JPH01140679A - Semiconductor photodetector - Google Patents

Semiconductor photodetector

Info

Publication number
JPH01140679A
JPH01140679A JP62299118A JP29911887A JPH01140679A JP H01140679 A JPH01140679 A JP H01140679A JP 62299118 A JP62299118 A JP 62299118A JP 29911887 A JP29911887 A JP 29911887A JP H01140679 A JPH01140679 A JP H01140679A
Authority
JP
Japan
Prior art keywords
light
erbium
semiconductor
wavelength
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62299118A
Other languages
Japanese (ja)
Inventor
Hideaki Noguchi
英明 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62299118A priority Critical patent/JPH01140679A/en
Publication of JPH01140679A publication Critical patent/JPH01140679A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To make it possible to photoelectrically convert selectively only a wavelength concerned in 4f orbital level of erbium, by specifying forbidden band widths of semiconductors constituting various regions and doping a low- concentration region with erbium (Er). CONSTITUTION:Semiconductor layers 2-4 are formed to have a band gap larger than 0.8eV so that, at least in these semiconductor layers 2-4, there is no inter-band absorption with respect to light of wavelength of 1.55mum. Further, position of a p-n junction 9 and dopant concentration and thickness of the semiconductor layer 3 doped with erbium (Er) at low concentration are designed such that a depletion layer formed in the P-N junction 9 reaches the semiconductor layer 2 at least when reverse bias is applied between electrodes 7 and 8. In this manner, it is possible to photoelectrically convert only light of the wavelength concerned in 4f orbital level of erbium, namely of 1.55mum selectively.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体受光素子に関し、特に1.55μmの波
長の光を選択的に吸収する半導体受光素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor light-receiving device, and particularly to a semiconductor light-receiving device that selectively absorbs light with a wavelength of 1.55 μm.

〔従来の技術〕[Conventional technology]

従来の半導体受光素子に動作原理は、第3図に示すよう
に、p領域とn領域の接点であるpn接合部に形成され
る空乏層中でのバンド間光吸収を利用している。すなわ
ち、光は空乏層中で吸収されてキャリアを生成する。こ
の生成したキャリアが空乏層端にたどりつき光電流とな
って光電変換がなされる。
As shown in FIG. 3, the operating principle of a conventional semiconductor light receiving element utilizes interband light absorption in a depletion layer formed at a pn junction, which is a contact point between a p region and an n region. That is, light is absorbed in the depletion layer to generate carriers. The generated carriers reach the edge of the depletion layer, become a photocurrent, and undergo photoelectric conversion.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述したように従来の半導体受光素子の動作原理は、p
n接合部に形成される空乏層でのバンド間光吸収を利用
している。そのため、禁制帯幅以上のエネルギーを有す
る光については、全て吸収してしまい波長に選択性に乏
しく、ある波長領域に含まれる完全体を光電変換するこ
とは可能であっても、特定の波長のみを選択的に光電変
換することはできない。このため、例えば第4図におい
て、受光感度領域24を有する半導体受光素子で第4図
に示す光スペクトル分布を有する光を受光した場合には
、受光感度領域24に含まれるすべての波長の光を光電
変換することになる。特にスペクトル21とスペクトル
22を分離して、スぺクトル22のみを受光したい場合
には、分波器と組み合せて、スペクトル22の波長番含
む受光感度領域25を有する半導体受光素子を′構成し
ている。この場合でも信号成分のスペクトル22の他に
受光感度領域22に含まれる迷光成分23を受光してし
まう欠点がある。このような欠点は、例えば光通信分野
で今後波長多重通信方式がさかんに行われるようになる
と、特に重要な問題となってくる可能性がある。
As mentioned above, the operating principle of the conventional semiconductor photodetector is p
It utilizes interband optical absorption in the depletion layer formed at the n-junction. Therefore, all light with energy above the forbidden band width is absorbed, resulting in poor wavelength selectivity, and even though it is possible to photoelectrically convert a complete substance in a certain wavelength range, only a specific wavelength can be converted. cannot be selectively photoelectrically converted. For this reason, for example, in FIG. 4, when a semiconductor light-receiving element having a light-receiving sensitivity region 24 receives light having the optical spectrum distribution shown in FIG. It will be photoelectrically converted. In particular, when it is desired to separate spectrum 21 and spectrum 22 and receive only spectrum 22, a semiconductor light receiving element having a light receiving sensitivity region 25 including the wavelength number of spectrum 22 is configured in combination with a demultiplexer. There is. Even in this case, there is a drawback that in addition to the spectrum 22 of the signal component, a stray light component 23 included in the light-receiving sensitivity region 22 is received. Such a drawback may become a particularly important problem if, for example, wavelength division multiplexing communication systems become increasingly used in the field of optical communications.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体受光素子は禁制帯幅が0.8eVよりも
大きい半導体で構成されたpin構造を有しており、か
つ低キヤリア濃度領域すなわちi領域にエルビウム(E
r)がドーピングされている。
The semiconductor photodetector of the present invention has a pin structure made of a semiconductor with a forbidden band width larger than 0.8 eV, and has a low carrier concentration region, i.e., an erbium (E)
r) is doped.

すなわち、従来の半導体受光素子が価電子帯と伝導体の
バンド間光吸収を利用した動作原理であるのに対し、本
発明の半導体受光素子はエルビウム(Er)の4f軌軌
道値に関与した原子内準位を利用している点に特徴があ
る。
In other words, while the conventional semiconductor photodetector operates on the principle of operation using the valence band and the interband light absorption of a conductor, the semiconductor photodetector of the present invention uses atoms related to the 4f orbital value of erbium (Er). It is distinctive in that it uses internal levels.

〔実施例−1〕 次に本発明の一実施例について図面を参照して説明する
[Example-1] Next, an example of the present invention will be described with reference to the drawings.

第1図は本発明の第1の実施例の縦断面図である。図中
、1はn”−InP層からなる半導体基板、2はInP
からなるn型半導体層、3はn”−−InP層からなり
、かつエルビウム(Er)がドーピングされた低キヤリ
ア濃度の半導体層、4はn−InPからなる半導体層で
、選択的にZn拡散によってp −I n Pよりなる
半導体領域5が形成されている。半導体層4及び5の上
Gこは表面保護膜6が形成されており、n型半導体領域
5に接触するように、表面電極7が形成され、半導体基
板1の裏面には裏面電極8が形成されている。 ここで
重要なことは、まず第1に、波長1.55μmの光に対
して少なくとも半導体層2.3.4のバンド間光吸収が
ないように半導体層2,3.4のバンドギ1ヤ・ツブが
0.8eVよりも大きいことである。第2に、少くとも
電極7゜8間に逆バイアスを印加した動作状態におし)
て、pn接合部9に形成される空乏層が半導体層2cこ
達するように半導体層3の濃度及び厚さ及びpn接合部
9の位置を設計するこが重要である。この場合、pn接
合部9の位置は半導体N3の内に位置してもかまわない
FIG. 1 is a longitudinal sectional view of a first embodiment of the invention. In the figure, 1 is a semiconductor substrate made of an n''-InP layer, and 2 is an InP layer.
3 is an n''--InP layer doped with low carrier concentration and 4 is an n-InP semiconductor layer with selective Zn diffusion. A semiconductor region 5 made of p-I n P is formed by forming a semiconductor region 5 made of p-I n P.A surface protective film 6 is formed on top of the semiconductor layers 4 and 5, and a surface electrode is formed so as to be in contact with the n-type semiconductor region 5. 7 is formed, and a back electrode 8 is formed on the back surface of the semiconductor substrate 1. What is important here is that first of all, at least the semiconductor layer 2.3.4 for light with a wavelength of 1.55 μm. The band gear peak of the semiconductor layers 2 and 3.4 is larger than 0.8 eV so that there is no interband light absorption.Secondly, a reverse bias is applied at least between the electrodes 7° and 8. (put it in working condition)
Therefore, it is important to design the concentration and thickness of the semiconductor layer 3 and the position of the pn junction 9 so that the depletion layer formed in the pn junction 9 reaches the semiconductor layer 2c. In this case, the pn junction 9 may be located inside the semiconductor N3.

ここで、動作原理を説明する前にエルビウム(Er)及
びエルビウムが属するランタニド系列の特徴を簡単に説
明する。ランタニド系列は4f軌道を有する元素で、こ
の4f軌道は原子核近傍に位置している。このため他の
元素との化学結合は、4f軌道よりもずっと空間的に拡
がった電子軌道を有する5d電子軌道のみが関与してν
)る。
Here, before explaining the operating principle, the characteristics of erbium (Er) and the lanthanide series to which erbium belongs will be briefly explained. Lanthanide series elements have a 4f orbital, and this 4f orbital is located near the atomic nucleus. For this reason, chemical bonds with other elements involve only the 5d electron orbital, which has an electron orbit that is much more spatially expanded than the 4f orbital, and ν
).

よってこの4f軌道の電子は、化学結合等による他の軌
道電子との相互作用が極めて少なし)。そのため、4f
軌道電子間の発光吸収スペクトル(ま極めてスペクトル
幅が狭く、かつ化学結合状態の変化によってスペクトル
が変化しない特徴を有している。このランタニド系列の
元素のうち、エルビウム(Er)は波長が1.55μm
の吸収スペクトルを有している。
Therefore, the 4f orbital electrons have very little interaction with other orbital electrons due to chemical bonds, etc.). Therefore, 4f
Emission absorption spectrum between orbital electrons (it has a characteristic that the spectrum width is extremely narrow and the spectrum does not change due to changes in the chemical bond state. Among the elements of the lanthanide series, erbium (Er) has a wavelength of 1. 55μm
It has an absorption spectrum of

次に本発明の半導体受光素子の動作原理を第2図を用い
て説明する。本発明の半導体受光素子に適当な逆バイア
ス電圧を印加した動作状態でのバンド構造を第2図に示
す。ここで11はn型半導体領域、12はエルビウム(
Er)ドーピングされた低キヤリア濃度なi型半導体領
域、13はn型半導体領域を示し14はエルビウム(E
r)の4f軌道電子によるエルビウムの原子内準位を示
している。ここで図中n型半導体領域11側から構成す
る半導体禁制帯幅18よりも大きいエネルギーを有する
光hvl、波長1.55μmの光hシ2.禁制帯幅18
よりも小さいエネルギーでかつ波長が1655μmでな
い光hν3が入射したとする。hν1の光は図中15に
示すバンド間遷移で吸収される。ここで半導体表面がら
空乏層領域までの距離すなわち、図中の例ではn型半導
体領域の厚さをキャリアの拡散長よりも十分太き・くか
つhν1の光の吸収長に比べて数倍以上に設定すると、
n型半導体領域11で光励起によって発生したキャリア
は再結合し、光電流は発生せず、またhνlのエネルギ
ーを有する光は空乏層が形成されているi型半導体領域
12に到達しえない。また禁制帯幅18は0.8eV以
上であるので1.55μmの波長の光は空乏層が形成さ
れているi型半導体領域12に到達する。このi型半導
体領域12では1.55μmの波長の光はエルビウム(
Er)の原子内準位を利用した遷移16によって吸収さ
れ、トンネル過程または熱励起過程を併用して伝導帯へ
電子励起が起こる。しかしながら禁制帯幅18よりも小
さいエネルギーを有しかつ波長が1.55μmでない光
hν317は吸収されない(図中17)。ここで空乏層
が形成されている領域12にのみエルビウム(Er)を
ドーピングすることにより1.55μmの波長のみが光
電変換されることがわかる。
Next, the operating principle of the semiconductor light receiving element of the present invention will be explained using FIG. 2. FIG. 2 shows the band structure of the semiconductor light-receiving device of the present invention in an operating state when a suitable reverse bias voltage is applied. Here, 11 is an n-type semiconductor region, 12 is erbium (
13 is an n-type semiconductor region doped with low carrier concentration; 14 is an erbium (E) doped i-type semiconductor region with a low carrier concentration;
r) shows the intraatomic level of erbium due to 4f orbital electrons. Here, light hvl having energy larger than the semiconductor forbidden band width 18 formed from the n-type semiconductor region 11 side in the figure, and light h2 with a wavelength of 1.55 μm. Forbidden band width 18
Assume that light hv3 having an energy smaller than that and having a wavelength other than 1655 μm is incident. The light hv1 is absorbed at the interband transition shown at 15 in the figure. Here, the distance from the semiconductor surface to the depletion layer region, that is, the thickness of the n-type semiconductor region in the example shown in the figure, is set to be sufficiently thicker than the carrier diffusion length and several times or more than the light absorption length of hν1. When set to
Carriers generated by photoexcitation in the n-type semiconductor region 11 are recombined, and no photocurrent is generated, and light with energy hvl cannot reach the i-type semiconductor region 12 where a depletion layer is formed. Furthermore, since the forbidden band width 18 is 0.8 eV or more, light with a wavelength of 1.55 μm reaches the i-type semiconductor region 12 in which the depletion layer is formed. In this i-type semiconductor region 12, light with a wavelength of 1.55 μm is emitted from erbium (
It is absorbed by the transition 16 using the intraatomic level of Er), and electronic excitation to the conduction band occurs using a tunneling process or a thermal excitation process. However, light hv317 having an energy smaller than the forbidden band width 18 and a wavelength other than 1.55 μm is not absorbed (17 in the figure). It can be seen that by doping only the region 12 where the depletion layer is formed with erbium (Er), only a wavelength of 1.55 μm is photoelectrically converted.

さて、以上説明したような本発明の半導体受光素子に、
第4図に示す光スペクトル分布を有する光を受光した場
合について考えてみる。ここで本発明の半導体受光素子
の受光感度領域はエルビウム(Er)の4f軌道電子の
吸収スペクトルで決まる1、55μmの波長の光のみで
あるのでこれを第4図中26で表現する。特に検出した
い信号成分の光が図中のスペクトル22であるとし、こ
の信号成分の光もエルビウム(Er)の4で軌道の準位
を利用した発光スペクトルであるとすると、この4f軌
軌道値は温度やエルビウムの化学績き状態によって変化
しないので、スペクトル22の波長と本発明の受光感度
領域26は完全に一致し、他の波長の光は受光しない。
Now, in the semiconductor photodetector of the present invention as explained above,
Consider the case where light having the optical spectrum distribution shown in FIG. 4 is received. Here, the light-receiving sensitivity region of the semiconductor light-receiving element of the present invention is limited to light with a wavelength of 1.55 μm, which is determined by the absorption spectrum of 4f orbital electrons of erbium (Er), and this is expressed by 26 in FIG. In particular, if the signal component light that we want to detect is spectrum 22 in the figure, and if this signal component light is also an emission spectrum using the 4 orbital level of erbium (Er), then this 4f orbital orbit value is Since it does not change depending on the temperature or the chemical state of erbium, the wavelength of the spectrum 22 and the light receiving sensitivity region 26 of the present invention completely match, and light of other wavelengths is not received.

したがって、この場合には極めて受信感度の高い受信シ
ステムが可能となる。
Therefore, in this case, a receiving system with extremely high receiving sensitivity is possible.

〔実施例−2〕 本発明の半導体受光素子の第2の実施例を第5図に示す
。この第2の実施例は裏面入射型の受光素子に本発明を
適用した例であり、図中31はn+−InPからなる半
導体基板、32はInPからなるn型半導体層、33は
n−−InPからなり、エルビウム(E r 、’)が
ドーピングされた低キヤリア濃度のi型半導体層、34
はn−InPからなる半導体層で、選択的にZn拡散に
よってp−InPよりなる半導体領域35が形成されて
いる。半導体層34及び35の上には表面保護膜36が
形成されており、p型半導体領域35に接触するように
電極37が形成され、一方、半導体基板31の裏面には
裏面電極38と、光入射窓部に位置して無反射コート膜
39が形成されている。
[Example 2] A second example of the semiconductor light receiving element of the present invention is shown in FIG. This second embodiment is an example in which the present invention is applied to a back-illuminated light receiving element, and in the figure, 31 is a semiconductor substrate made of n+-InP, 32 is an n-type semiconductor layer made of InP, and 33 is n-- A low carrier concentration i-type semiconductor layer made of InP and doped with erbium (E r ,'), 34
is a semiconductor layer made of n-InP, and a semiconductor region 35 made of p-InP is formed by selectively diffusing Zn. A surface protective film 36 is formed on the semiconductor layers 34 and 35, and an electrode 37 is formed in contact with the p-type semiconductor region 35. On the other hand, a back electrode 38 and an optical An anti-reflection coating film 39 is formed at the entrance window.

この第2の実施例においても第1の実施例で説明したの
と同様の原理により、エルビウム(Er)の4で軌道準
位に関与した1、55μmの波長のみを選択的に光電変
換することが可能である。
In this second embodiment, according to the same principle as explained in the first embodiment, only the wavelength of 1.55 μm, which is involved in the orbital level in erbium (Er) 4, is selectively photoelectrically converted. is possible.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の半導体受光素子は、p i
 ni造を有する半導体受光素子において、p、i、n
の各領域を構成する半導体の禁制帯幅が0.8eVより
も大きく、かつ空乏層が形成される低キヤリア濃度のi
領域にエルビウム(Er)をドーピングすることにより
、エルビウムの4f@道準位に関与した1゜55μmの
波長のみを選択的に光電変換する効果がある。
As explained above, the semiconductor photodetector of the present invention has p i
In a semiconductor light receiving element having a Ni structure, p, i, n
The forbidden band width of the semiconductor constituting each region is larger than 0.8 eV, and i has a low carrier concentration where a depletion layer is formed.
Doping the region with erbium (Er) has the effect of selectively photoelectrically converting only the wavelength of 1°55 μm involved in the 4f@-level of erbium.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第5図は各々本発明の半導体受光素子の第1及
び第2の実施例の縦断面図、第2図は本発明の半導体受
光素子の動作原理を示すエネルギーバンド構造図、第3
図は従来の半導体受光素子の動作原理を示すエネルギー
バンド構造図、第4図は従来の半導体受光素子と本発明
の半導体受光素子の受光感度領域を説明する図である。 1.31・・・半導体基板、2.32・・・n型半導体
層、3.33・・・エルビウム(Er)をドープした低
キヤリア濃度の半導体層、4,34・・・n型半導体層
、5.35・・・p型半導体領域、6,36・・・表面
保護膜、7,37・・・電極、8,38・・・裏面電極
、9・・・pn接合面、3つ・・・無反射コート膜、1
1・・・p型半導体領域、12・・・エルビウムをドー
ピングした低キヤリア濃度の半導体領域、13・・・n
型半導体領域、14・・・エルビウムの4f軌軌道値、
15・・・パン1〜間光吸収、16・・・エルビウムの
4f軌軌道値間光吸収、17・・・吸収されない光、1
8・・・禁制帯幅、21.22・・・スペクトル、23
・・・逆光成分、24・・・従来の半導体受光素子の受
光感度領域、25・・・分波器と組み合せた場合の従来
の半導体受光素子の受光感度領域、26・・・本発明の
半導体受光素子の受光感度領域。
1 and 5 are longitudinal sectional views of the first and second embodiments of the semiconductor light receiving device of the present invention, respectively, and FIG. 2 is an energy band structure diagram showing the operating principle of the semiconductor light receiving device of the present invention, and FIG. 3
The figure is an energy band structure diagram showing the operating principle of a conventional semiconductor light-receiving element, and FIG. 4 is a diagram explaining the light-receiving sensitivity regions of the conventional semiconductor light-receiving element and the semiconductor light-receiving element of the present invention. 1.31...Semiconductor substrate, 2.32...N-type semiconductor layer, 3.33...Erbium (Er)-doped semiconductor layer with low carrier concentration, 4,34...N-type semiconductor layer , 5.35...p-type semiconductor region, 6,36...surface protective film, 7,37...electrode, 8,38...back electrode, 9...pn junction surface, three...・・Non-reflective coating film, 1
DESCRIPTION OF SYMBOLS 1...p-type semiconductor region, 12...low carrier concentration semiconductor region doped with erbium, 13...n
type semiconductor region, 14...4f orbital value of erbium,
15...Light absorption between bread 1~, 16...Light absorption between erbium's 4f orbital values, 17...Light not absorbed, 1
8...Forbidden band width, 21.22...Spectrum, 23
... Backlight component, 24... Photosensitivity area of conventional semiconductor photodetector, 25... Photosensitivity area of conventional semiconductor photodetector when combined with a demultiplexer, 26... Semiconductor of the present invention Light-receiving sensitivity area of the light-receiving element.

Claims (1)

【特許請求の範囲】[Claims]  p型半導体領域とn型半導体領域の間に低濃度半導体
領域を少くとも備えた構造を有する半導体受光素子にお
いて、前記各領域を構成する各半導体の禁制帯幅が0.
8eVよりも大きく、かつ低濃度半導体領域にエルビウ
ム(Er)をドーピングしたことを特徴とする半導体受
光素子。
In a semiconductor light-receiving element having a structure including at least a low concentration semiconductor region between a p-type semiconductor region and an n-type semiconductor region, the forbidden band width of each semiconductor constituting each region is 0.
1. A semiconductor light-receiving element characterized in that the concentration is higher than 8 eV and a low concentration semiconductor region is doped with erbium (Er).
JP62299118A 1987-11-26 1987-11-26 Semiconductor photodetector Pending JPH01140679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62299118A JPH01140679A (en) 1987-11-26 1987-11-26 Semiconductor photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62299118A JPH01140679A (en) 1987-11-26 1987-11-26 Semiconductor photodetector

Publications (1)

Publication Number Publication Date
JPH01140679A true JPH01140679A (en) 1989-06-01

Family

ID=17868354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62299118A Pending JPH01140679A (en) 1987-11-26 1987-11-26 Semiconductor photodetector

Country Status (1)

Country Link
JP (1) JPH01140679A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0480974A (en) * 1990-07-24 1992-03-13 Hamamatsu Photonics Kk Semiconductor photodetector
EP0993053A1 (en) * 1998-10-09 2000-04-12 STMicroelectronics S.r.l. Infrared detector integrated with a waveguide and method of manufacturing
GB2383679A (en) * 2001-12-27 2003-07-02 Bookham Technology Plc PIN photodiode with intrinsic region implanted with deep band gap levels
US7115464B2 (en) * 2002-03-01 2006-10-03 Advanced Micro Devices, Inc. Semiconductor device having different metal-semiconductor portions formed in a semiconductor region and a method for fabricating the semiconductor device
JP2007503130A (en) * 2003-05-29 2007-02-15 アプライド マテリアルズ インコーポレイテッド Impurity-based waveguide detectors

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0480974A (en) * 1990-07-24 1992-03-13 Hamamatsu Photonics Kk Semiconductor photodetector
EP0993053A1 (en) * 1998-10-09 2000-04-12 STMicroelectronics S.r.l. Infrared detector integrated with a waveguide and method of manufacturing
US6433399B1 (en) 1998-10-09 2002-08-13 Stmicroelectronics S.R.L. Infrared detector device of semiconductor material and manufacturing process thereof
GB2383679A (en) * 2001-12-27 2003-07-02 Bookham Technology Plc PIN photodiode with intrinsic region implanted with deep band gap levels
US7115464B2 (en) * 2002-03-01 2006-10-03 Advanced Micro Devices, Inc. Semiconductor device having different metal-semiconductor portions formed in a semiconductor region and a method for fabricating the semiconductor device
JP2007503130A (en) * 2003-05-29 2007-02-15 アプライド マテリアルズ インコーポレイテッド Impurity-based waveguide detectors

Similar Documents

Publication Publication Date Title
US7687871B2 (en) Reduced dark current photodetector
US8399945B2 (en) Semiconductor light receiving element
JP2942285B2 (en) Semiconductor light receiving element
JPS6328506B2 (en)
JPS62190780A (en) Phototransistor
CN102280516A (en) Semiconductor light-detecting element
US4740819A (en) Photo semiconductor device
JPH04111478A (en) Light-receiving element
JPH01140679A (en) Semiconductor photodetector
US20060213551A1 (en) Semiconductor photodetector and method for manufacturing same
EP1387411A1 (en) Semiconductor light receiving element provided with acceleration spacer layers between a plurality of light absorbing layers and method for fabricating the same
JPH01143275A (en) Semiconductor light receiving element
JPS60198786A (en) Semiconductor photo receiving element
JPS5938748B2 (en) semiconductor photodetector
JP3172996B2 (en) Semiconductor light receiving element
JPS63281480A (en) Semiconductor photodetector and manufacture thereof
JPH06224459A (en) Photodetector
JP4223774B2 (en) Semiconductor photo detector
KR100676733B1 (en) UV detector having NIP Structure
KR100198423B1 (en) Long wavelength optic detector of avalanche photo diode type
Torres-J et al. A planar amorphous Si/sub 1-x/Ge x Separated-Absorption-Multiplication avalanche photo diode
JPH057014A (en) Avalanche photodiode
JPS62147786A (en) Photo detector
JPS62169376A (en) Photodiode
JPS63142683A (en) Avalanche photodiode