical surface), the light from the diffraction grating 11 is refracted at an angle corresponding to the incident position on the incident surface 41. By appropriately setting the shape of the incident surface 41, the focal position of the light of each wavelength can be corrected in the process in which the light of each wavelength dispersed by the diffraction grating 11 passes through the focus correction member 14. it can.

具体的には、焦点補正部材14を透過した各波長の光は、それらの焦点Pが同一平面上に位置するように、検出器12側へと導かれる。したがって、検出器12の受光面21に対する焦点補正部材14の位置を調整することにより、検出器12の受光面21に対して各波長の光の焦点Pが合致するように、焦点補正部材14により各波長の光の焦点位置を補正することができる。   Specifically, the light of each wavelength transmitted through the focus correction member 14 is guided to the detector 12 side so that the focal point P is located on the same plane. Therefore, by adjusting the position of the focus correction member 14 with respect to the light receiving surface 21 of the detector 12, the focus correction member 14 adjusts the focus P of the light of each wavelength to the light receiving surface 21 of the detector 12. The focal position of light of each wavelength can be corrected.

多層膜フィルタ15は、焦点補正部材14の出射面42に成膜されている。多層膜フィルタ15は、屈折率の異なる複数種類の膜により構成されており、これらの膜を焦点補正部材14の出射面42に対して順次成膜させるだけの簡単な構成により、均一な厚みの膜が積層された多層膜フィルタ15を焦点補正部材14と一体的に構成することができる。なお、成膜方法はスパッタリング、真空蒸着、化学気相成長(CVD)等、成膜する材料に応じて公知の方法を適用することができる。   The multilayer filter 15 is formed on the emission surface 42 of the focus correction member 14. The multilayer filter 15 is composed of a plurality of types of films having different refractive indexes, and has a uniform thickness by simply forming these films sequentially on the emission surface 42 of the focus correction member 14. The multilayer filter 15 in which films are laminated can be formed integrally with the focus correction member 14. Note that a known method such as sputtering, vacuum deposition, chemical vapor deposition (CVD), or the like can be applied as a film formation method depending on a material to be formed.

多層膜フィルタ15は、屈折率の低い材料により形成された低屈折率膜と、屈折率の高い材料により形成された高屈折率膜とが、交互に積層された構成であってもよい。この場合、例えば低屈折率膜をSiO膜により構成し、高屈折率膜をTiO膜により構成することができる。 The multilayer filter 15 may have a configuration in which a low refractive index film formed of a material having a low refractive index and a high refractive index film formed of a material having a high refractive index are alternately stacked. In this case, for example, the low refractive index film can be composed of a SiO 2 film, and the high refractive index film can be composed of a TiO 2 film.

この種の多層膜フィルタ15は、所定の波長の光を全反射させるとともに、非蛍光性、すなわち蛍光を発生しない特性を有している。当該多層膜フィルタ15は、二次光や迷光などの不要な光を全反射させることができるように設計される。ただし、多層膜フィルタ15は、上記のような構成に限られるものではなく、他の各種材料を用いて構成することができるとともに、3種類以上の光学薄膜を積層することにより構成することもできる。   This type of multilayer filter 15 has the property of totally reflecting light of a predetermined wavelength and non-fluorescent, that is, does not generate fluorescence. The multilayer filter 15 is designed so that unnecessary light such as secondary light and stray light can be totally reflected. However, the multilayer filter 15 is not limited to the above configuration, and can be configured using other various materials, and can also be configured by laminating three or more types of optical thin films. .

以上のように、本実施形態では、焦点補正部材14により検出器12に対する各波長の光の焦点位置を補正することができる。また、多層膜フィルタ15で所定の波長の光を全反射させることにより、不要な光を除去することができるとともに、当該多層膜フィルタ15が非蛍光性であるため、多層膜フィルタ15自体が迷光源となることがない。   As described above, in this embodiment, the focus correction member 14 can correct the focal position of the light of each wavelength with respect to the detector 12. Further, unnecessary light can be removed by totally reflecting light of a predetermined wavelength by the multilayer filter 15, and the multilayer filter 15 itself is stagnant because the multilayer filter 15 is non-fluorescent. It does not become a light source.

特に、多層膜フィルタ15が焦点補正部材14に成膜されることにより、多層膜フィルタ15と焦点補正部材14とが一体的に構成されているため、多層膜フィルタ15で反射した所定の波長の光が焦点補正部材14で干渉するのを防止することができる。したがって、不要な光による悪影響を防止しつつ、焦点補正部材14で各波長の光の焦点位置を適切に補正することにより、高出力かつ高分解能で各波長の光を検出することができる。   In particular, since the multilayer filter 15 and the focus correction member 14 are integrally formed by forming the multilayer filter 15 on the focus correction member 14, a predetermined wavelength reflected by the multilayer filter 15 is obtained. It is possible to prevent light from interfering with the focus correction member 14. Therefore, the light of each wavelength can be detected with high output and high resolution by appropriately correcting the focal position of the light of each wavelength by the focus correction member 14 while preventing the adverse effect due to unnecessary light.

また、多層膜フィルタ15と焦点補正部材14とを一体的に構成することにより、部品点数を削減することができるとともに、回折格子11及び検出器12に対する位置合わせを同時に行うことができるため、メンテナンス性も向上する。   Further, since the multilayer filter 15 and the focus correction member 14 are integrally configured, the number of parts can be reduced and the alignment with respect to the diffraction grating 11 and the detector 12 can be performed at the same time. Also improves.

さらに、本実施形態では、凹湾曲面からなる入射面41により、各波長の光の焦点位置を適切に補正することができるとともに、平面からなる出射面42に多層膜フィルタ15を良好に成膜させることができる。   Further, in the present embodiment, the incident surface 41 made of a concave curved surface can appropriately correct the focal position of light of each wavelength, and the multilayer filter 15 can be satisfactorily formed on the emission surface 42 made of a plane. Can be made.

また、出射面42側に多層膜フィルタ15が成膜されるため、焦点補正部材14が蛍光性を有する場合であっても、当該焦点補正部材14で発生した蛍光を多層膜フィルタ15で除去することができる。したがって、不要な光による悪影響を効果的に防止することができる。   Further, since the multilayer filter 15 is formed on the emission surface 42 side, even when the focus correction member 14 has fluorescence, the fluorescence generated by the focus correction member 14 is removed by the multilayer filter 15. be able to. Therefore, adverse effects due to unnecessary light can be effectively prevented.

以上の実施形態では、回折格子11が凹面状の回折格子面で光を反射させるような構成について説明した。しかし、このような構成に限らず、回折格子11は、平面状などの他の形状からなる回折格子面で光を反射させるような構成であってもよい。また、回折格子11は、反射型回折格子に限らず、光を透過させる過程で分光することができるような透過型回折格子であってもよい。   In the above embodiment, the configuration in which the diffraction grating 11 reflects light at the concave diffraction grating surface has been described. However, the configuration is not limited to this, and the diffraction grating 11 may be configured to reflect light on a diffraction grating surface having another shape such as a planar shape. Further, the diffraction grating 11 is not limited to the reflection type diffraction grating, and may be a transmission type diffraction grating capable of performing spectroscopy in the process of transmitting light.

また、以上の実施形態では、光源2から試料Sに光を照射するような構成について説明したが、このような構成に限らず、例えば試料S自体が発光する場合に、その試料Sからの光をポリクロメータ1により測定するような構成であってもよい。   Moreover, although the above embodiment demonstrated the structure which irradiates light to the sample S from the light source 2, it is not restricted to such a structure, for example, when the sample S itself light-emits, the light from the sample S May be configured to be measured by the polychromator 1.

1 ポリクロメータ
2 光源
11 回折格子
12 検出器
13 スリット
14 焦点補正部材
15 多層膜フィルタ
21 受光面
41 入射面
42 出射面
DESCRIPTION OF SYMBOLS 1 Polychromator 2 Light source 11 Diffraction grating 12 Detector 13 Slit 14 Focus correction member 15 Multilayer filter 21 Light-receiving surface 41 Incident surface 42 Output surface

Claims (4)

入口スリットから入射する光を分光させる回折格子と、
前記回折格子により分光された各波長の光を検出する検出器と、
前記回折格子と前記検出器との間に配置され、前記回折格子からの光を透過させる過程で、前記検出器に対する各波長の光の焦点位置を補正する焦点補正部材と、
前記焦点補正部材に成膜され、所定の波長の光を全反射させる非蛍光性の多層膜フィルタとを備えたことを特徴とするポリクロメータ。
A diffraction grating that splits light incident from the entrance slit;
A detector for detecting light of each wavelength dispersed by the diffraction grating;
A focus correction member that is disposed between the diffraction grating and the detector and corrects a focal position of light of each wavelength with respect to the detector in a process of transmitting light from the diffraction grating;
A polychromator comprising a non-fluorescent multilayer filter formed on the focus correction member and totally reflecting light having a predetermined wavelength.
前記多層膜フィルタは、屈折率の異なる複数種類の膜が前記焦点補正部材に順次成膜されることにより構成されていることを特徴とする請求項1に記載のポリクロメータ。   The polychromator according to claim 1, wherein the multilayer filter is configured by sequentially forming a plurality of types of films having different refractive indexes on the focus correction member. 前記焦点補正部材は、凹湾曲面からなる入射面と、平面からなる出射面とを有し、
前記多層膜フィルタは、前記焦点補正部材の出射面に成膜されていることを特徴とする請求項1又は2に記載のポリクロメータ。
The focus correction member has an incident surface made of a concave curved surface and an output surface made of a flat surface,
The polychromator according to claim 1, wherein the multilayer filter is formed on an emission surface of the focus correction member.
請求項1〜3のいずれかに記載のポリクロメータを備え、
試料からの光を前記ポリクロメータにより測定することを特徴とする分析装置。
The polychromator according to any one of claims 1 to 3,
An analyzer characterized by measuring light from a sample with the polychromator.
JP2014093772A 2014-04-30 2014-04-30 Polychromator and analyzer equipped with the same Expired - Fee Related JP6273996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014093772A JP6273996B2 (en) 2014-04-30 2014-04-30 Polychromator and analyzer equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014093772A JP6273996B2 (en) 2014-04-30 2014-04-30 Polychromator and analyzer equipped with the same

Publications (2)

Publication Number Publication Date
JP2015210234A true JP2015210234A (en) 2015-11-24
JP6273996B2 JP6273996B2 (en) 2018-02-07

Family

ID=54612507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014093772A Expired - Fee Related JP6273996B2 (en) 2014-04-30 2014-04-30 Polychromator and analyzer equipped with the same

Country Status (1)

Country Link
JP (1) JP6273996B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117402721A (en) * 2023-11-03 2024-01-16 苏州思迈德生物科技有限公司 Detection device and detection method for multicolor fluorescence detection
CN117402721B (en) * 2023-11-03 2024-04-19 苏州思迈德生物科技有限公司 Detection device and detection method for multicolor fluorescence detection

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05207350A (en) * 1992-01-24 1993-08-13 Copal Co Ltd Camera provideo with infrared-ray cut filter
EP2051050A2 (en) * 2007-10-17 2009-04-22 Horiba Jobin Yvon Inc Spectrometer with cylindrical lens for astigmatism correction and demagnification
JP2011164014A (en) * 2010-02-12 2011-08-25 Shimadzu Corp Polychromator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05207350A (en) * 1992-01-24 1993-08-13 Copal Co Ltd Camera provideo with infrared-ray cut filter
EP2051050A2 (en) * 2007-10-17 2009-04-22 Horiba Jobin Yvon Inc Spectrometer with cylindrical lens for astigmatism correction and demagnification
JP2011164014A (en) * 2010-02-12 2011-08-25 Shimadzu Corp Polychromator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117402721A (en) * 2023-11-03 2024-01-16 苏州思迈德生物科技有限公司 Detection device and detection method for multicolor fluorescence detection
CN117402721B (en) * 2023-11-03 2024-04-19 苏州思迈德生物科技有限公司 Detection device and detection method for multicolor fluorescence detection

Also Published As

Publication number Publication date
JP6273996B2 (en) 2018-02-07

Similar Documents

Publication Publication Date Title
AU2020204606B2 (en) Reference switch architectures for noncontact sensing of substances
US10823663B2 (en) Measurement device and measurement method for thin film provided with transparent substrate
CN109520618B (en) Optical filter and spectrometer
US10012541B2 (en) Optical filter element for devices for converting spectral information into location information
WO2017150062A1 (en) Spectrometry device
CN105258799A (en) Spectrometer with Monochromator and Order Sorting Filter
US8570510B2 (en) Optical unit
US20160299006A1 (en) Atr infrared spectrometer
CN1495416A (en) Method and device for measuring wavelength change in high resolution ratio measuring system
JP6347070B2 (en) Spectroscopic analyzer
JP6273996B2 (en) Polychromator and analyzer equipped with the same
JP2015227858A5 (en)
JP2015161633A (en) Optical system and glossmeter
KR101376290B1 (en) Polychromator comprising multi reflection filter
CN108713135B (en) Spectral analysis system
JP2011033514A (en) Spectrometry device
JP6806604B2 (en) Spectral filter unit and spectrophotometer
JP6331986B2 (en) Optical property measuring device
JP2011164014A (en) Polychromator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171225

R151 Written notification of patent or utility model registration

Ref document number: 6273996

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees