KR100198423B1 - Long wavelength optic detector of avalanche photo diode type - Google Patents

Long wavelength optic detector of avalanche photo diode type Download PDF

Info

Publication number
KR100198423B1
KR100198423B1 KR1019950052696A KR19950052696A KR100198423B1 KR 100198423 B1 KR100198423 B1 KR 100198423B1 KR 1019950052696 A KR1019950052696 A KR 1019950052696A KR 19950052696 A KR19950052696 A KR 19950052696A KR 100198423 B1 KR100198423 B1 KR 100198423B1
Authority
KR
South Korea
Prior art keywords
layer
inp
band gap
amplification
absorption
Prior art date
Application number
KR1019950052696A
Other languages
Korean (ko)
Other versions
KR970054572A (en
Inventor
남은수
박찬용
김홍만
Original Assignee
이계철
한국전기통신공사
정선종
한국전자통신연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이계철, 한국전기통신공사, 정선종, 한국전자통신연구원 filed Critical 이계철
Priority to KR1019950052696A priority Critical patent/KR100198423B1/en
Publication of KR970054572A publication Critical patent/KR970054572A/en
Application granted granted Critical
Publication of KR100198423B1 publication Critical patent/KR100198423B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier working in avalanche mode, e.g. avalanche photodiode
    • H01L31/1075Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier working in avalanche mode, e.g. avalanche photodiode in which the active layers, e.g. absorption or multiplication layers, form an heterostructure, e.g. SAM structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP

Abstract

본 발명은 애벌란치 광 다이오드 형 장파장 광검출기에 있어서, 그 증폭층의 InP 기판에 격자정합되고 에너지 밴드갭이 상기 InP보다 큰 In0.52Al0.48As에 의해 형성되고, 에너지 밴드갭이 작은 InGaAsP 층 또는 InGaAs 층을 바깥에 노출시킨 후 에너지 밴드갭이 상기 InGaAsP 층 또는 InGaAs 층 보다 크고 InP에 격자 정합이 되는 In0.52Al0.48As를 창문층으로 사용하며, 밴드갭이 증폭층(In0.52Al0.48As)과 흡수층(In0.53Ga0.47As)의 중간이 되는 4원계 p-In0.72Ga0.28As0.61P0.39층을 상기 증폭층과 흡수층 사이에 형성하여 상기 흡수층에 가해지는 전장의 세기를 줄임으로써, 터널링 누설전류의 발생을 방지하는 동시에 밴드갭 차이로 인해서 상기 증폭층과 흡수층의 계면에 전하가 쌓이는 현상을 방지하여 동작 속도를 증가시키며, 항복전압을 크게 할 수 있다는 특징이 있다.In the avalanche photodiode type long-wavelength photodetector, an InGaAsP layer formed by In 0.52 Al 0.48 As having a lattice match to an InP substrate of the amplification layer and having an energy bandgap larger than the InP, and having a small energy bandgap or After exposing the InGaAs layer to the outside, the energy band gap is larger than the InGaAsP layer or InGaAs layer, and In 0.52 Al 0.48 As, which is lattice matched to InP, is used as the window layer, and the band gap is an amplification layer (In 0.52 Al 0.48 As). A quaternary p-In 0.72 Ga 0.28 As 0.61 P 0.39 layer, which is intermediate between the absorbing layer (In 0.53 Ga 0.47 As), is formed between the amplifying layer and the absorbing layer to reduce the strength of the electric field applied to the absorbing layer, thereby reducing tunneling leakage. It prevents the generation of current and at the same time prevents the accumulation of charges at the interface between the amplification layer and the absorption layer due to the band gap difference, increasing the operation speed and increasing the breakdown voltage. .

Description

애벌란치 광 다이오드형 장파장 광검출기Avalanche Photodiode Long Wavelength Photodetector

제1도는 본 발명에 따른 항복전압이 크고 누설전류가 적은 APD 형 장파장 광검출기의 구조도.1 is a structural diagram of an APD type long wavelength photodetector having a high breakdown voltage and a low leakage current according to the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 기관 2 : 버퍼 층1: organ 2: buffer layer

3 : n+-In0.52Al0.48As 4 : p-In0.52Al0.48As3: n + -In 0.52 Al 0.48 As 4: p-In 0.52 Al 0.48 As

5 : 중간층 6 : 흡수층5: intermediate layer 6: absorber layer

7 : 창문층 8 : 오옴 접촉층7: window layer 8: ohmic contact layer

9 : 페시베이션 및 무반사 층 10 : p형 Ti/Pt/Au 오믹 전극9 passivation and antireflection layer 10 p-type Ti / Pt / Au ohmic electrode

11 : n형의 Ti/Pt/Au 오믹 전극 11 : 폴리이미드11: n-type Ti / Pt / Au ohmic electrode 11: polyimide

본 발명은 광검출기에 관한 것으로, 특히 애벌란치 광 다이오드형 장파장 광검출기에 관한 것이다.The present invention relates to a photodetector, and more particularly to an avalanche photodiode type long wavelength photodetector.

일반적으로, 광검출기에서 누설전류는 동작전압의 영역에 따라서 크게 두 영역으로 구분된다.In general, the leakage current in the photodetector is largely divided into two regions according to the region of the operating voltage.

첫째는 동작전압이 매우 작은 영역으로서 주로 확산(Diffusion) 전류와 생성-재결합(Generation-Recombination)에 의한 누설 전류가 지배적인 영역으로서 터널링(Tunnelling)이 일어나기 시작하기 전까지의 전압 영역이고 둘째는 터널링이 일어나기 시작하는 전압부터 항복전압 까지의 매우 높은 전압까지의 동작 전압 영역으로서 터널링에 의한 누설전류가 지배적인 동작전압 영역이다.The first is the region where the operating voltage is very small, the predominantly the diffusion current and the leakage current due to generation-recombination. The second is the voltage region until tunneling starts. The operating voltage ranges from the voltage which starts to occur to a very high voltage from the breakdown voltage, and the leakage current due to tunneling is the dominant operating voltage range.

통상의 APD(Avalanche PhotoDiode)형 광검출기에서는 빛의 흡수로 생성된 광전하들이 높은 전장에 의해서 가속되고, 상기 가속된 광전하들이 증배층을 구성하고 있는 원자들과 비탄성 충돌함으로써 2차 전하들을 만들어 그 전하를 증배시키고 있다.In a typical APD (Avalanche PhotoDiode) type photodetector, the photocharges generated by the absorption of light are accelerated by a high electric field, and the accelerated photocharges create secondary charges by inelastic collision with the atoms constituting the multiplication layer. The charge is multiplying.

따라서 항복전압이 낮은 영역에 PN 접합이 형성된 구조의 경우는 충분한 증배를 일으키기에 필요한 전장을 상기 PN 접합에 가하기 전에 항복현상이 일어남으로써 그 구조를 가지고 성능이 우수한 APD형 광검출기 제작하는 것이 어려워진다.Therefore, in the case where the PN junction is formed in the region where the breakdown voltage is low, breakdown occurs before applying the electric field necessary for sufficient multiplication to the PN junction, making it difficult to fabricate an APD photodetector having the structure and excellent performance. .

따라서 APD형의 광검출기에서 광 전류증폭이 일어나는 증배층은 가능한 에너지 밴드갭(bandgap)이 크며 기판 웨이퍼와 격자정합이 이루어지는 결정이 필요하게 된다.Therefore, the multiplying layer in which the photocurrent amplification occurs in the APD photodetector has a large possible energy bandgap and requires crystals to be lattice matched with the substrate wafer.

통상적으로, 직접 천이형의 반도체에 PN 접합이 형성되어 있을 경우 항복전압과 에너지 밴드갭과의 상관관계는 아래의 실험식으로 표현될 수 있다.In general, when a PN junction is formed in a direct transition type semiconductor, a correlation between a breakdown voltage and an energy band gap may be expressed by the following equation.

여기에서 VB는 Volt 단위로 표현한 PN 접합의 항복전압이고 Eg는 eV 단위로 나타낸 PN 접합이 형성된 반도체의 에너지 밴드갭이다.Where V B is the breakdown voltage of the PN junction expressed in Volt units and E g is the energy bandgap of the semiconductor on which the PN junction is expressed in eV units.

그리고 ND는 급준한 PN 접합에서 약하게 도핑된 층에 존재하는 전하의 농도이다.And N D is the concentration of charge present in the lightly doped layer in the steep PN junction.

따라서 에너지 밴드갭이 크면 클수록 항복전압은 커진다는 사실을 알 수 있다.Therefore, the larger the energy bandgap, the higher the breakdown voltage.

이러한 현상을 이용하면 InP를 기저로한 APD형 장파장 광검출기의 제작에 있어서, 에너지 밴드갭이 1.45 eV인 In0.52Al0.48As에 PN 접합을 형성하면 밴드갭 에너지가 1.35 eV인 기존의 InP에 PN 접합을 형성하여 제작한 APD 경우보다 항복전압이 높아지므로, 높은 전압이 가해지는 APD형의 광검출소자에서 문제가 되고 있는 항복전압을 높일 수 있는 장점을 가지고 있다.Using this phenomenon, in the fabrication of an InP-based APD type long-wavelength photodetector, if a PN junction is formed at In 0.52 Al 0.48 As having an energy bandgap of 1.45 eV, PN is formed on an existing InP having a bandgap energy of 1.35 eV. Since the breakdown voltage is higher than that of the APD fabricated by forming a junction, it has the advantage of increasing the breakdown voltage which is a problem in the APD photodetector to which a high voltage is applied.

그리고, 장파장의 빛이 흡수되는 흡수층은 밴드갭 에너지가 0.75 eV인 In0.53Ga0.47As에 형성되기 때문에 터널링이 일어나는 항복전압이 매우 낮다. 따라서 In0.53Ga0.47As에 가해지는 전장의 세기를 가능한 한 낮게 조절하여 줄 필요가 있다.In addition, since the absorption layer in which the long wavelength light is absorbed is formed at In 0.53 Ga 0.47 As having a bandgap energy of 0.75 eV, the breakdown voltage at which tunneling occurs is very low. Therefore, it is necessary to adjust the intensity of electric field applied to In 0.53 Ga 0.47 As as low as possible.

종래의 장파장 대역 광통신에서 흔히 사용되는 애벌란치형 광검출기는 주로 빛에 의해서 생성된 전하를 증폭시키기 위하여 주로 InP에 PN 접합을 형성하여서 제작하여 왔다.An avalanche type photodetector commonly used in conventional long wavelength band optical communication has been mainly manufactured by forming PN junctions in InP in order to amplify electric charges generated by light.

그리고 PN 접합이 일어나는 In0.52Al0.48As와 빛의 흡수가 일어나는 In0.53Gal0.47As는 에너지 밴드갭의 차이가 매우 커서 흡수된 빛에 의해서 생성된 전하들이 In0.52Al0 .48As와 In0.53Ga0.47As의 계면에 쌓이는 현상이 생길 수 있다는 문제점이 있었다.And In 0.52 Al 0.48 As and the In the absorption of the light takes place PN junction that occurs Gal 0.53 0.47 As is that the charge generated by the difference is so large that the absorption of light energy bandgap In 0.52 Al 0 .48 As and In 0.53 Ga There was a problem that the phenomenon may accumulate at the interface of 0.47 As.

상기 문제점을 해결하기 위해, 본 발명에서는 항복전압을 크게 하고, 터널링에 의한 표면 누설 전류를 줄이며, 밴드갭 차이로 인한 증폭층과 흡수층의 계면에 전하가 쌓이는 현상을 방지하도록 하는 애벌란치 광 다이오드형 장파장 광검출기를 제공하고자 한다.In order to solve the above problems, in the present invention, the avalanche photodiode type increases the breakdown voltage, reduces the surface leakage current due to tunneling, and prevents charge accumulation at the interface between the amplification layer and the absorption layer due to the band gap difference. To provide a long wavelength photodetector.

상기 목적을 달성하기 위해, 본 발명에서 제공하는 광검출기는 애벌런치 광 다이오드 형 장파장 광검출기에 있어서, 그 증폭층이 InP 기판에 격자 정합되고 에너지 밴드갭이 상기 InP보다 큰 In0.52Al0.48As에 의해 형성되고, 에너지 밴드갭이 작은 InGaAsP 또는 InGaAS층을 바깥에 노출시킨 후 에너지 밴드갭이 상기 InGaAsP 또는 InGaAS 층을 보다 크고, InP에 격자 정합이 되는 In0.52Al0.48As를 창문층으로 사용하며, 밴드갭이 증폭층(In0.52Al0.48As)과 흡수층(In0.53Ga0.47As) 위에 형성하며 상기 흡수층에 가해지는 전장의 세기를 줄임으로써, 터널링 누설 전류의 발생을 방지하는 동시에 밴드갭 차이로 인해 상기 증폭층과 흡수층의 계면에 전하가 쌓이는 현상을 방지하여 동작 속도를 증가시키며, 항복전압을 크게 할 수 있다는 특징이 있다.In order to achieve the above object, the photodetector provided in the present invention is avalanche photodiode type long wavelength photodetector, in which the amplification layer is lattice matched to the InP substrate and the energy bandgap is In 0.52 Al 0.48 As larger than the InP. Formed by the InGaAsP or InGaAS layer having a small energy bandgap, and the energy bandgap is larger than the InGaAsP or InGaAS layer, and In 0.52 Al 0.48 As, which is lattice matched to InP, is used as the window layer. A bandgap is formed on the amplification layer (In 0.52 Al 0.48 As) and the absorption layer (In 0.53 Ga 0.47 As), and reduces the strength of the electric field applied to the absorption layer, thereby preventing the occurrence of tunneling leakage current and at the same time due to the band gap difference. By preventing the accumulation of charges at the interface between the amplification layer and the absorption layer, the operation speed is increased, and the breakdown voltage can be increased.

특히 APD의 기본 원리는 높은 전장에 의해서 가속된 전하가 증배층이 구성 원소와의 비탄성 충돌함으로써 증폭된 이차 전하생성을 가져오는 것으로서, InA1As PN 접합에서 살펴보면 전자의 이온화율 상수(Ionization Cofficient) α가 정공(hole)의 이온화율 상수 β보다 크기 때문에 효과적인 전하 증배가 일어나기 위해서는 PN 접합 증배 영역에는 전하가 주입되어야 한다.In particular, the basic principle of APD is that the charge accelerated by the high electric field results in the secondary charge generation amplified by the inelastic collision of the multiplying layer with the constituent elements. Since the ionization rate constant β of the hole is larger than that, a charge must be injected into the PN junction multiplication region for effective charge multiplication.

In0.52Al0.48As PN 접합의 경우 전장의 세기가 3.3×105~4.3×105Vcm-1인 경우 α/β의 값은 약 3정도로서 효과적인 증배를 위해서는 이온화 계수가 큰 전자가 p형으로 도핑된 p-In0.52Al0.48As 영역에 주입되어야 APD의 증배에 관련된 잉여잡음(Excess Noise)을 효과적으로 줄여 줄 수 있다.In the case of In 0.52 Al 0.48 As PN junction, when the electric field strength is 3.3 × 10 5 ~ 4.3 × 10 5 Vcm -1 , the value of α / β is about 3, and the electron with large ionization coefficient is doped to p-type for effective multiplication. It should be injected into the p-In 0.52 Al 0.48 As region, which can effectively reduce the excess noise related to the multiplication of APD.

따라서 전자가 주입되어 증배가 일어나도록 n+-In0.52Al0.48As 를 성장시키고 p-In0.52Al0.48As를 성장시켜 증배영역(Multiplication Layer)을 형성시켜 준다. 이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예들 중의 하나를 상세히 설명한다.Therefore, n + -In 0.52 Al 0.48 As is grown and electrons are injected to increase multiplication, and p-In 0.52 Al 0.48 As is grown to form a multiplication layer. Hereinafter, with reference to the accompanying drawings will be described in detail one of the preferred embodiments according to the present invention.

제1도는 본 발명에 따른 항복전압이 크고 누설전류가 적은 APD형 장파장 광검출기의 구조도이다.1 is a structural diagram of an APD type long wavelength photodetector having a high breakdown voltage and a low leakage current according to the present invention.

제1도를 참조하면, 본 발명의 광검출기는 n+형으로 도핑된 InP 기판(1)과, 결정 성장 전의 결합들을 보상하기 위해 형성된 n+-InP 버퍼층(2) 빛의 흡수에 의해 생성된 전자가 높은 전장에 의해 증폭되도록 하기 위한 증폭층(3,4)과, InP에 격자 정합되는 4원계의 p-In0.72Ga0.28As0.61P0.39를 성장시켜 형성한 중간층(5)과, 장파장(1.1㎛~1.7㎛)의 빛을 흡수하고 가해진 전장이 잘 분포되도록 하기 위해 도핑하지 않은 진성의 밴드갭 0.75eV를 갖는 i-In0.53Ga0.47As로 형성된 흡수층(6)과, 표면 누설 전류를 줄이기 위해 In0.52Al0.48As로 형성된 창문층(7)과, 오믹 접촉시 오믹 저항을 줄이기 위해 밴드갭이 작은 p+-In0.53Ga0.47As으로 형성된 오믹 접촉층(8)과, 결정층의 외부 노출에 의한 누설 전류를 줄이기 위한 Si3N4패시베이션(Passivation) 및 무반사층(9)과, p형의 Ti/Pt/Au 오믹전극(10)이 차례로 형성되며, 상기 기판(1)의 반대편에는 n형의 Ti/Pt/Au 오믹전극(11)이 형성되고, 상기 버퍼층(2) 내지 오옴 접촉층(8)의 좌/우에는 p-전극 형성 및 정전 용량 감소를 위한 폴리이미드(12)가 형성된다.See FIG. 1 when, the photo detector of the present invention is produced by the n + -InP buffer layer 2 formed to compensate for absorption of light coupled before the InP substrate 1 and the crystal growth is doped with an n + An amplification layer (3,4) for electrons to be amplified by a high electric field, an intermediate layer (5) formed by growing a p-In 0.72 Ga 0.28 As 0.61 P 0.39 lattice matched to InP, and a long wavelength ( Absorbing layer 6 formed of i-In 0.53 Ga 0.47 As with an undoped intrinsic bandgap 0.75 eV to absorb light of 1.1 μm to 1.7 μm) and to distribute the applied electric field well, and reduce surface leakage current Window layer 7 formed of In 0.52 Al 0.48 As, ohmic contact layer 8 formed of p + -In 0.53 Ga 0.47 As with a small band gap to reduce ohmic resistance during ohmic contact, and external exposure of the crystal layer. Si 3 N 4 passivation and anti-reflection layer 9 to reduce leakage current by the p-type Ti / Pt / Au The ohmic electrodes 10 are sequentially formed, and n-type Ti / Pt / Au ohmic electrodes 11 are formed on the opposite side of the substrate 1, and left / right of the buffer layers 2 to ohmic contact layers 8 are formed. In this case, polyimide 12 is formed for p-electrode formation and capacitance reduction.

이 때, 상기 증폭층(3,4)은 InP와 격자정합이 이루어지고 InP보다 밴드갭이 큰 n+-In0.52Al0.48As층(3) 및 p-In0.52Al0.48As층(4)을 차례로 성장하여 형성하며, 상기 중간층(5)은 그 밴드갭 에너지가 상기 증폭층(3,4)을 구성하는 In0.52Al0.48As와 흡수층(6)을 구성하는 In0.53Ga0.47As의 중간이 되어 상기 흡수층(6)에 걸리는 전장의 세기를 조절하고 빛의 흡수에 의해서 생성된 광전자가 InA1Aa와 InGaAs의 밴드갭의 차이로 인해서 광전자가 두 물질(증폭층과 흡수층)의 계면에 포획되는 현상을 제거하도록 한다.At this time, the amplification layer (3,4) is lattice matched with InP and n + -In 0.52 Al 0.48 As layer (3) and p-In 0.52 Al 0.48 As layer (4) having a band gap larger than InP The intermediate layer 5 is formed in order, and the intermediate layer 5 has a band gap energy between the In 0.52 Al 0.48 As constituting the amplification layers 3 and 4 and the In 0.53 Ga 0.47 As constituting the absorption layer 6. The intensity of the electric field applied to the absorbing layer 6 is controlled, and the photoelectrons generated by the absorption of light are eliminated due to the difference in the band gap between InA1Aa and InGaAs. Do it.

한편, 상기 흡수층(6)에서 발생하는 누설전류를 줄여 그 흡수층(6)을 통해 입사한 장파장(1.1㎛~1.7㎛)의 빛이 통과하는 데에 지장이 없도록 하기 위해 밴드갭이 크고 In0.52Al0.48As에 격자정합이 되는 In0.52Al0.48As를 성장하여 상기 창문층(7)으로 사용한다.On the other hand, the band gap is large and In 0.52 Al in order to reduce the leakage current generated in the absorbing layer 6 so as not to interfere with the passage of light having a long wavelength (1.1 μm to 1.7 μm) incident through the absorbing layer 6. It growing the in 0.52 Al 0.48 as that is lattice-matched to 0.48 as will be used for the window layer 7.

그러므로, 상술한 바와 같은 본 발명은 에너지 밴드갭이 큰 In0.52Al0.48As에 PN 접합을 형성함으로써 높은 항복전압을 갖고 그 결과 낮은 전압에서의 에지 브레이크 다운을 피할 수 있어서 고성능의 APD형 광검출기 제작이 가능해지며, 기존의 통신용 장파장 InP 광검출기의 경우에는 InP PN 접합을 형성하여 증폭시키고 있는 반면에 새로 고안된 광검출기에서는 밴드갭이 InP보다 큰 In0.52Al0.48As에 PN 접합을 형성시켜 줌으로써 애벌란치 현상에 의한 항복전압이 InP에 PN 접합을 형성한 경우보다 1.2배 정도 증가하여 최대 동작전압이 커지고 이로 인해서 안정되고 고감도의 동작특성을 얻을 수 있다는 데에 그 효과가 있다.Therefore, the present invention as described above has a high breakdown voltage by forming a PN junction at In 0.52 Al 0.48 As having a large energy bandgap, and as a result, it is possible to avoid edge breakdown at a low voltage, thereby manufacturing a high performance APD photodetector. In the conventional long-wavelength InP photodetector for communication, an InP PN junction is formed and amplified, while in the newly designed photodetector, a PN junction is formed in In 0.52 Al 0.48 As with a larger bandgap than InP. The breakdown voltage caused by the phenomenon is increased by 1.2 times than the case where the PN junction is formed on InP, and thus the maximum operating voltage is increased, thereby achieving stable and highly sensitive operating characteristics.

Claims (3)

n+형으로 도핑된 InP 기판과, 상기 기판위에 결정 성장 전의 결합들을 보상하기 위해 형성된 n+-InP 버퍼층과, 상기 버퍼층 위에 빛의 흡수에 의해 생성된 전자가 높은 전장에 의해 증폭되도록 하기 위해, InP와 격자정합이 이루어지고 InP 보다 밴드갭이 큰 n+-In0.52Al0.48As 및 p-In0.52Al0.48As층을 차례로 성장하여 형성한 증폭층과, 상기 증폭층위에 InP에 격자 정합되는 4원계의 p-In0.72Ga0.28As0.61P0.39를 성장시켜 형성한 중간층과, 장파장(1.1㎛~1.7㎛)의 빛을 흡수하고 가해진 전장이 잘 분포되도록 하기 위해 상기 중간층 위에 도핑하지 않고 진성의 밴드갭 0.75eV를 갖는 i-In0.53Ga0.47As로 형성된 흡수층과, 표면 누설 전류를 줄이기 위해 상기 흡수층위에 형성된 창문층을 포함하여 구성된 것을 특징으로 하는 애벌란치 광 다이오드형 장파장 광검출기.InP substrate doped with n + type, n + -InP buffer layer formed to compensate for the bonds before crystal growth on the substrate, and electrons generated by absorption of light on the buffer layer are amplified by a high electric field, Lattice match between InP and n + -In 0.52 Al 0.48 As and p-In 0.52 Al 0.48 As with larger bandgap than InP, and an amplification layer formed by sequentially growing lattice matched with InP on the amplification layer 4 Intrinsic band formed by growing p-In 0.72 Ga 0.28 As 0.61 P 0.39 of the original system, and intrinsic band without doping on the intermediate layer to absorb long wavelengths (1.1 μm to 1.7 μm) and distribute the applied electric field well An avalanche photodiode type long-wavelength photodetector comprising an absorption layer formed of i-In 0.53 Ga 0.47 As having a gap of 0.75 eV and a window layer formed on the absorption layer to reduce surface leakage current. 제1항에 있어서, 상기 창문층은 에너지 밴드갭이 작은 InGaAsP층 또는 InGa As층을 바깥에 노출시킨 후, 에너지 밴드갭이 상기 InGaAsP 또는 InGaAs 보다 크고 InP에 격자정합이 되는 In0.52Al0.48As를 사용하여 구성하는 것을 특징으로 하는 애벌란치 광 다이오드형 장파장 광검출기.The method of claim 1, wherein the window layer is exposed to the InGaAsP layer or InGa As layer with a small energy band gap to the outside, the energy band gap is larger than the InGaAsP or InGaAs and In 0.52 Al 0.48 As is lattice matched to InP An avalanche photodiode type long-wavelength photodetector characterized in that the configuration using. 제1항에 있어서, 상기 중간층은 그 밴드갭이 상기 흡수층과 증폭층의 중간이고, 상기 흡수층에 가해지는 전자의 세기를 줄여주는 동시에 상기 흡수층과 증폭층의 밴드갭 차이로 인해서 발생하는 이동전하가 이질접합에 포획되지 않도록 하는 것을 특징으로 하는 애벌란치 광 다이오드형 장파장 광검출기.The method of claim 1, wherein the intermediate layer has a band gap between the absorbing layer and the amplifying layer, and reduces the intensity of electrons applied to the absorbing layer, and at the same time, transfer charges generated by the band gap between the absorbing layer and the amplifying layer are reduced. An avalanche photodiode type long-wavelength photodetector characterized in that it is not captured by heterojunctions.
KR1019950052696A 1995-12-20 1995-12-20 Long wavelength optic detector of avalanche photo diode type KR100198423B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950052696A KR100198423B1 (en) 1995-12-20 1995-12-20 Long wavelength optic detector of avalanche photo diode type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950052696A KR100198423B1 (en) 1995-12-20 1995-12-20 Long wavelength optic detector of avalanche photo diode type

Publications (2)

Publication Number Publication Date
KR970054572A KR970054572A (en) 1997-07-31
KR100198423B1 true KR100198423B1 (en) 1999-06-15

Family

ID=19441871

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950052696A KR100198423B1 (en) 1995-12-20 1995-12-20 Long wavelength optic detector of avalanche photo diode type

Country Status (1)

Country Link
KR (1) KR100198423B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100352816B1 (en) * 2000-03-10 2002-09-16 광주과학기술원 Epitaxial structure of high-speed photodetector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100352816B1 (en) * 2000-03-10 2002-09-16 광주과학기술원 Epitaxial structure of high-speed photodetector

Also Published As

Publication number Publication date
KR970054572A (en) 1997-07-31

Similar Documents

Publication Publication Date Title
EP0473197B1 (en) Photo-sensing device
JP3156851B2 (en) Heterojunction energy gradient structure
US7202102B2 (en) Doped absorption for enhanced responsivity for high speed photodiodes
JP2934294B2 (en) Avalanche photodiode
EP0473198B1 (en) Photo-sensing device
KR950004550B1 (en) Light-receiving element
US5391910A (en) Light receiving device
CN116601779A (en) Avalanche photodiode
JPH0433148B2 (en)
JP2002231992A (en) Semiconductor light receiving element
Olsen Low-leakage, high-efficiency, reliable VPE InGaAs 1.0-1.7 µm photodiodes
KR100198423B1 (en) Long wavelength optic detector of avalanche photo diode type
JP3047385B2 (en) Light receiving element
JP2730471B2 (en) Superlattice avalanche photodiode
JPH07118548B2 (en) III-V group compound semiconductor PIN photo diode
JPH051629B2 (en)
JP3739273B2 (en) Semiconductor photodetector
JP2739824B2 (en) Semiconductor light receiving element
JPS59163878A (en) Semiconductor photo detector
CN116705892B (en) Avalanche diode
JPS60198786A (en) Semiconductor photo receiving element
JPS63142683A (en) Avalanche photodiode
JPS60105281A (en) Semiconductor photodetector
Scavennec et al. Optical Photodetectors
JPS6130085A (en) Photoconductivity detecting element

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20040302

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee