JPH05206496A - Semiconductor light receiving device - Google Patents

Semiconductor light receiving device

Info

Publication number
JPH05206496A
JPH05206496A JP4032884A JP3288492A JPH05206496A JP H05206496 A JPH05206496 A JP H05206496A JP 4032884 A JP4032884 A JP 4032884A JP 3288492 A JP3288492 A JP 3288492A JP H05206496 A JPH05206496 A JP H05206496A
Authority
JP
Japan
Prior art keywords
layer
light receiving
carrier concentration
inp
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4032884A
Other languages
Japanese (ja)
Inventor
Susumu Hata
進 秦
Kazutoshi Kato
和利 加藤
Masahiro Yuda
正宏 湯田
Junichi Yoshida
淳一 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4032884A priority Critical patent/JPH05206496A/en
Publication of JPH05206496A publication Critical patent/JPH05206496A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To prevent a drop in reaction speed or inhibit deterioration in the sensibility of a semiconductor light receiving device by installing a semiconductor layer having a larger band gap energy than that of an optical absorption layer and a carrier concentration similar or below that of the optical absorption layer. CONSTITUTION:A semiconductor light receiving device 30 consists of an follows: An n-Ga0.29In0.62P0.38 layer 31 having the carrier concentration of 5X10<15>/cm<3> and the thickness of 0.5 microns, an n-GaInAs layer 12 having the carrier concentration of 1X10<15>/cm<3> and the thickness of 3 microns and an n-InP layer 13 having the carrier concentration of 1X10<16>/cm<3> and the thickness of 1 micron are laminated one after another on an n<+>-InP substrate 11. There are also formed a 2 micron thick p<+>-GaInAs layer 25 and a 1 micron thick p<+>-InP layer 21 respectively. What is more, there is formed a p-n junction 14 on the boarder between each of the layers 12 and 20. An n-type electrode 15, a p-type electrode 16, a dielectric surface protection film 17 and a dielectric reflection preventative film are laid out therein respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は感度において広いダイナ
ミックレンジを有する半導体受光素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light receiving element having a wide dynamic range in sensitivity.

【0002】[0002]

【従来の技術】図3は従来のこの種の受光素子の断面構
造を示す模式図である。従来構造の受光素子10ではn
+ −InP基板11上に低キャリア濃度のGaInAs
層12、キャップ層であるn−InP層13が積層され
ており、層12および層13内に選択的にp型不純物を
導入しp+ −GaInAs層20とp+ −InP層21
を形成することによってpn接合14が形成されてい
る。さらに、n型InP層13上にn電極15と誘電体
絶縁膜17が、p型InP層21上にp電極16が、n
+ −InP基板11上に誘電体反射防止膜18がそれぞ
れ形成されている。本受光素子10においては、信号光
19は基板11側から入射される。このように、受光素
子10はGaInAs層12を光吸収層とする裏面入射
型pinフォトダイオードである。次に、本受光素子の
動作について説明する。本受光素子は電極15と16間
に逆方向のバイアス電圧を印加して使用される。このと
き図3に示すA−A’に沿った受光素子内部に形成され
る電界分布について説明する。まず、光信号が入射され
ていないいわゆる暗状態での分布を図4の41に示す。
この光信号19が入射されていないときの分布41は光
信号が入射されることにより変化する。すなわち、光信
号入射時での電界強度分布は入射光の信号強度に依存す
る。
2. Description of the Related Art FIG. 3 is a schematic view showing a sectional structure of a conventional light receiving element of this type. In the light receiving element 10 having the conventional structure, n
On the − − InP substrate 11, GaInAs having a low carrier concentration is formed.
The layer 12 and the n-InP layer 13 that is a cap layer are stacked. The p + -GaInAs layer 20 and the p + -InP layer 21 are formed by selectively introducing p-type impurities into the layers 12 and 13.
The pn junction 14 is formed by forming the. Further, the n electrode 15 and the dielectric insulating film 17 are formed on the n-type InP layer 13, and the p electrode 16 is formed on the p-type InP layer 21.
A dielectric antireflection film 18 is formed on each + -InP substrate 11. In the present light receiving element 10, the signal light 19 is incident from the substrate 11 side. As described above, the light receiving element 10 is a back-illuminated pin photodiode that uses the GaInAs layer 12 as a light absorption layer. Next, the operation of the light receiving element will be described. This light receiving element is used by applying a reverse bias voltage between the electrodes 15 and 16. At this time, the electric field distribution formed inside the light receiving element along the line AA ′ shown in FIG. 3 will be described. First, the distribution in the so-called dark state where no optical signal is incident is shown at 41 in FIG.
The distribution 41 when the optical signal 19 is not incident changes when the optical signal is incident. That is, the electric field intensity distribution upon incidence of an optical signal depends on the signal intensity of the incident light.

【0003】[0003]

【発明が解決しようとする課題】さて、前述のように光
信号19は基板11側から入射さるが、その波長は1.
5ミクロンであるため、GaInAs層である12およ
び20の内部でのみ吸収される。この光吸収により形成
された光励起キャリアの分布42は光の進行方向に指数
関数的に変化する。光励起キャリアのうち、正孔は層2
0の方向に、電子は層11の方向にそれぞれ向かって走
行する。この結果層12の内部の層20に近い部分は正
孔密度が高くなり、一方層12内部の層11に近い部分
は電子の密度が高くなる。層12の内部に生じたこの走
行中の光励起キャリアの分布は同層12内部の電界分布
を変化させる。入射光の信号強度が小さい場合にはこの
電界分布の変化量は無視できる程度のものであるが、入
射光の信号強度が大きくなってくるに従ってその変化量
も無視出来なくなってくる。走行中の光励起キャリアの
分布は光吸収層12の内部の電界強度を減少させる方向
にあるため、ある入射光強度以上においては電界強度分
布は41から43のように変化する。電界強度分布43
では、層12内部の層11の近傍においては電界強度分
布がほとんど零になるため、暗状態では拡がっていた空
乏層が消滅する。この結果、この光吸収層12内の無電
界領域で発生した光励起キャリアは電界にもとづく走行
が生じないため受光素子の応答速度が極めて遅くなる。
さらに、これらのキャリアの一部は再結合等によって消
滅するため、感度の劣化も生じる。このように、従来構
造の受光素子においては、強い光信号に対して応答速度
が遅くなったり、感度が劣化したりするなどの問題点が
あった。
As described above, the optical signal 19 is incident from the substrate 11 side, and its wavelength is 1.
Since it is 5 microns, it is absorbed only inside the GaInAs layers 12 and 20. The distribution 42 of photoexcited carriers formed by this light absorption exponentially changes in the traveling direction of light. Of the photoexcited carriers, holes are layer 2
In the direction of 0, the electrons travel in the direction of the layer 11, respectively. As a result, the hole density inside the layer 12 near the layer 20 becomes high, while the electron density inside the layer 12 near the layer 11 becomes high. The distribution of photoexcited carriers generated inside the layer 12 during traveling changes the electric field distribution inside the layer 12. When the signal intensity of the incident light is small, the change amount of the electric field distribution is negligible, but the change amount cannot be ignored as the signal intensity of the incident light increases. Since the distribution of photoexcited carriers during traveling is in the direction of decreasing the electric field intensity inside the light absorption layer 12, the electric field intensity distribution changes from 41 to 43 above a certain incident light intensity. Electric field strength distribution 43
Then, since the electric field intensity distribution becomes almost zero in the vicinity of the layer 11 inside the layer 12, the depletion layer that has spread in the dark state disappears. As a result, the photoexcited carriers generated in the non-electric field region in the light absorption layer 12 do not travel due to the electric field, so that the response speed of the light receiving element becomes extremely slow.
Further, some of these carriers disappear due to recombination and the like, which causes deterioration of sensitivity. As described above, the light receiving element having the conventional structure has problems such as a slow response speed to a strong optical signal and deterioration of sensitivity.

【0004】本発明の目的は、強い光信号に対しても応
答速度が低下せず、また感度が劣化しない半導体受光素
子を提供することにある。
An object of the present invention is to provide a semiconductor light receiving element in which the response speed does not decrease even with a strong optical signal and the sensitivity does not deteriorate.

【0005】[0005]

【課題を解決するための手段】この目的を達成するため
に、本発明による半導体受光素子は、受光素子の光吸収
層とn+ 半導体層との間に光吸収層よりも大きなバンド
ギャップエネルギを有し、かつ光吸収層と同程度以下の
キャリア濃度を有する半導体層を設けた構成を有する。
In order to achieve this object, the semiconductor light receiving element according to the present invention provides a bandgap energy larger than that of the light absorbing layer between the light absorbing layer and the n + semiconductor layer of the light receiving element. And a semiconductor layer having a carrier concentration equal to or lower than that of the light absorption layer.

【0006】[0006]

【作用】このような構成により、本発明による半導体受
光素子においては、前述したような強い光信号が入射し
た際に起こる空乏層の消滅を新たに設けた半導体層の内
部にのみ制限することができる。このように、光吸収層
内部には無電界領域が形成されないため、キャリアの走
行が阻害されず、応答速度および感度の劣化が生じな
い。
With such a structure, in the semiconductor light receiving element according to the present invention, the disappearance of the depletion layer that occurs when a strong optical signal as described above is incident can be limited to the inside of the newly provided semiconductor layer. it can. In this way, since no electric field region is formed inside the light absorption layer, carrier travel is not hindered and the response speed and sensitivity are not deteriorated.

【0007】[0007]

【実施例】本発明による第一の実施例の断面構造図を図
1に示す。本発明の半導体受光素子30の構成は以下の
とおりである。n+ −InP基板11上に、キャリア濃
度が5×1015/cm3 で厚さが0.5ミクロンのn−
Ga0.29In0.71As0.620.38層31と、キャリア濃
度が1×1015/cm3 で厚さが3ミクロンのn−Ga
InAs層12と、キャリア濃度が1×1016/cm3
で厚さが1ミクロンのn−InP層13が積層されてお
り、さらに選択的に導入されたp型不純物により、厚さ
0.2ミクロンのp+ −GaInAs層20と、厚さ1
ミクロンのp+ −InP層21が形成され、層12と層
20との境界にpn接合14が形成されている。また、
n型電極15、p型電極16、誘電体表面保護膜17、
誘電体反射防止膜18が設けられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a sectional structural view of the first embodiment according to the present invention. The structure of the semiconductor light receiving element 30 of the present invention is as follows. On the n + -InP substrate 11, an n-type having a carrier concentration of 5 × 10 15 / cm 3 and a thickness of 0.5 μm
Ga 0.29 In 0.71 As 0.62 P 0.38 layer 31 and n-Ga having a carrier concentration of 1 × 10 15 / cm 3 and a thickness of 3 μm
InAs layer 12 and carrier concentration 1 × 10 16 / cm 3
And an n-InP layer 13 having a thickness of 1 micron is stacked, and a p + -GaInAs layer 20 having a thickness of 0.2 micron and a thickness of 1 are formed by p-type impurities selectively introduced.
A micron p + -InP layer 21 is formed and a pn junction 14 is formed at the boundary between the layers 12 and 20. Also,
n-type electrode 15, p-type electrode 16, dielectric surface protective film 17,
A dielectric antireflection film 18 is provided.

【0008】次に受光素子30の動作について説明す
る。電極15に+、電極16に−の極性で5Vの電圧を
印加する。動作時に受光素子30の内部に形成される電
界強度分布について述べる。図2の44で示したものは
光信号が入射していないとき図1のB−B’断面に形成
される電界強度分布である。光信号は1.5ミクロン波
長光であるため、InP層11およびGa0.29In0.71
As0.620.38層31では吸収されない。従って、入射
光信号で励起されるキャリアは層12内部でのみ発生
し、図2の45で示すような指数関数的分布になる。こ
の光励起キャリアのうち正孔は層20の方向に、また電
子は層11の方向にそれぞれ走行する。この光励起キャ
リアの走行に伴って層12内部の電界強度分布は44で
示した暗状態での値から変化する。この変化の大きさは
入射光量に依存するため、一般的には示すことは困難で
あるが、一例を同図の46で示す。46で示す電界強度
分布においては、電界強度が零の領域は層31の内部の
みに制限されていることがわかる。このため、空乏層の
消滅は層31の内部にのみ生じ、光吸収層である層12
内部では生じない。従って、光励起キャリアは常に電界
印加領域で発生する。
Next, the operation of the light receiving element 30 will be described. A voltage of 5 V is applied to the electrode 15 with a positive polarity and to the electrode 16 with a negative polarity. The electric field intensity distribution formed inside the light receiving element 30 during operation will be described. What is denoted by 44 in FIG. 2 is an electric field intensity distribution formed in the BB ′ cross section in FIG. 1 when no optical signal is incident. Since the optical signal is light having a wavelength of 1.5 μm, the InP layer 11 and Ga 0.29 In 0.71
It is not absorbed by the As 0.62 P 0.38 layer 31. Therefore, the carriers excited by the incident light signal are generated only inside the layer 12 and have an exponential distribution as indicated by 45 in FIG. Of the photoexcited carriers, holes travel in the direction of the layer 20 and electrons travel in the direction of the layer 11. With the traveling of the photoexcited carriers, the electric field intensity distribution inside the layer 12 changes from the value in the dark state indicated by 44. Since the magnitude of this change depends on the amount of incident light, it is generally difficult to show, but an example is shown by 46 in the figure. In the electric field intensity distribution indicated by 46, it can be seen that the region where the electric field intensity is zero is limited to the inside of the layer 31. Therefore, the disappearance of the depletion layer occurs only inside the layer 31, and the layer 12 that is the light absorption layer
It does not occur internally. Therefore, photoexcited carriers are always generated in the electric field application region.

【0009】また、層31の厚さを調整することによっ
て、いかなる強さの光信号に対しても上述の効果を得る
ことができる。上記実施例では、基板としてn+ −In
Pを用いたが、半絶縁性基板を用いても差し支えない。
また上記実施例では、光は基板側からの裏面入射構造と
したが、基板とは反対側の表面から入射する構造として
も本発明は有効である。
Further, by adjusting the thickness of the layer 31, the above-mentioned effect can be obtained for an optical signal of any intensity. In the above embodiment, the substrate is n + -In
Although P is used, a semi-insulating substrate may be used.
Further, in the above-described embodiment, the light has a back-illuminated structure from the substrate side, but the present invention is also effective as a structure in which light is incident from the front surface on the side opposite to the substrate.

【0010】第一の実施例においては、半導体層31に
Ga0.29In0.71As0.620.38を用いた構造について
説明したが、上述したように層31は入射光信号に対し
ては透明であれば良い。すなわち、例えば、キャリア濃
度が5×1016/cm3 以下でかつInPに格子整合し
たn型Gax In1-x Asy 1-y (0≦x<0.46
7、0≦y<1)層を層31として用いることができ
る。入射光信号が1.55ミクロン波長光であれば層3
1はy≦0.8,x≦0.374範囲の組成を有するG
x In1-x Asy 1-y 層を用いることができる。な
お、組成を決定するx,yの値には、InP半導体に格
子接合する条件により、x=0.467yの関係がある
ことが知られている。
In the first embodiment, the structure in which Ga 0.29 In 0.71 As 0.62 P 0.38 is used for the semiconductor layer 31 has been described, but as described above, if the layer 31 is transparent to the incident light signal. good. That is, for example, n-type Ga x In 1-x As y P 1-y (0 ≦ x <0.46 with a carrier concentration of 5 × 10 16 / cm 3 or less and lattice-matched to InP).
A 7,0 ≦ y <1) layer can be used as the layer 31. Layer 3 if the incident light signal is 1.55 micron wavelength light
1 is G having a composition of y ≦ 0.8 and x ≦ 0.374.
An a x In 1-x As y P 1-y layer can be used. It is known that the values of x and y that determine the composition have a relationship of x = 0.467y depending on the condition of lattice junction with the InP semiconductor.

【0011】[0011]

【発明の効果】以上説明したように、本発明の半導体受
光素子では従来構造の受光素子で起きていたような無電
界領域での光励起キャリアの発生を防止できるため、応
答速度および感度の劣化は著しく改善される。
As described above, in the semiconductor light receiving element of the present invention, it is possible to prevent the generation of photoexcited carriers in the non-electric field region which occurs in the light receiving element of the conventional structure, so that the response speed and the sensitivity are not deteriorated. Significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の実施例の断面構造図を示す断面
図である。
FIG. 1 is a sectional view showing a sectional structure view of a first embodiment of the present invention.

【図2】図1のB−B’断面における電界強度分布と光
励起キャリア分布を示す特性図である。
FIG. 2 is a characteristic diagram showing an electric field intensity distribution and a photoexcited carrier distribution in a BB ′ cross section of FIG.

【図3】従来構造の半導体受光素子の断面構造図であ
る。
FIG. 3 is a cross-sectional structure diagram of a semiconductor light receiving element having a conventional structure.

【図4】図3のA−A’断面における電界強度分布と光
励起キャリア分布を示す特性図である。
FIG. 4 is a characteristic diagram showing an electric field intensity distribution and a photoexcited carrier distribution in the AA ′ cross section of FIG. 3.

【符号の説明】[Explanation of symbols]

10 従来構造の半導体受光素子 11 n型InP基板 12 GaInAs光吸収層 13 n型InP層 14 pn接合 15 n型電極 16 p型電極 17 誘電体保護膜 18 誘電体反射防止膜 19 入射光信号 20 p+ −GaInAs層 21 p+ −InP層 30 本発明の半導体受光素子 31 n- −Ga0.29In0.71As0.620.38層 41 従来の受光素子での暗状態における電界強度分布 42 入射光信号によって励起されたキャリア分布 43 従来の受光素子での光入射時における電界強度分
布 44 本発明の受光素子での暗状態における電界強度分
布 45 入射光信号によって励起されたキャリア分布 46 本発明の受光素子での光入射時における電界強度
分布
Reference Signs List 10 semiconductor light receiving element of conventional structure 11 n-type InP substrate 12 GaInAs light absorption layer 13 n-type InP layer 14 pn junction 15 n-type electrode 16 p-type electrode 17 dielectric protective film 18 dielectric antireflection film 19 incident optical signal 20 p + −GaInAs layer 21 p + −InP layer 30 Semiconductor light receiving element of the present invention 31 n −Ga 0.29 In 0.71 As 0.62 P 0.38 layer 41 Electric field intensity distribution in dark state in conventional light receiving element 42 Excited by incident light signal Carrier distribution 43 Electric field intensity distribution when light is incident on a conventional light receiving element 44 Electric field intensity distribution in a dark state on the light receiving element of the present invention 45 Carrier distribution excited by an incident light signal 46 Light by the light receiving element of the present invention Electric field strength distribution at incidence

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 淳一 東京都千代田区内幸町一丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Junichi Yoshida 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 pin構造を有するpinフォトダイオ
ードにおいて、当該pinフォトダイオードの光吸収層
を構成する半導体層のそれよりも大きいバンドギャップ
エネルギを有しかつ5×1016/cm3 以下のn型キャ
リア濃度を有する半導体層が、前記の半導体光吸収層に
接しかつn型半導体層側に配置されていることを特徴と
する半導体受光素子。
1. A pin photodiode having a pin structure, which has a bandgap energy larger than that of a semiconductor layer forming a light absorption layer of the pin photodiode and has an n-type of 5 × 10 16 / cm 3 or less. A semiconductor light-receiving element, wherein a semiconductor layer having a carrier concentration is in contact with the semiconductor light absorption layer and is arranged on the n-type semiconductor layer side.
【請求項2】 InP基板上に構成されかつGaInA
s層を吸収層とするpinフォトダイオードにおいて、
キャリア濃度が5×1016/cm3 以下でかつInPに
格子整合したn型Gax In1-x Asy 1-y (0≦x
<0.467、0≦y<1)層が前記GaInAs層に
接しかつn型半導体層側に配置されていることを特徴と
する半導体受光素子。
2. A GaInA substrate formed on an InP substrate.
In a pin photodiode using the s layer as an absorption layer,
N-type Ga x In 1-x As y P 1-y (0 ≦ x with carrier concentration of 5 × 10 16 / cm 3 or less and lattice-matched to InP
<0.467, 0 ≦ y <1) layer is in contact with the GaInAs layer and is arranged on the n-type semiconductor layer side.
JP4032884A 1992-01-24 1992-01-24 Semiconductor light receiving device Pending JPH05206496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4032884A JPH05206496A (en) 1992-01-24 1992-01-24 Semiconductor light receiving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4032884A JPH05206496A (en) 1992-01-24 1992-01-24 Semiconductor light receiving device

Publications (1)

Publication Number Publication Date
JPH05206496A true JPH05206496A (en) 1993-08-13

Family

ID=12371305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4032884A Pending JPH05206496A (en) 1992-01-24 1992-01-24 Semiconductor light receiving device

Country Status (1)

Country Link
JP (1) JPH05206496A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011119353A (en) * 2009-12-01 2011-06-16 Fujifilm Corp Optical sensor, optical sensor array, method of driving the optical sensor, and method of driving the optical sensor array

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011119353A (en) * 2009-12-01 2011-06-16 Fujifilm Corp Optical sensor, optical sensor array, method of driving the optical sensor, and method of driving the optical sensor array
US8669626B2 (en) 2009-12-01 2014-03-11 Fujifilm Corporation Optical sensor, optical sensor array, optical sensor driving method, and optical sensor array driving method

Similar Documents

Publication Publication Date Title
US7687871B2 (en) Reduced dark current photodetector
US5552629A (en) Superlattice avalance photodiode
US7202102B2 (en) Doped absorption for enhanced responsivity for high speed photodiodes
US4212019A (en) Avalanche photodiode
JP5433948B2 (en) Semiconductor photo detector
US20100133637A1 (en) Avalanche photodiode
US5343054A (en) Semiconductor light-detection device with recombination rates
JPH04111478A (en) Light-receiving element
US5053837A (en) Ingaas/inp type pin photodiodes
JP2002231992A (en) Semiconductor light receiving element
JP2682253B2 (en) Avalanche photodiode and manufacturing method thereof
US4816890A (en) Optoelectronic device
US4783689A (en) Photodiode having heterojunction
CA1292055C (en) Ingaas/inp type pin photodiodes
US4729004A (en) Semiconductor photo device
JPH05206496A (en) Semiconductor light receiving device
Dries et al. A 2.0 μm cutoff wavelength separate absorption, charge, and multiplication layer avalanche photodiode using strain-compensated InGaAs quantum wells
JP2003158290A (en) Photodiode
JP3172996B2 (en) Semiconductor light receiving element
JPH01140679A (en) Semiconductor photodetector
JP2670557B2 (en) Avalanche photodiode
JPS59151475A (en) Hetero-structure avalanche-photodiode with buffer layer
JPH04282874A (en) Avalanche photo diode
JPS6130085A (en) Photoconductivity detecting element
JPH0451990B2 (en)