JPH05205241A - Magnetic recording medium and its manufacture - Google Patents

Magnetic recording medium and its manufacture

Info

Publication number
JPH05205241A
JPH05205241A JP1308092A JP1308092A JPH05205241A JP H05205241 A JPH05205241 A JP H05205241A JP 1308092 A JP1308092 A JP 1308092A JP 1308092 A JP1308092 A JP 1308092A JP H05205241 A JPH05205241 A JP H05205241A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic recording
circumferential direction
layer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1308092A
Other languages
Japanese (ja)
Inventor
Hiroyuki Uwazumi
洋之 上住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1308092A priority Critical patent/JPH05205241A/en
Publication of JPH05205241A publication Critical patent/JPH05205241A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To achieve a magnetic recording medium and its manufacturing method which can reduce a lifting distance of a magnetic head without sacrificing magnetic characteristics by forming recess and projection along a circumferential direction without performing machining. CONSTITUTION:A recessed and projecting parts formation film 7 which is ZrC film in fiber-structure which is formed by sputtering along the circumferential direction is provided on the surface side of a circular plate glass non-magnetic substrate 2 and a magnetic layer 4 is formed while being orientated in the circumferential direction corresponding to the recess and projection of the recess and projection formed film 7. Also, the recess and projection are reflected up to the uppermost surface of a magnetic recording disk 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁気記録媒体およびその
製造方法に関し、特に、磁気記録媒体表面への凹凸形成
技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium and a method for manufacturing the same, and more particularly to a technique for forming irregularities on the surface of the magnetic recording medium.

【0002】[0002]

【従来の技術】近年、コンピュータなどの情報処理装置
には、その外部記憶装置として、固定磁気ディスク装置
が多用されており、それに用いる磁気記録媒体は、一般
に、図4に示すように、非磁性基体22aおよび非磁性
金属層22bからなる磁気記録ディスク用基板22,そ
の表面に被着されたCr層などの金属下地層23,その
表面に形成された磁性層24,その表面に形成されたア
モルファスカーボン層などの保護層25,およびその表
面に塗布された液体潤滑層26から構成され、その最表
層の表面状態は、磁気記録ディスク21の記録密度およ
び信頼性を大きく支配する。とくに、CSS(コンタク
トスタートストップ)方式の磁気記録ディスク21にお
いては、停止時に磁気ヘッドと磁気記録ディスク21の
表面が接触する状態になっており、この状態から、稼動
時にのみ、磁気ヘッドが磁気記録ディスク21の表面か
ら僅かに浮上して、情報の読み取り動作または書込み動
作が行われる。従って、磁気記録ディスク21の表面が
鏡面状態にあると、磁気ヘッドと磁気記録ディスク21
の表面の摩擦係数が大きく、停止時に磁気ヘッドが磁気
記録ディスク21の表面に吸着してしまうことがある。
また、始動時には、磁気ヘッドの磁気記録ディスク21
の表面上での摺動により磁性層24が磨耗して損傷して
しまうことがある。
2. Description of the Related Art In recent years, a fixed magnetic disk device has been widely used as an external storage device for an information processing device such as a computer, and a magnetic recording medium used for the fixed magnetic disk device is generally nonmagnetic as shown in FIG. A magnetic recording disk substrate 22 including a substrate 22a and a non-magnetic metal layer 22b, a metal underlayer 23 such as a Cr layer deposited on the surface thereof, a magnetic layer 24 formed on the surface thereof, and an amorphous layer formed on the surface thereof. It is composed of a protective layer 25 such as a carbon layer and a liquid lubricating layer 26 applied on the surface thereof, and the surface state of the outermost layer thereof largely controls the recording density and reliability of the magnetic recording disk 21. In particular, in the CSS (contact start stop) type magnetic recording disk 21, the magnetic head and the surface of the magnetic recording disk 21 are in contact with each other when stopped, and from this state, the magnetic head performs magnetic recording only during operation. Information is read or written while floating slightly above the surface of the disk 21. Therefore, when the surface of the magnetic recording disk 21 is in a mirror surface state, the magnetic head and the magnetic recording disk 21 are
The surface has a large friction coefficient, and the magnetic head may stick to the surface of the magnetic recording disk 21 when stopped.
Further, at the time of starting, the magnetic recording disk 21 of the magnetic head
The magnetic layer 24 may be worn and damaged due to sliding on the surface of the.

【0003】そこで、磁気記録ディスク21の表面層に
微細な凹凸を形成して、磁気ヘッドと磁気記録ディスク
21の表面との接触面積を小さくし、摩擦係数を低下さ
せる対策が施されている。その代表的な凹凸形成加工
が、回転する磁気記録ディスク用基板22の非磁性金属
層22bの表面に研磨テープなどを摺動させ、その表面
に同心円状の微細な凹凸を形成し、その凹凸を磁気記録
ディスク21の表面にまで反映させるテクスチャー加工
である。
Therefore, measures are taken to reduce the friction coefficient by forming fine irregularities on the surface layer of the magnetic recording disk 21 to reduce the contact area between the magnetic head and the surface of the magnetic recording disk 21. The typical concavo-convex forming process is such that a polishing tape or the like is slid on the surface of the nonmagnetic metal layer 22b of the rotating magnetic recording disk substrate 22 to form fine concentric concavities and convexities on the surface. This is a texturing process that reflects even the surface of the magnetic recording disk 21.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
磁気記録ディスク21においては、最表層の凹凸を形成
するテクスチャー加工が機械加工であるため、非磁性金
属層22bの表面に形成される凹凸の粗さを制御しにく
いという欠点がある。ここで、磁気記録ディスク21を
高記録密度化するには、磁気記録ディスク21の表面か
らの磁気ヘッドの浮上距離を圧縮して、磁気ヘッドと磁
性層24とを近接させる必要があるが、従来の磁気記録
ディスク21のように、その表面に反映された凹凸の粗
さを制御できない場合には、その凹凸と磁気ヘッドとが
衝突しないように、浮上距離を広く確保せざるを得ず、
磁気ヘッドの低浮上距離化、すなわち、磁気記録ディス
ク21を高記録密度化するのに限界がある。
However, in the conventional magnetic recording disk 21, since the texturing that forms the unevenness of the outermost layer is machining, the unevenness formed on the surface of the nonmagnetic metal layer 22b is rough. It is difficult to control the size. Here, in order to increase the recording density of the magnetic recording disk 21, it is necessary to compress the flying distance of the magnetic head from the surface of the magnetic recording disk 21 to bring the magnetic head and the magnetic layer 24 close to each other. When the roughness of the unevenness reflected on the surface cannot be controlled as in the magnetic recording disk 21 of No. 2, the flying distance must be secured wide so that the unevenness does not collide with the magnetic head.
There is a limit in reducing the flying height of the magnetic head, that is, in increasing the recording density of the magnetic recording disk 21.

【0005】そこで、テクスチャー加工などの機械研磨
方法に代えて、磁気記録ディスクの表面に微細な凹凸を
形成する新たな方法が検討されており、たとえば、特開
平3−73419には、非磁性基体の表面にアルミニウ
ムなどの低融点金属膜を島構造にスパッタ形成し、この
スパッタ形成によって形成した方向性のない凹凸を利用
する方法が開示されている。この方法によれば、低融点
金属膜表面の凹凸を磁気記録ディスクの表面にまで反映
させることができ、しかも、これらの凹凸の粗さはスパ
ッタ形成条件によって所定の粗さに規定することができ
るので、磁気ヘッドを低浮上距離化することができる。
しかしながら、磁気記録ディスクの凹凸は、磁気ヘッド
の浮上距離に加えて、その磁気特性にも影響を与えるた
め、島構造の低融点金属膜によって形成された方向性の
ない凹凸を磁気記録ディスクの表面に反映させる方法で
は、逆に、その磁気特性が低下し、磁気記録ディスクの
高記録密度化を妨げてしまうという問題点がある。すな
わち、図3に示す磁性層の磁気特性において、磁性ヘッ
ドからの発生磁界の方向に高保磁力化(高Hc化)およ
び高角形性が実現されるように磁性層を形成することが
重要であり、それには、磁気ヘッドの発生磁界の方向で
ある磁気記録ディスクの円周方向に沿って凹凸を形成し
て、円周方向の磁界に対するヒステリシス曲線(実線3
1)を半径方向の磁界に対するヒステリシス曲線(実線
32)よりも高角形化することが重要であるためであ
る。
Therefore, a new method for forming fine irregularities on the surface of a magnetic recording disk has been studied in place of a mechanical polishing method such as texturing. For example, Japanese Patent Laid-Open No. 3-73419 discloses a non-magnetic substrate. There is disclosed a method in which a low-melting-point metal film such as aluminum is sputter-formed on the surface of to form an island structure, and the unevenness formed by this sputter formation is used. According to this method, the irregularities on the surface of the low-melting-point metal film can be reflected even on the surface of the magnetic recording disk, and the roughness of these irregularities can be regulated to a predetermined roughness by the sputtering formation conditions. Therefore, the flying height of the magnetic head can be reduced.
However, since the unevenness of the magnetic recording disk affects not only the flying distance of the magnetic head but also the magnetic characteristics thereof, the unevenness formed by the low melting point metal film of the island structure is formed on the surface of the magnetic recording disk. On the contrary, in the method of reflecting in (1), there is a problem that the magnetic characteristics are deteriorated and the high recording density of the magnetic recording disk is hindered. That is, in the magnetic characteristics of the magnetic layer shown in FIG. 3, it is important to form the magnetic layer so as to realize high coercive force (high Hc) and high squareness in the direction of the magnetic field generated from the magnetic head. In this, unevenness is formed along the circumferential direction of the magnetic recording disk, which is the direction of the magnetic field generated by the magnetic head, and the hysteresis curve for the circumferential magnetic field (solid line 3
This is because it is important to make 1) higher polygonal than the hysteresis curve for the magnetic field in the radial direction (solid line 32).

【0006】以上の問題点に鑑みて、本発明の課題は、
機械加工を施すことなく、基板側に微細な凹凸を形成す
ると共に、これらの凹凸を円周方向への方向性を付与す
ることによって、磁気特性を犠牲とすることなく、磁気
ヘッドの低浮上距離化可能な磁気記録媒体およびその製
造方法を実現することにある。
In view of the above problems, the object of the present invention is to
By forming fine irregularities on the substrate side without machining, and by giving these irregularities a directionality in the circumferential direction, the low flying distance of the magnetic head can be achieved without sacrificing magnetic characteristics. Object of the present invention is to realize a realizable magnetic recording medium and a manufacturing method thereof.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明に係る磁気記録媒体において講じた手段は、
円板状の非磁性基板の表面側に、その円周方向に沿って
繊維構造状(fiber−structure)の凹凸
形成膜を設けておき、この凹凸形成膜の表面側に磁性層
を形成することである。すなわち、非磁性基板の表面側
に機械加工を施して、その表面に凹凸を形成するのでは
なく、非磁性基板の表面側に、その円周方向に沿って繊
維構造状の凹凸形成膜、たとえば主成分が遷移金属炭化
物の凹凸形成膜を繊維構造状に被着して、その繊維構造
状の凹凸形成膜よって形成される凹凸を利用することを
特徴とする。
In order to solve the above-mentioned problems, means taken in the magnetic recording medium according to the present invention are as follows:
A fiber-structured concavo-convex forming film is provided on the surface side of a disk-shaped non-magnetic substrate along the circumferential direction, and a magnetic layer is formed on the surface side of the concavo-convex forming film. Is. That is, the surface of the non-magnetic substrate is not machined to form irregularities on the surface thereof, but the surface of the non-magnetic substrate is circumferentially formed along the circumferential direction to form a concavo-convex film having a fibrous structure. It is characterized in that a concavo-convex forming film whose main component is a transition metal carbide is applied in a fibrous structure and the concavities and convexities formed by the concavo-convex forming film having the fibrous structure are utilized.

【0008】このような構成の磁気記録媒体を製造する
ために、本発明に係る製造方法においては、非磁性基板
をその円周方向に回転させながら、その表面側に凹凸形
成膜を熱蒸着法やスパッタ法などの物理的蒸着法により
形成する物理的蒸着工程を有している。ここで、物理的
蒸着を、円周方向に回転する非磁性基板の表面側に、そ
の内周側から外周側に向けて開口部の長軸が位置合わせ
されたスリットを配置した状態で行うことが好ましい。
In order to manufacture the magnetic recording medium having such a structure, in the manufacturing method according to the present invention, the concavo-convex film is formed on the surface side of the non-magnetic substrate by the thermal evaporation method while rotating the non-magnetic substrate in the circumferential direction. It has a physical vapor deposition step of forming it by a physical vapor deposition method such as a sputtering method. Here, the physical vapor deposition is performed with a slit in which the major axis of the opening is aligned from the inner circumference side to the outer circumference side on the surface side of the non-magnetic substrate that rotates in the circumferential direction. Is preferred.

【0009】[0009]

【作用】本発明に係る磁気記録媒体においては、非磁性
基板の表面側に、その円周方向に沿って繊維構造状の凹
凸形成膜を備えており、この凹凸形成膜の凹凸は、磁気
記録媒体の最表層にまで反映され、磁気記録媒体と磁気
ヘッドとの摩擦係数を低減している。ここで、磁気記録
媒体表面の凹凸は、非磁性基板に対する機械加工によっ
て形成したのではなく、物理的蒸着法によって被着した
繊維構造状の凹凸形成膜によって形成されたものである
ため、その凹凸の粗さは被着条件によって制御できる。
従って、凹凸の粗さばらつきが小さいので、磁気ヘッド
を低浮上距離化できる。しかも、凹凸形成層は、非磁性
基板の表面側に、その円周方向に沿って形成され、方向
性を有している。それ故、凹凸形成層の表面側に形成さ
れる磁性層も、円周方向に配向性をもって形成されるた
め、磁気ヘッドからの円周方向の発生磁界に対応して、
磁性層の円周方向の磁気特性を高抗磁力化および高角形
化できる。よって、磁気特性を犠牲にすることなく、磁
気ヘッドを低浮上距離化できるので、磁気記録媒体を高
密度記録化できる。
In the magnetic recording medium according to the present invention, the non-magnetic substrate is provided on the surface side thereof with a concavo-convex film having a fibrous structure along the circumferential direction thereof. The coefficient of friction between the magnetic recording medium and the magnetic head is reduced by being reflected on the outermost layer of the medium. Here, since the unevenness of the surface of the magnetic recording medium is not formed by machining the non-magnetic substrate, but is formed by the fiber structure-like unevenness forming film deposited by the physical vapor deposition method, Roughness can be controlled by the deposition conditions.
Therefore, the unevenness in roughness is small, and the flying height of the magnetic head can be reduced. Moreover, the concavo-convex forming layer is formed on the front surface side of the non-magnetic substrate along the circumferential direction thereof and has directionality. Therefore, the magnetic layer formed on the surface side of the concavo-convex forming layer is also formed with orientation in the circumferential direction, so that in response to the magnetic field generated in the circumferential direction from the magnetic head,
The magnetic characteristics in the circumferential direction of the magnetic layer can be made high in coercive force and high in prismatic shape. Therefore, the flying height of the magnetic head can be reduced without sacrificing the magnetic characteristics, and the magnetic recording medium can be recorded at high density.

【0010】[0010]

【実施例】つぎに、添付図面に基づいて、本発明の一実
施例を説明する。
An embodiment of the present invention will be described below with reference to the accompanying drawings.

【0011】図1は、本例の磁気記録ディスクの概略断
面図である。
FIG. 1 is a schematic sectional view of a magnetic recording disk of this example.

【0012】図において、1は磁気記録ディスクであ
り、磁気記録ディスク1は、その基体たる金属薄膜磁気
ディスク用のガラス基板たる非磁性基板2と、その両面
側にスパッタ形成された厚さが約1000ÅのCr層た
る金属下地層層3と、その表面側にスパッタ形成された
厚さが約500ÅのCo86Cr10Pt4 合金層(コバル
ト−クロム−白金磁性薄膜層)たる磁性層4と、その表
面側にスパッタ形成された厚さが約200Åのアモルフ
ァスカーボン層たる保護層5と、その表面側に塗布され
たフロロカーボン系の厚さが約20Åの液体潤滑剤層6
とを有している。
In the figure, reference numeral 1 is a magnetic recording disk, and the magnetic recording disk 1 has a non-magnetic substrate 2 which is a glass substrate for a metal thin film magnetic disk, which is a base thereof, and a thickness which is formed by sputtering on both sides thereof. A metal underlayer layer 3 which is a 1000 Å Cr layer, and a magnetic layer 4 which is a Co 86 Cr 10 Pt 4 alloy layer (cobalt-chromium-platinum magnetic thin film layer) having a thickness of about 500 Å sputtered on the surface side thereof; A protective layer 5 which is an amorphous carbon layer having a thickness of about 200Å sputtered on the surface side thereof, and a liquid lubricant layer 6 having a fluorocarbon thickness of about 20Å applied on the surface side thereof.
And have.

【0013】さらに、本例の磁気記録ディスク1におい
ては、非磁性基板2と金属下地層3との間には、非磁性
基板2の円周方向に沿って繊維構造状のZrC膜たる凹
凸形成膜7が被着されており、その表面側は非磁性基板
2の半径方向にも膜厚さに対応する微細な凹凸を形成し
ている。ここで、凹凸形成膜7の表面側の凹凸は、非磁
性基板2に対して機械加工を施して形成したのではな
く、非磁性基板2の表面側に、その円周方向に沿ってZ
rC膜(凹凸形成膜7)を反応性スパッタ法(物理的蒸
着法)により被着したものであるため、凹凸形成膜7
は、そのスパッタ粒子の沈着過程において、非磁性基板
2の表面に形成された核を中心に、その構成成分が核成
長することによって繊維構造(fiber−struc
ture)に形成された状態にある。このため、凹凸形
成膜7は、非磁性基板2の表面を平坦に覆うのではな
く、その被着領域7aと非被着領域7bとを形成し、こ
れらの被着領域7aと非被着領域7bと段差、および凹
凸形成膜7の膜厚さに対応して、凹凸形成膜7の表面側
には凹凸が形成されている。また、凹凸形成層7は、非
磁性基板2の円周方向に沿って形成されて方向性を有し
ており、これらの凹凸は、磁気記録ディスク1の最表面
にも反映された状態にある。
Further, in the magnetic recording disk 1 of this example, the unevenness as a ZrC film having a fiber structure is formed between the non-magnetic substrate 2 and the metal underlayer 3 along the circumferential direction of the non-magnetic substrate 2. The film 7 is deposited, and the surface side of the film 7 also has minute irregularities corresponding to the film thickness in the radial direction of the non-magnetic substrate 2. Here, the unevenness on the surface side of the unevenness forming film 7 is not formed by machining the non-magnetic substrate 2, but is formed on the surface side of the non-magnetic substrate 2 along the circumferential direction by Z.
Since the rC film (unevenness forming film 7) is deposited by the reactive sputtering method (physical vapor deposition method), the unevenness forming film 7
In the deposition process of the sputtered particles, the constituent components of the sputtered particles mainly grow around the nuclei formed on the surface of the non-magnetic substrate 2, and the fiber structure (fiber-structure) is formed.
It is in the state where it has been formed. Therefore, the concavo-convex forming film 7 does not cover the surface of the non-magnetic substrate 2 evenly, but forms the adhered areas 7a and the non-adhered areas 7b, and these adhered areas 7a and the non-adhered areas are formed. Corrugations are formed on the surface side of the concavo-convex forming film 7 in correspondence with the step 7b and the step, and the film thickness of the concavo-convex forming film 7. Further, the unevenness forming layer 7 is formed along the circumferential direction of the non-magnetic substrate 2 and has directivity, and these unevennesses are also reflected on the outermost surface of the magnetic recording disk 1. ..

【0014】このような構成の磁気記録ディスク1にお
いて、凹凸形成層7は円周方向への方向性を有している
ため、凹凸形成層7の表面側に金属下地層5を介して形
成されている磁性層4も、円周方向に配向性をもって形
成される結果、その円周方向の磁気特性は磁気ヘッドか
らの円周方向の発生磁界に対応する状態にあり、磁性層
4の円周方向の磁気特性が高抗磁力化および高角形化さ
れている。従って、本例の磁気記録ディスク1に対し
て、その円周方向に磁場を印加して測定した磁気特性に
おいては、その保磁力Hcが1800Oe、角形比Sが
0.90である。
In the magnetic recording disk 1 having such a structure, since the unevenness forming layer 7 has the directionality in the circumferential direction, it is formed on the surface side of the unevenness forming layer 7 via the metal underlayer 5. As a result of the magnetic layer 4 being formed with orientation in the circumferential direction, the magnetic characteristics in the circumferential direction correspond to the magnetic field generated in the circumferential direction from the magnetic head. The magnetic characteristics in the direction are made highly coercive and highly rectangular. Therefore, in the magnetic characteristics measured by applying a magnetic field in the circumferential direction to the magnetic recording disk 1 of this example, the coercive force Hc is 1800 Oe and the squareness ratio S is 0.90.

【0015】これに対して、凹凸形成層7を形成するこ
となく、Cr層たる金属下地層層3,Co86Cr10Pt
4 合金層たる磁性層4,アモルファスカーボン層たる保
護層5およびフロロカーボン系の液体潤滑剤層6を形成
した場合には、その円周方向に磁場を印加して測定した
磁気特性は、その保磁力Hcが1200Oe、角形比S
が0.75であり、本例の磁気記録ディスク1の方が良
好な磁気特性を有している。
On the other hand, without forming the concavo-convex forming layer 7, the metal underlayer layer 3, which is a Cr layer 3, Co 86 Cr 10 Pt.
4 When a magnetic layer as an alloy layer 4, a protective layer 5 as an amorphous carbon layer, and a fluorocarbon liquid lubricant layer 6 are formed, the magnetic characteristics measured by applying a magnetic field in the circumferential direction are as follows: Hc is 1200 Oe, squareness ratio S
Is 0.75, and the magnetic recording disk 1 of this example has better magnetic characteristics.

【0016】さらに、凹凸形成層7の表面側は、これら
の凹凸形成膜7の被着領域7aと非被着領域7bと段
差、および凹凸形成膜7の膜厚さに対応して、その半径
方向にも凹凸を形成しており、これらの凹凸は、磁気記
録ディスク1の最表層にまで反映された状態にある。従
って、これらの凹凸の頂上付近を磁気ヘッドが摺動する
ので、磁気ヘッドと磁気記録ディスク1との摩擦係数
が、0.4と小さい。しかも、凹凸形成膜7の凹凸は非
磁性基板2の表面に対する機械加工によって形成された
ものではないので、その粗さは凹凸形成膜7の被着条件
によって制御され、それらの凹凸の大きさにバラツキが
小さい。それ故、本例の磁気記録ディスク1において
は、その表面粗さが実質的に小さいので、磁気記録ディ
スク1に対する磁気ヘッドの浮上距離を圧縮しても、そ
の表面側の凹凸と磁気ヘッドが衝突しない。それ故、磁
気ヘッドを低浮上距離化でき、磁気記録ディスク1の高
密度記録化を実現できる。
Further, the surface side of the unevenness forming layer 7 has a radius corresponding to the adhered region 7a and the non-adhered region 7b of the unevenness forming film 7 and the film thickness of the unevenness forming film 7. Irregularities are also formed in the direction, and these irregularities are reflected in the outermost layer of the magnetic recording disk 1. Therefore, since the magnetic head slides near the tops of these irregularities, the coefficient of friction between the magnetic head and the magnetic recording disk 1 is as small as 0.4. Moreover, since the unevenness of the unevenness forming film 7 is not formed by machining the surface of the non-magnetic substrate 2, the roughness thereof is controlled by the deposition condition of the unevenness forming film 7, and the size of the unevenness is controlled. The variation is small. Therefore, since the surface roughness of the magnetic recording disk 1 of this example is substantially small, even if the flying distance of the magnetic head with respect to the magnetic recording disk 1 is compressed, the unevenness on the surface side collides with the magnetic head. do not do. Therefore, the flying height of the magnetic head can be reduced, and high density recording of the magnetic recording disk 1 can be realized.

【0017】つぎに、このような構成の磁気記録ディス
ク1の製造方法を説明する。
Next, a method of manufacturing the magnetic recording disk 1 having such a structure will be described.

【0018】まず、滑らかな表面を有するガラス製の非
磁性基板2を精密洗浄した後に、非磁性基板2をマグネ
トロンスパッタ装置のスパッタ室内に配置する。そし
て、そのスパッタ室内を約3×10-6Torr以下の真
空度にまで排気し、さらに、非磁性基板2を約300℃
の温度にまで加熱する。
First, the nonmagnetic substrate 2 made of glass having a smooth surface is precisely cleaned, and then the nonmagnetic substrate 2 is placed in the sputtering chamber of the magnetron sputtering apparatus. Then, the sputtering chamber is evacuated to a vacuum degree of about 3 × 10 −6 Torr or less, and the nonmagnetic substrate 2 is further heated to about 300 ° C.
Heat to the temperature of.

【0019】この状態で、図2に示すように、スパッタ
室内に配置された非磁性基板2の表面側には、その内周
側から外周側に向けて開口部8aの長軸が位置合わせさ
れたスリット8が配置されている。この状態で、非磁性
基板2をその円周方向(矢印Bで示す。)に回転させな
がら、CH4 ガスを添加したArガス雰囲気中で、Zr
Cをターゲットとして反応性スパッタリングを行う(物
理的蒸着工程)。このとき、ターゲットから供給される
ZrC(矢印Bで示す。)は、非磁性基板2に対して、
約30°ないし約60°の角度で供給される。このよう
にして、非磁性基板2の表面側に、約300ÅのZrC
膜(凹凸形成膜7)を被着する。ここで、凹凸形成膜7
は、そのスパッタ粒子の沈着過程において、非磁性基板
2の表面に形成された核を中心に、その構成成分が所定
の方向に核成長することによって繊維構造状に形成さ
れ、非磁性基板2の表面を平坦に覆うのではなく、図1
に示したように、その被着領域7aと非被着領域7bと
を形成する。その結果、これらの被着領域7aと非被着
領域7bと段差、および凹凸形成膜7の膜厚さに対応し
て、凹凸形成膜7の表面側には、凹凸が形成される。し
かも、非磁性基板2の側は、その円周方向に回転する状
態にあるため、凹凸形成膜7は、その円周方向に方向性
を有する状態で形成される。
In this state, as shown in FIG. 2, the major axis of the opening 8a is aligned from the inner peripheral side to the outer peripheral side on the surface side of the non-magnetic substrate 2 arranged in the sputtering chamber. The slit 8 is arranged. In this state, while rotating the non-magnetic substrate 2 in the circumferential direction (shown by the arrow B), Zr was added in an Ar gas atmosphere to which CH 4 gas was added.
Reactive sputtering is performed using C as a target (physical vapor deposition step). At this time, ZrC (indicated by an arrow B) supplied from the target is with respect to the non-magnetic substrate 2.
It is provided at an angle of about 30 ° to about 60 °. In this way, about 300 Å ZrC is applied to the surface side of the non-magnetic substrate 2.
A film (unevenness forming film 7) is deposited. Here, the unevenness forming film 7
Are formed in a fiber structure by nucleating the constituents in the predetermined direction around the nuclei formed on the surface of the non-magnetic substrate 2 in the deposition process of the sputtered particles. Instead of covering the surface flat,
As shown in FIG. 5, the adhered area 7a and the non-adhered area 7b are formed. As a result, unevenness is formed on the front surface side of the unevenness forming film 7 in correspondence with the deposited area 7a, the non-adhered area 7b, the step, and the film thickness of the unevenness forming film 7. Moreover, since the non-magnetic substrate 2 side is in a state of rotating in the circumferential direction, the unevenness forming film 7 is formed in a state having directivity in the circumferential direction.

【0020】続いて、スパッタ室内を約3×10-6To
rr以下の真空度にまで排気すると共に、スリット8を
移動させて、凹凸形成膜7が被着された非磁性基板2の
表面側を開放状態とし、さらに、非磁性基板2の温度
を、約200℃にまで加熱する。つぎに、Arガス雰囲
気中で、非磁性基板2の表面側に、厚さが約1000Å
のCr層たる金属下地層層3をスパッタ形成し、つぎ
に、その表面側に厚さが約500ÅのCo86Cr10Pt
4 合金層たる磁性層4をスパッタ形成し、さらに、その
表面側に厚さが約200Åのアモルファスカーボン層た
る保護層5をスパッタ形成する。
Subsequently, the inside of the sputter chamber is set to about 3 × 10 -6 To
While evacuating to a vacuum degree of rr or less, the slit 8 is moved to open the surface side of the non-magnetic substrate 2 on which the concavo-convex forming film 7 is deposited, and the temperature of the non-magnetic substrate 2 is set to about Heat to 200 ° C. Next, in an Ar gas atmosphere, the surface of the non-magnetic substrate 2 has a thickness of about 1000Å
Of the metal underlayer 3 which is a Cr layer of Co 86 Cr 10 Pt having a thickness of about 500 Å on the surface side.
A magnetic layer 4 as a 4 alloy layer is formed by sputtering, and a protective layer 5 as an amorphous carbon layer having a thickness of about 200 Å is further formed on the surface side thereof by sputtering.

【0021】しかる後に、スパッタ室を大気圧に戻した
後に、スパッタ室から凹凸形成膜7,金属下地層層3,
磁性層4および保護層5が形成された非磁性基板2を取
り出し、その保護層5の表面側にフロロカーボン系の液
体潤滑剤層6を塗布すると、図1に示す磁気記録ディス
ク1となる。
Then, after returning the sputtering chamber to the atmospheric pressure, the unevenness forming film 7, the metal underlayer 3,
The non-magnetic substrate 2 on which the magnetic layer 4 and the protective layer 5 are formed is taken out, and a fluorocarbon liquid lubricant layer 6 is applied to the surface side of the protective layer 5, whereby the magnetic recording disk 1 shown in FIG. 1 is obtained.

【0022】以上のとおり、本例の磁気記録ディスク1
の製造方法においては、その物理的蒸着工程において、
磁気記録ディスク1をその円周方向に回転させることに
よって、凹凸形成膜7の形成方向に方向性を与えること
ができるため、その表面側で磁性層4を円周方向に配向
した状態で形成でき、磁性層4の磁気特性を向上するこ
とができる。しかも、この凹凸形成膜7は、ガラス製の
非磁性基板7の表面上で、ZrCの結晶軸が所定の方向
を向いて成長することによって繊維構造状として形成さ
れることを利用しているため、その下地側たる非磁性基
板7の表面状態や成膜条件によって、その表面に形成さ
れる凹凸を制御することができる。従って、磁気記録デ
ィスク1の最表層に形成される凹凸粗さのばらつきが小
さいので、磁気ヘッドとの摩擦係数を低減できると共
に、磁気ヘッドを低浮上化可能な磁気記録ディスク1を
形成できる。
As described above, the magnetic recording disk 1 of this example
In the manufacturing method of, in the physical vapor deposition step,
By rotating the magnetic recording disk 1 in the circumferential direction, it is possible to give directionality to the formation direction of the concavo-convex forming film 7, so that it is possible to form the magnetic layer 4 in the circumferential direction on the surface side thereof. The magnetic characteristics of the magnetic layer 4 can be improved. Moreover, since the unevenness forming film 7 is formed on the surface of the non-magnetic substrate 7 made of glass, it is formed as a fiber structure by the crystal axes of ZrC growing in a predetermined direction. The unevenness formed on the surface can be controlled by the surface condition of the non-magnetic substrate 7, which is the underlying side, and the film forming conditions. Therefore, since the unevenness of the roughness formed on the outermost surface of the magnetic recording disk 1 is small, the coefficient of friction with the magnetic head can be reduced, and the magnetic recording disk 1 capable of lowering the flying height of the magnetic head can be formed.

【0023】なお、本例においては、CH4 ガスを添加
したArガス雰囲気中で、ZrCをターゲットとして反
応性スパッタリングを行うことによって、繊維構造状の
凹凸形成膜7を形成したが、その他にも、Zrのターゲ
ット上に炭素の小片を置いてスパッタ成膜する方法、ま
たは、CH4 ガスを添加したArガスのプラズマ雰囲気
中で、Zrを蒸着することによっても、繊維構造状の凹
凸形成膜を形成できる。また、ZrC以外にも、TiC
(チタン炭化物),HfC(ハフニウム炭化物)または
WC(タングステン炭化物)などを用いることもでき
る。
In this example, the fiber structure-like unevenness forming film 7 was formed by reactive sputtering with ZrC as a target in an Ar gas atmosphere to which CH 4 gas was added. , A method of depositing a small piece of carbon on a Zr target to form a film by sputtering, or by depositing Zr in a plasma atmosphere of Ar gas to which CH 4 gas is added, a concavo-convex film having a fiber structure is formed. Can be formed. In addition to ZrC, TiC
(Titanium carbide), HfC (hafnium carbide), WC (tungsten carbide), or the like can also be used.

【0024】[0024]

【発明の効果】以上のとおり、本発明においては、非磁
性基板の表面側に、その円周方向に沿って物理的蒸着法
により被着された繊維構造状の凹凸形成膜を備え、この
凹凸形成膜の表面側に磁性層が形成されていることに特
徴を有する。従って、本発明によれば、凹凸形成膜の凹
凸は、非磁性基板に機械加工により形成したのではな
く、スパッタ法や熱蒸着法などの物理的蒸着法により形
成されたものであるため、凹凸の粗さばらつきが小さい
ので、磁気ヘッドを低浮上距離化できる。しかも、凹凸
形成層は、非磁性基板の円周方向に沿って形成されてい
るため、磁性層の円周方向の磁気特性を高保磁力化およ
び高角形化できる。従って、磁気特性を犠牲にすること
なく、磁気ヘッドを低浮上距離化できるので、磁気記録
媒体を高密度記録化できるという効果を奏する。
As described above, in the present invention, the surface of the non-magnetic substrate is provided with the concavo-convex forming film having a fiber structure formed by physical vapor deposition along the circumferential direction of the non-magnetic substrate. It is characterized in that the magnetic layer is formed on the surface side of the forming film. Therefore, according to the present invention, the unevenness of the unevenness forming film is not formed by machining on the non-magnetic substrate, but is formed by a physical vapor deposition method such as a sputtering method or a thermal evaporation method. Since the variation in roughness is small, the flying height of the magnetic head can be reduced. Moreover, since the unevenness forming layer is formed along the circumferential direction of the non-magnetic substrate, the magnetic characteristics in the circumferential direction of the magnetic layer can be increased in coercive force and polygonal. Therefore, since the flying height of the magnetic head can be reduced without sacrificing the magnetic characteristics, the magnetic recording medium can be highly densely recorded.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る磁気記録ディスクの断面
図である。
FIG. 1 is a sectional view of a magnetic recording disk according to an embodiment of the present invention.

【図2】図1の磁気記録ディスクの製造方法における物
理的蒸着工程を示す概念図である。
FIG. 2 is a conceptual diagram showing a physical vapor deposition step in the method of manufacturing the magnetic recording disk of FIG.

【図3】磁気記録ディスクの円周方向の磁気特性と、そ
の半径方向の磁気特性を比較するグラフ図である。
FIG. 3 is a graph comparing magnetic characteristics in a circumferential direction of a magnetic recording disk with magnetic characteristics in a radial direction thereof.

【図4】従来の磁気記録ディスクの断面図である。FIG. 4 is a sectional view of a conventional magnetic recording disk.

【符号の説明】[Explanation of symbols]

1・・・磁気記録ディスク(磁気記録媒体) 2・・・非磁性基板 3・・・金属下地層 4・・・磁性層 5・・・保護層 6・・・液体潤滑剤層 7・・・凹凸形成膜 8・・・スリット 1 ... Magnetic recording disk (magnetic recording medium) 2 ... Non-magnetic substrate 3 ... Metal underlayer 4 ... Magnetic layer 5 ... Protective layer 6 ... Liquid lubricant layer 7 ... Unevenness forming film 8 ... Slit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 円板状の非磁性基板の表面側には、その
円周方向に沿って形成されて表面側に凹凸を形成すべき
繊維構造状の凹凸形成膜と、この凹凸形成膜の表面側に
形成された磁性層と、を有していることを特徴とする磁
気記録媒体。
1. A fiber structure-like unevenness forming film which is to be formed along the circumferential direction of the disk-shaped non-magnetic substrate to form unevenness on the surface side, and the unevenness forming film A magnetic recording medium having a magnetic layer formed on the front surface side.
【請求項2】 請求項1において、前記凹凸形成膜は、
その主成分が遷移金属炭化物から構成されていることを
特徴とする磁気記録媒体。
2. The unevenness forming film according to claim 1,
A magnetic recording medium whose main component is composed of a transition metal carbide.
【請求項3】 請求項1または請求項2に規定する磁気
記録媒体の製造方法であって、前記非磁性基板をその円
周方向に回転させながら、その表面側に前記凹凸形成膜
を物理的蒸着法により形成する物理的蒸着工程を有して
いることを特徴とする磁気記録媒体の製造方法。
3. The method of manufacturing a magnetic recording medium as defined in claim 1, wherein the non-magnetic substrate is rotated in the circumferential direction while the concavo-convex film is physically formed on the surface side of the non-magnetic substrate. A method of manufacturing a magnetic recording medium, which comprises a physical vapor deposition step of forming by a vapor deposition method.
【請求項4】 請求項3において、前記物理的蒸着工程
では、円周方向に回転する前記非磁性基板の表面側に、
その内周側から外周側に向けて開口部の長軸が位置合わ
せされたスリットを配置した状態で、前記凹凸形成膜を
物理的蒸着法により形成することを特徴とする磁気記録
媒体の製造方法。
4. The physical vapor deposition step according to claim 3, wherein the surface side of the non-magnetic substrate rotating in a circumferential direction is
A method of manufacturing a magnetic recording medium, characterized in that the concave-convex forming film is formed by a physical vapor deposition method with a slit in which the major axis of the opening is aligned from the inner peripheral side toward the outer peripheral side. ..
JP1308092A 1992-01-28 1992-01-28 Magnetic recording medium and its manufacture Pending JPH05205241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1308092A JPH05205241A (en) 1992-01-28 1992-01-28 Magnetic recording medium and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1308092A JPH05205241A (en) 1992-01-28 1992-01-28 Magnetic recording medium and its manufacture

Publications (1)

Publication Number Publication Date
JPH05205241A true JPH05205241A (en) 1993-08-13

Family

ID=11823192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1308092A Pending JPH05205241A (en) 1992-01-28 1992-01-28 Magnetic recording medium and its manufacture

Country Status (1)

Country Link
JP (1) JPH05205241A (en)

Similar Documents

Publication Publication Date Title
US6586116B1 (en) Nonmetallic thin film magnetic recording disk with pre-seed layer
US5474830A (en) Magnetic recording medium and method for the manufacture thereof including spaced apart deposits
US5853847A (en) Magnetic recording medium and its manufacture
US5705287A (en) Magnetic recording disk with metal nitride texturing layer
US5871621A (en) Method of fabricating a textured magnetic storage disk
US5897931A (en) Magnetic disk with boron carbide overcoat layer
US6042939A (en) Magnetic recording medium and method of manufacturing the same
JP2697227B2 (en) Magnetic recording medium and method of manufacturing the same
US6821448B2 (en) Methods for producing thin film magnetic devices having increased orientation ratio
JPH05205241A (en) Magnetic recording medium and its manufacture
JP4391010B2 (en) Magnetic recording medium, method for manufacturing the same, and magnetic recording apparatus
JPH0268716A (en) Production of magnetic disk medium
KR100276753B1 (en) Sputtered heat cycle texture layer formed of high melting point material
JP2806443B2 (en) Magnetic recording medium and method of manufacturing the same
US6124020A (en) Magnetic recording medium and production method thereof
JP2794578B2 (en) Manufacturing method of magnetic recording medium
JPH0278018A (en) Production of perpendicular magnetic recording medium
US20020098386A1 (en) Magnetic recording medium and magnetic disc drive
JPH06215344A (en) Magnetic recording medium
JPH10283626A (en) Magnetic recording medium and production thereof
JPH1139634A (en) Magnetic disk and its production
JP2000020935A (en) Magnetic recording medium, its production and magnetic recorder using the same
JPH05334743A (en) Magneto-optical recording medium and its production
JPH07249222A (en) Magnetic recording medium
JPH0845215A (en) Magnetic recording medium