JPH0520677A - Ferromagnetic metal fine particle - Google Patents

Ferromagnetic metal fine particle

Info

Publication number
JPH0520677A
JPH0520677A JP3198644A JP19864491A JPH0520677A JP H0520677 A JPH0520677 A JP H0520677A JP 3198644 A JP3198644 A JP 3198644A JP 19864491 A JP19864491 A JP 19864491A JP H0520677 A JPH0520677 A JP H0520677A
Authority
JP
Japan
Prior art keywords
ferromagnetic metal
metal fine
particles
fine particles
borate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3198644A
Other languages
Japanese (ja)
Inventor
Masafumi Ata
誠文 阿多
Horyu Machida
方隆 町田
Haruo Watanabe
春夫 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP3198644A priority Critical patent/JPH0520677A/en
Publication of JPH0520677A publication Critical patent/JPH0520677A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a ferromagnetic metal fine particles for magnetic recording medium excellent in oxidization resistance showing little secular deterioration for a long term by treating the surface of the particles with aq. soln. of boric acid or borate. CONSTITUTION:The surface of ferromagnetic metal particles is treated with an aq. soln. of boric acid or borate. As for the ferromagnetic metal fine particles, ferromagnetic metal material such as Fe, Co, Ni, etc., or ferromagnetic alloy material essentially comprising these elements are used. The boric acid ion in an borate aq. soln. used includes orthoboric acid ion, diboric acid ion, tetraboric acid ion and other polyboric acid ion. With this surface treatment, long-term stability and holding stability of magnetic characteristics can be significantly improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、塗布型磁気記録媒体の
磁性粉末として使用される強磁性金属微粒子に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to ferromagnetic metal fine particles used as magnetic powder for a coating type magnetic recording medium.

【0002】[0002]

【従来技術】一般に、磁気テープ等の磁気記録媒体は、
磁性粉、バインダ樹脂からなる磁性塗料を支持体上に塗
布、乾燥することにより製造される。近年、磁気記録の
分野、特にビデオテープレコーダ等においては高画質を
達成するために、より一層の高記録密度化が要求されて
いる。この高密度化にともない、従来より磁気記録媒体
等の磁性粉末として使用されていた酸化鉄系材料に代わ
り、鉄または鉄を主体とする金属材料が用いられるよう
になっている。最近ではこのような要求を満たすため
に、非常に微細な粒子形状を有するものが供給されるよ
うになってきており、これを磁気記録媒体の磁性粉末に
用いることで、高記録密度化や高周波数帯域における優
れた磁気変換特性が達成されている。これらの鉄または
鉄から構成される強磁性金属微粒子は酸化鉄やオキシ水
酸化鉄、あるいはCo,Ni,Mn,Cu,Zn,T
i,V等の鉄以外の金属を含む酸化鉄やオキシ水酸化鉄
等を、水素ガスで還元することにより製造され、従来の
酸化鉄系の強磁性微粒子よりも優れた磁気記録特性を有
している。
2. Description of the Related Art Generally, a magnetic recording medium such as a magnetic tape is
It is manufactured by applying a magnetic coating material composed of magnetic powder and binder resin on a support and drying. In recent years, in the field of magnetic recording, particularly in video tape recorders and the like, higher recording density is required to achieve high image quality. Along with this increase in density, iron or a metal material mainly containing iron has been used in place of the iron oxide-based material that has been conventionally used as magnetic powder for magnetic recording media and the like. In recent years, in order to meet such demands, a material having an extremely fine particle shape has been supplied, and by using this as a magnetic powder of a magnetic recording medium, a high recording density and a high recording density can be obtained. Excellent magnetic conversion characteristics in the frequency band are achieved. These iron or ferromagnetic metal fine particles composed of iron are iron oxide, iron oxyhydroxide, Co, Ni, Mn, Cu, Zn, T.
It is manufactured by reducing iron oxide, iron oxyhydroxide, etc. containing metals other than iron such as i and V with hydrogen gas and has magnetic recording characteristics superior to those of conventional iron oxide-based ferromagnetic fine particles. ing.

【0003】ところが、この強磁性金属微粒子は表面活
性が高く、大気中で酸化され易い特性を有しており、場
合によっては発火を伴う虞がある。このような性質は、
磁気記録媒体の低ノズル化に伴い磁性粉末の微細化が進
につれ、ますます強くなる傾向にある。このため、これ
を磁気記録媒体の磁性粉末として用いた場合には、強磁
性金属微粒子の保存中、樹脂や有機溶剤等との組み合せ
による塗料化工程中、さらにはポリエステルフィルム等
の支持体上に塗布してシート化した後、所定の雰囲気,
温度,湿度等の条件下での保管中に、主として酸素やあ
る種のガスあるいは水分等の影響による酸化が進行し
て、飽和磁化等の磁気特性に経時劣化がもたらされると
いう、保存安定性に問題があった。この問題に対して、
一般的には液層法や気層法で金属微粒子の表面に酸化膜
を形成して不動態化させる方法で安定化を図ったり、強
磁性金属微粒子をある種の金属元素,界面活性剤,樹脂
等の有機物で覆う方法などで対処している。
However, the ferromagnetic metal fine particles have a high surface activity and are easily oxidized in the atmosphere, and may be ignited in some cases. Such a property
As the magnetic powder becomes finer with the decrease in the number of nozzles in the magnetic recording medium, it tends to become stronger and stronger. Therefore, when it is used as a magnetic powder for a magnetic recording medium, it is stored on the support such as a polyester film during the storage of the ferromagnetic metal fine particles, the process of coating with a combination with a resin or an organic solvent, and the like. After applying and forming into a sheet,
During storage under conditions of temperature, humidity, etc., oxidation progresses mainly due to the influence of oxygen, certain gases, or water, which leads to deterioration of storage characteristics such as saturation magnetization over time. There was a problem. For this problem,
Generally, a liquid layer method or a vapor layer method is used to stabilize the metal fine particles by forming an oxide film on the surface to passivate them, or the ferromagnetic metal fine particles are treated with a certain metal element, a surfactant, This is dealt with by covering with an organic substance such as resin.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前述の
酸化被膜を形成して不動態化する方法、あるいはある種
の金属元素や有機物で覆う方法では、強磁性金属粒子の
酸化を確実に抑え、磁気記録特性の経時劣化を防ぐ上で
必ずしも十分なものとはいい難くい。また、処理方法に
よっては、逆に表面処理すること自体が磁気特性の劣化
をもたらす場合、塗料化の際の分散性を低下するなどと
いう虞がある。
However, the above-mentioned method of forming an oxide film to passivate or covering with a certain kind of metal element or organic substance surely suppresses the oxidation of the ferromagnetic metal particles, and It is hard to say that it is sufficient to prevent deterioration of recording characteristics over time. On the contrary, depending on the treatment method, when the surface treatment itself causes deterioration of the magnetic properties, there is a risk that the dispersibility at the time of forming a coating material may be reduced.

【0005】そこで、本発明は、このような実状に鑑み
てなされたものであり、金属微粒子の表面処理を工夫す
ることにより、特に耐酸化性に優れ、経時劣化の少ない
磁気記録媒体用の強磁性金属微粒子を提供することを目
的とする。
Therefore, the present invention has been made in view of such a situation, and by devising the surface treatment of the metal fine particles, the present invention is particularly excellent in oxidation resistance and has a strong strength for magnetic recording media with little deterioration over time. It is an object to provide magnetic metal fine particles.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上述の目
的を達成するため鋭意研究を積み重ねてきた結果、強磁
性金属微粒子の表面をホウ酸あるいはホウ酸塩の水溶液
で処理することにより、優れた保存安定性を実現できる
ことを見いだし、本発明を完成するに至った。ここで、
本発明の強磁性金属微粒子としては、Fe,Co,Ni
等の強磁性金属材料、Fe−Co,Fe−Ni,Fe−
Co−Ni,Co−Ni,Fe−Mn−Zn,Fe−N
i−Zn,、Fe−Co−Ni−Cr,Fe−Co−N
i−P,Fe−Co−B,Fe−Co−Cr−B,Fe
−Co−V等のFe,Co,Niを主成分とする各種の
強磁性合金材料を挙げることができる。これらには各種
の特性を付与あるいは改善する目的でAl,Si,T
i,Cr,Mn,Mg,Pなどの元素を添加したものも
含む。これら強磁性金属微粒子の比表面積は任意である
が、好ましくは比表面積25m2/g以上、特に30m2
/g以上のものに適用した場合に有効性が大となり、耐
経時劣化に効果的となることが認められた。本発明は強
磁性金属微粒子の表面をホウ酸あるいはホウ酸塩の水溶
液で処理したことにある。ここで、ホウ酸塩水溶液中、
ホウ酸イオンとしてはオルトホウ酸イオン、二ホウ酸イ
オン、四ホウ酸イオン、その他のポリホウ酸イオンなど
が挙げられる。ホウ酸塩を構成するカチオンとしては、
NH4 +,Li+,Na+,K+,Rb+,Cs+などの一価
のカチオンをはじめ、二価あるいは三価の金属イオンを
含み、またプロトンと併存する水素酸塩であってもよ
い。これらは単独で用いてもよいし、場合によっては二
種類以上の混合溶液でもよい。
The inventors of the present invention have conducted extensive studies to achieve the above-mentioned object, and as a result, by treating the surface of ferromagnetic metal fine particles with an aqueous solution of boric acid or borate. The inventors have found that excellent storage stability can be realized, and have completed the present invention. here,
The ferromagnetic metal fine particles of the present invention include Fe, Co, Ni.
Ferromagnetic metal materials such as Fe-Co, Fe-Ni, Fe-
Co-Ni, Co-Ni, Fe-Mn-Zn, Fe-N
i-Zn, Fe-Co-Ni-Cr, Fe-Co-N
i-P, Fe-Co-B, Fe-Co-Cr-B, Fe
Various ferromagnetic alloy materials containing Fe, Co, and Ni as main components, such as —Co—V, can be cited. For the purpose of imparting or improving various properties to these, Al, Si, T
It also includes those to which elements such as i, Cr, Mn, Mg, and P are added. The specific surface area of these ferromagnetic metal fine particles is arbitrary, but is preferably 25 m 2 / g or more, particularly 30 m 2
It was confirmed that when it is applied to a resin having a viscosity of 1 g / g or more, its effectiveness is high and it is effective for deterioration with time. The present invention resides in that the surface of the ferromagnetic metal fine particles is treated with an aqueous solution of boric acid or borate. Here, in borate aqueous solution,
Examples of borate ions include orthoborate ion, diborate ion, tetraborate ion, and other polyborate ions. As the cation that constitutes the borate,
In addition to monovalent cations such as NH 4 + , Li + , Na + , K + , Rb + , and Cs + , divalent or trivalent metal ions are contained, and even a hydrogen salt coexisting with a proton may be used. Good. These may be used alone or in some cases, may be a mixed solution of two or more kinds.

【作用】[Action]

【0007】本発明の強磁性金属微粒子の表面をホウ酸
あるいはホウ酸塩の水溶液で処理した後、溶媒を直ちに
除去する。一般にメタル磁性粉と称される強磁性金属微
粒子の表面は、保存安定性の目的で薄い酸化被膜を形成
している。この酸化被膜は酸化に伴う体積の膨張により
極めて不規則な構造となっており、大きな比表面積を有
する。本発明の如くホウ酸あるいはホウ酸塩の水溶液で
表面を処理することは、前記酸化過程で生ずる構造不
整、すなわちミクロポリスを塞ぎ、この部位からの酸
素、水、ある種の腐食性ガスなどの侵入を抑える効果を
付与できるものと考えられる。このことは、ホウ酸ある
いはホウ酸塩で処理した場合には磁性が高い状態で維持
されることからも示唆される。また、一般にこのような
強磁性金属微粒子の酸化被膜表面には化学吸着水が存在
し、この中でもとりわけ6配位鉄イオンに結合した化学
吸着水の水酸基は塩基性である。然るにホウ酸は酸であ
り、表面化学吸着水の塩基性水酸基と中和反応により、
脱水し、表面に化学的に安定な被膜を形成するものと推
測される。このことは、例えば、強磁性金属微粒子の希
薄試料の赤外反射吸収スペクトルにおける3690cm
-1の化学吸着水における水酸基のO−H伸縮振動に由来
する吸収バンドが、ホウ酸で処理することにより消失す
ることからも明らかである。
The surface of the ferromagnetic metal fine particles of the present invention is treated with an aqueous solution of boric acid or borate, and then the solvent is immediately removed. The surface of the ferromagnetic metal fine particles, which are generally called metal magnetic powder, forms a thin oxide film for the purpose of storage stability. This oxide film has an extremely irregular structure due to the expansion of volume associated with oxidation, and has a large specific surface area. Treating the surface with an aqueous solution of boric acid or borate as in the present invention closes the structural irregularity generated in the above-mentioned oxidation process, that is, micropolis, and prevents oxygen, water, certain corrosive gases, etc. from this site. It is considered that the effect of suppressing intrusion can be added. This is also suggested by the fact that the magnetism is maintained high when treated with boric acid or borate. Generally, chemically adsorbed water is present on the surface of the oxide film of such ferromagnetic metal fine particles, and among them, the hydroxyl group of the chemically adsorbed water bound to the hexacoordinated iron ion is basic. However, boric acid is an acid, and by the neutralization reaction with the basic hydroxyl group of surface chemically adsorbed water,
It is presumed that it dehydrates and forms a chemically stable film on the surface. This is, for example, 3690 cm in the infrared reflection absorption spectrum of a diluted sample of ferromagnetic metal fine particles.
It is also clear from the fact that the absorption band derived from the OH stretching vibration of the hydroxyl group in the chemically adsorbed water of -1 disappears by the treatment with boric acid.

【0008】[0008]

【実施例】以下、実施例により本発明をさらに説明する
が、本発明はこの実施例により何ら限定解釈されるもの
ではない。 実施例1 磁気記録媒体用強磁性金属微粒子としては針状の鉄粒子
を用いた。この粒子は、比表面積が53.9m2/g、
保磁力Hc=1590(Oe)、飽和磁化σs=120
emu/g、平均長軸長が0.3μm、針状比が8〜1
0のものである。 ホウ酸としては酸化ホウ素B23
用いた。これを水に溶かして0.05モル/50ml水
溶液に調整した。処理方法は、前記粒子を濾紙上に散り
ばめ状態で載せておき、これに前記水溶液を注いだ。針
状の粒子をほぼ完全に濾過し、エタノールを用いて洗浄
を繰り返し行った後、真空乾燥を施した。得られた処理
後の強磁性金属微粒子は、温度60℃、湿度90%の条
件下で1週間保存し、保存前の初期値との比較から磁気
特性の経時劣化について調べた。この結果を表1に示
す。なお、比較例として、処理しない針状の鉄粒子(比
較例1)、および単に水で浸した針状の鉄粒子(比較例
2)を前記実施例と同じ条件下に保存し、経時劣化を測
定した。同表にはその効果も併せて示してある。
EXAMPLES The present invention will be further described below with reference to examples, but the present invention should not be construed as being limited thereto. Example 1 Needle-shaped iron particles were used as the ferromagnetic metal particles for the magnetic recording medium. The particles have a specific surface area of 53.9 m 2 / g,
Coercive force Hc = 1590 (Oe), saturation magnetization σs = 120
emu / g, average major axis length 0.3 μm, acicular ratio 8 to 1
It is 0. Boric oxide B 2 O 3 was used as boric acid. This was dissolved in water to prepare a 0.05 mol / 50 ml aqueous solution. As the treatment method, the particles were placed on a filter paper in a scattered state, and the aqueous solution was poured into the particles. The needle-like particles were almost completely filtered, washed repeatedly with ethanol, and then vacuum dried. The obtained ferromagnetic metal fine particles after the treatment were stored for 1 week under the conditions of a temperature of 60 ° C. and a humidity of 90%, and the deterioration with time of magnetic properties was examined by comparison with the initial value before the storage. The results are shown in Table 1. In addition, as a comparative example, untreated needle-shaped iron particles (Comparative Example 1) and needle-shaped iron particles simply immersed in water (Comparative Example 2) were stored under the same conditions as those of the above-mentioned Examples to prevent deterioration with time. It was measured. The effect is also shown in the table.

【数1】 [Equation 1]

【0009】実施例2 実施例2は金属微粒子として前例と同じ針状の鉄粒子を
用いたが、ホウ酸としてはオルトホウ酸H3BO3を使用
した。このオルトホウ酸を水に溶かして0.05モル/
50ml水溶液に調整した。処理方法は、前記粒子を濾
紙上に散りばめ状態で載せておき、これに前記水溶液を
注いだ。針状鉄粒子をほぼ完全に濾過し、エタノールを
用いて洗浄を繰り返し行った後、真空乾燥を施した。得
られた処理後の強磁性金属微粒子は、温度60℃、湿度
90%の条件下で1週間保存し、保存前の初期値との比
較から磁気特性の経時劣化について調べた。この結果を
表2に示す。なお、比較例として、未処理の鉄粒子(比
較例1)、および単に水で浸した鉄粒子(比較例2)を
同一条件下に保存し、経時劣化を測定した。同表にはそ
の効果も併せて示してある。
Example 2 In Example 2, the same acicular iron particles as in the previous example were used as the metal fine particles, but orthoboric acid H 3 BO 3 was used as the boric acid. Dissolve this orthoboric acid in water to give 0.05 mol /
It was adjusted to a 50 ml aqueous solution. As the treatment method, the particles were placed on a filter paper in a scattered state, and the aqueous solution was poured into the particles. The acicular iron particles were almost completely filtered, washed with ethanol repeatedly, and then vacuum dried. The obtained ferromagnetic metal fine particles after the treatment were stored for 1 week under the conditions of a temperature of 60 ° C. and a humidity of 90%, and the deterioration with time of magnetic properties was examined by comparison with the initial value before the storage. The results are shown in Table 2. As comparative examples, untreated iron particles (Comparative Example 1) and iron particles simply immersed in water (Comparative Example 2) were stored under the same conditions, and the deterioration with time was measured. The effect is also shown in the table.

【数2】 [Equation 2]

【0010】実施例3 実施例3は金属微粒子として前例と同じ針状の鉄粒子を
用いたが、ホウ酸に変えてホウ酸アンモニウム(N
43BO3を使用した。このホウ酸アンモニウムを水
に溶かして0.05モル/50ml水溶液に調整した。
処理方法は、前記粒子を濾紙上に散りばめ状態で載せて
おき、これに前記水溶液を注いだ。針状鉄粒子をほぼ完
全に濾過し、エタノールを用いて洗浄を繰り返し行った
後、真空乾燥を施した。得られた処理後の強磁性金属微
粒子は、温度60℃、湿度90%の条件下で1週間保存
し、保存前の初期値との比較から磁気特性の経時劣化に
ついて調べた。この結果を表3に示す。なお、比較例と
して、未処理の鉄粒子(比較例1)、および単に水で浸
した鉄粒子(比較例2)を同一条件下に保存し、経時劣
化を測定した。同表にはその効果も併せて示してある。
Example 3 In Example 3, the same needle-shaped iron particles as in the previous example were used as the metal fine particles, but ammonium borate (N
Using H 4) 3 BO 3. This ammonium borate was dissolved in water to prepare a 0.05 mol / 50 ml aqueous solution.
As the treatment method, the particles were placed on a filter paper in a scattered state, and the aqueous solution was poured into the particles. The acicular iron particles were almost completely filtered, washed with ethanol repeatedly, and then vacuum dried. The obtained ferromagnetic metal fine particles after the treatment were stored for 1 week under the conditions of a temperature of 60 ° C. and a humidity of 90%, and the deterioration with time of magnetic properties was examined by comparison with the initial value before the storage. The results are shown in Table 3. As comparative examples, untreated iron particles (Comparative Example 1) and iron particles simply immersed in water (Comparative Example 2) were stored under the same conditions, and the deterioration with time was measured. The effect is also shown in the table.

【数3】 [Equation 3]

【0011】以上の表1から表3の結果を基にして、本
発明の表面処理による効果を評価する。ここでは、表面
処理による初期の飽和磁化および保持力の低下を表す指
標としてσs(Initial Dmage)、Hc(Initial Dma
ge)、2週間後のこれらの値の損失を表す指標として△
σs、△Hcを用いる。これらの値は全て%単位で以下
の式で評価する。 σs=〔-(σs処理粉初期値-σs未処理粉初期値)/
σs未処理粉初期値〕×100 Hc=〔-(Hc処理粉初期値-Hc未処理粉初期値)/
Hc未処理粉初期値〕×100 △σs=〔-(σs処理粉初期値-σs処理粉2週間後の
値)/σs未処理粉初期値〕×100 △Hc=〔-(Hc処理粉初期値-Hc処理粉2週間後の
値)/Hc未処理粉初期値〕×100 得られた評価結果を表4に一覧した。
Based on the results of Tables 1 to 3 above, the effect of the surface treatment of the present invention is evaluated. Here, σs (Initial Dmage) and Hc (Initial Dma) are used as indices showing the initial saturation magnetization and the decrease in coercive force due to the surface treatment.
ge) As an index showing the loss of these values after 2 weeks △
σs and ΔHc are used. All of these values are evaluated by the following formula in units of%. σs = [-(σs treated powder initial value-σs untreated powder initial value) /
σs initial value of untreated powder] × 100 Hc = [− (initial value of Hc treated powder−initial value of Hc untreated powder) /
Hc untreated powder initial value] × 100 Δσs = [− (σs treated powder initial value−σs treated powder two weeks later) / σs untreated powder initial value] × 100 ΔHc = [− (Hc treated powder initial value Value-value after 2 weeks of Hc-treated powder) / initial value of Hc-untreated powder] × 100 The evaluation results obtained are listed in Table 4.

【数4】 [Equation 4]

【0012】表4から以下の点が明らかとなる。 (1) 溶媒として水を用いた場合、飽和磁化における初
期値の低下はσsが0.36%と極めて小さいことか
ら、処理溶媒として水を用いることは問題にならない。 (2) 温度60℃、湿度90%の条件下、2週間保存し
た場合の飽和磁化の劣化量は、水のみで処理した場合に
比べ、ホウ酸処理を施したときにはかなり小さく、耐酸
化性が顕著に観測される。なお、未処理のものでは同じ
条件下で△σsが17.63%である。 (3) 温度60℃、湿度90%の条件下、2週間保存し
た場合における保持力の低下も、本発明により顕著に抑
えられる。なお、未処理のものの場合、同じ条件下での
△Hcは−9.48%である。したがって、水のみで処
理した場合の△Hcは−1.69%であることを考える
と、金属磁性粉酸化被膜は、水処理するだけでかなり抑
えられることになる。 (4) B23処理により保磁力の初期値がプラスの値に
なり、しかもこの値が2週間後も維持されることは、処
理により金属微粒子の表面の構造不整が有効に塞がれた
ことを示唆している。
From Table 4, the following points become clear. (1) When water is used as the solvent, the decrease of the initial value in the saturation magnetization is as small as σs of 0.36%. Therefore, the use of water as the treatment solvent is not a problem. (2) Deterioration of saturation magnetization when stored for 2 weeks under conditions of temperature of 60 ° C and humidity of 90% is much smaller when boric acid is treated than when treated only with water, and the oxidation resistance is high. Remarkably observed. In the untreated case, Δσs is 17.63% under the same conditions. (3) The present invention also significantly suppresses the decrease in the holding power when stored for 2 weeks under the conditions of a temperature of 60 ° C. and a humidity of 90%. In the case of untreated one, ΔHc is −9.48% under the same conditions. Therefore, considering that ΔHc when treated with only water is −1.69%, the metal magnetic powder oxide film can be considerably suppressed only by treating with water. (4) The initial value of the coercive force becomes a positive value by the B 2 O 3 treatment, and this value is maintained even after 2 weeks, which means that the treatment effectively blocks the structural irregularity of the surface of the metal fine particles. Suggests that.

【0013】[0013]

【発明の効果】以上の実施例から明らかなように、未処
理のものに比べ、本発明の処理を行うことにより、飽和
磁化の著しい経時劣化の低減が見られ、同時に保磁力も
安定に保たれる。また、この処理に伴う水溶媒の使用は
金属磁性粒子の磁気特性に影響を与えない。したがっ
て、本発明は、磁気特性の経時安定性や保持安定性を著
しく向上できる。
As is clear from the above examples, by performing the treatment of the present invention as compared with the untreated one, a remarkable decrease in the saturation magnetization with time is observed, and at the same time, the coercive force is stably maintained. Be drunk Also, the use of an aqueous solvent with this treatment does not affect the magnetic properties of the metallic magnetic particles. Therefore, the present invention can remarkably improve the temporal stability and the retention stability of the magnetic properties.

Claims (1)

【特許請求の範囲】 【請求項1】 金属微粒子がホウ酸あるいはホウ酸塩の
水溶液で表面処理されたことを特徴とする磁気記録媒体
用強磁性金属微粒子。
1. A ferromagnetic metal fine particle for a magnetic recording medium, wherein the metal fine particle is surface-treated with an aqueous solution of boric acid or borate.
JP3198644A 1991-07-12 1991-07-12 Ferromagnetic metal fine particle Pending JPH0520677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3198644A JPH0520677A (en) 1991-07-12 1991-07-12 Ferromagnetic metal fine particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3198644A JPH0520677A (en) 1991-07-12 1991-07-12 Ferromagnetic metal fine particle

Publications (1)

Publication Number Publication Date
JPH0520677A true JPH0520677A (en) 1993-01-29

Family

ID=16394646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3198644A Pending JPH0520677A (en) 1991-07-12 1991-07-12 Ferromagnetic metal fine particle

Country Status (1)

Country Link
JP (1) JPH0520677A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8911663B2 (en) 2009-03-05 2014-12-16 Quebec Metal Powders, Ltd. Insulated iron-base powder for soft magnetic applications

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8911663B2 (en) 2009-03-05 2014-12-16 Quebec Metal Powders, Ltd. Insulated iron-base powder for soft magnetic applications

Similar Documents

Publication Publication Date Title
US4475946A (en) Ferromagnetic metal particles of iron alloyed with Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Si, P, Mo, Sn, Sb and Ag coated with mono- or dialkoxysilanes
GB1597680A (en) Manufacture of acicular ferromagnetic pigment particles
JPH0520677A (en) Ferromagnetic metal fine particle
JPH0520676A (en) Ferromagnetic metal fine particle
US4487627A (en) Method for preparing ferromagnetic metal particles
JPS5919964B2 (en) Method for producing ferromagnetic metal powder
JPH0633116A (en) Ferromagnetic metallic powder for magnetic recording medium and production thereof
JP2003263720A (en) Ferromagnetic iron alloy powder for magnetic recording medium and method for manufacturing the same
US4497654A (en) Ferromagnetic metallic powders useful for magnetic recording and processes for producing said metallic powders
EP0433894B1 (en) Process for producing magnetic metal powder for magnetic recording
JP2002050508A (en) Method of manufacturing magnetic powder
JPS61216306A (en) Magnetic metal powder and manufacture thereof
JP5228212B2 (en) Magnetic powder for coating type magnetic recording medium, method for producing the same, and magnetic recording medium
JP2940117B2 (en) Ferromagnetic metal particles for magnetic recording media
JPH03174704A (en) Ferromagnetic metal particle and manufacture thereof
JPH0237403B2 (en)
JP2008084418A (en) Magnetic recording medium and method for manufacturing the same
JPH0147522B2 (en)
JPS6349722B2 (en)
JP3242102B2 (en) Magnetic powder and method for producing the same
JPS59107503A (en) Method of manufacturing magnetic powders with iron as main constituent for magnetic recording
JPS62156202A (en) Ferromagnetic metallic powder treated with amines
JPS5854485B2 (en) Metal magnetic powder and processing method
JPH06124827A (en) Manufacture of cobalt adhesive magnetic iron oxide particle powder
JPH01309903A (en) Method for stabilizing ferromagnetic iron powder