JPH0520480B2 - - Google Patents

Info

Publication number
JPH0520480B2
JPH0520480B2 JP61010876A JP1087686A JPH0520480B2 JP H0520480 B2 JPH0520480 B2 JP H0520480B2 JP 61010876 A JP61010876 A JP 61010876A JP 1087686 A JP1087686 A JP 1087686A JP H0520480 B2 JPH0520480 B2 JP H0520480B2
Authority
JP
Japan
Prior art keywords
parts
coal
reaction
dispersant
hcho
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61010876A
Other languages
Japanese (ja)
Other versions
JPS62169895A (en
Inventor
Tomofumi Nakamoto
Katsutoshi Fujishige
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Kokusaku Pulp Co Ltd
Original Assignee
Sanyo Kokusaku Pulp Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Kokusaku Pulp Co Ltd filed Critical Sanyo Kokusaku Pulp Co Ltd
Priority to JP61010876A priority Critical patent/JPS62169895A/en
Publication of JPS62169895A publication Critical patent/JPS62169895A/en
Publication of JPH0520480B2 publication Critical patent/JPH0520480B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Liquid Carbonaceous Fuels (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は石炭・水スリラー用分散剤に関する。 詳しくは酸性下での変性リグニンスルホン酸塩
とナフタレンジスルホン酸とナフタレンスルホン
酸との反応生成物に関する。 〔従来の技術〕 石炭・水スリラー(以下CWMと略す)用分散
剤としてリグニンスルホン酸塩(LSA塩)やナ
フタレンスルホン酸ホルムアルデヒド縮合物
(NSF)塩を用いる方法は、特開昭52−71506、
特公昭60−6395で既に公知である。 これを更に発展させた特許として、ナフタレン
スルホン酸(NS)とリグニンスルホン酸
(LSA)誘導体〔脱スルホンリグニンスルホン酸
塩(DSL)〕とホルムアルデヒド(HCHO)との
縮合反応生成物を分散剤として用いる方法(特開
昭58−34896)が開示されている。 また、特開昭60−26090には共縮合させるリグ
ニンスルホン酸は、木材チツプをスルホン化して
得られるものであり、その化学処理工程、加水分
解反応や酸化反応や脱スルホン化反応や脱メチル
反応等を受けた変性リグニンスルホン酸による縮
合リグニンスルホン酸が開示されている。 しかしこの場合はただ単に一般な反応処理を例
記しただけである。例えば酸化反応1つを考えた
場合、酸化反応に用いる薬品、またその程度によ
つて変性リグニンスルホン酸は変わる。従つて化
学処理が適当でない場合は逆にマイナスに作用す
る。 特開昭58−34896に開示されている方法は特開
昭52−25433に記載されている方法に準じて得ら
れるものである。 従つてこの方法はセメント分散剤に適するよう
に反応処理されたものを、そのままそつくり
CWMに適用されたものと解釈される。 またセメント分散剤の分野では特開昭60−
5051、60−5052が開示されている。 これはDSLの代りに限外濾過したLSA塩を用
いて縮合反応させた後、酸化反応処理したものを
用いるものである。 しかしながらセメント微粉末石炭は一見、同じ
微粒子を取扱うという点では似ているが、前者は
無機物であり水硬性物質であるのに対し、後者は
有機物であり水硬性はなくしかも表面構造も異な
つている。 特に前者の分散剤の場合には高分散性の他にコ
ンクリートの凝結遅延性や空気連行性が重視され
る。 縮合度が低い場合には、連行空気量が増加する
為に反応物の縮合度が重要で高縮合物にして用い
られるのが一般的である。 これに対して後者の場合は分散性の他に、でき
たCWMの貯蔵安定性が重視される。 従つてこれに用いられる最適な分散剤の製法が
異つてくるのは当然の事と言える。 〔発明が解決しようとする問題点〕 工業的な使用に耐えうる経済的で高性能な
CWMの分散剤が現在のところ知られていない。 ここで高性能な分散剤とは炭種による影響が少
なく、次の点に優れているものを言う、 (1) 低添加量で減粘効果が大きい。 (2) 貯蔵安定性が高い。 ことである。 〔問題点を解決するための手段〕 本発明者らはNSとLSA塩とHCHO系のCWM
分散剤について詳細に鋭意研究した結果、ナフタ
レンジスルホン酸と酸化反応処理した特殊リグニ
ンスルホン酸塩を用いることによつて高性能な
CWM用分散剤の開発に成功した。 即ち本発明は高温アルカリ空気酸化処理した
LSA塩と2,6−ナフタリンジスルホン酸を主
成分とするナフタリンジスルホン酸とを、NS、
HCHOと反応させることを最大の特徴とする。 更に詳しくは、亜流酸パルプ排液(SSL)の
SO3H基はそのまま残し、即ち脱スルホン化反応
が生じるまで激しく酸化反応させないで(DSL
のように酸性下で沈澱が生じるまで激しく酸化反
応しない)、他の官能基フエノール性OHやカル
ボキシル基等を増加させ、それと同時にLSA塩
以外の還元性糖類、糖変成物が反応阻害物質とな
らないような適度な酸化反応を行う。 具体的にはNaOHをSSL固形分に対して5〜20
%添加、温度150〜200℃、時間1〜2時間、空気
又は酸素を吹込みながら湿式酸化を行う。 ここで言うナフタレンジスルホン酸(NDS)
は2,6−ナフタリンジスルホン酸を主成分と
し、その他2,7−ナフタリンジスルホン酸等を
含むものをいう。 こうして得られた変性LSA塩(TLS′)とNDS
の両者を用いてNSとHCHOと反応させる。 この方法は特公昭52−25433に準じて行うが、
具体的には次に述べる。 分散剤の基本的な製法はNS、NDSに硫酸およ
び水を添加し、これを80〜95℃に加熱してから、
37%HCHOを約2時間にわたつて添加する。 このものにHCHOとTLS′を添加し、90〜120
℃で5〜20時間反応させ中和し、無機塩を除去し
て製品とする。 反応に用いる薬品の比率は、TLS′はNS100部
に対し5〜50部(重量部、以下同じ)、好ましく
は15〜40部である。 50部以上では未反応NSが多くなり好ましくな
い。また5%以下ではNSFに近くなつて、本発
明の特徴が発揮されなくなる。 NDSはNS100部に対し5〜20部、好ましくは
10〜15部がよい。 次に最初に用いるHCHO量はNS100部に対し
て20〜25部が適当である。 TLS′と共に添加するHCHOはTLS′100部に対
して20〜100部である。 NSと最初に混合する水と硫酸はNS100部に対
し、水は15〜30部、好ましくは18〜25部であり、
硫酸は20〜40部である。 反応温度は90〜130℃、時間は5〜20時間であ
る。 本発明において上記HCHO反応物は、中和処
理してアルカリ金属塩、アンモニウム塩、低級ア
ミン塩等にされる。 アルカリ金属としてはNa、Li、K塩、低級ア
ミン塩としてはモノエタノールアミン、ジエタノ
ールアミン、トリエタノールアミン塩である。 本発明に用いられる分散剤が適用される石炭は
褐炭、亜歴青炭、歴青炭、無煙炭などに特に制限
はない。 石炭の粒度には特に限定はないが、200メツシ
ユ通過50%以上好ましくは70〜80%がよい。 また本発明において、CMC、MC、ポリアク
リル酸塩、縮合リン酸塩等公知の添加剤を併用す
ることも可能である。 また他の分散剤例えばNSF、LSA塩も同様に
併用可能である。 〔作用〕 本発明において特殊な条件で酸化反応処理して
得られたTLS′とNDS併用系が従来用いられてき
たDSL、NS、HCHOとの反応系とどのような反
応の相違があるかは明確ではない。 しかしながらDSLはSO3Hが少ない為に、その
量を増加させた場合に反応系で沈澱を生じるのに
対してTLS′の場合は生じない。 しかもフエノール性OHやカルボキシル基のよ
うな官能基は普通のLSA塩に比べて増加し、還
元系糖類、糖変成物は反応阻害にならない形のも
のになり、反応性がより高くなつたものと考えら
れる。 併用するNDSは通常のコンクリート混和剤用
いる高性能減水剤NSF高縮合製造時にはマイナ
スに作用するが、本発明のようにTLS′と併用し
た系ではプラスに作用する。その理由について不
明であるが、TLS′との親和性と関係があるもの
と思われる。 反応物の官能基量、LSA塩の比率が増加する
と、石炭との親和性が大きくなる為に、より高性
能な分散剤になるものと推測される。 〔実施例〕 <特殊リグニンスルホン酸塩(TLS′)の調製> 亜流酸パルプ濃縮液のNa(SSL−Na)を
NaOHでpH12に調製、高温150〜160℃で2時
間アルカリ空気酸化した。 <NS・NDS・TLS′・HCHO反応物の調製> NS80部、NDS20部、98%H2SO435部、水20部
の混合物を80〜90℃に加熱し、37%HCHO23部
を2時間にわたつて添加した。 その後TLS′30部、37%HCHO23部からなる液
を1時間おきに4回に分けて添加し、95〜100℃
で2時間攪拌しながら反応を行わせた。 反応終了後、冷却、NaOHで中和し、Na2SO4
は晶析除去した。(A1) DSLの場合も同様に反応させた(B1) その他表−1に示した様な割合で、A2につい
ても同様に反応させた。 <石炭・水スリラーの調製法および流動性測定法
> (1) 石炭・水スリラーの調製法 あらかじめ所定量の分散剤を溶解した水の中
に、200メツシユ80%パスまで粉砕した歴青炭
を投入し(全量400g)混ぜ棒で充分濡らした
後(ペースト化)、日本特殊機化工業製T.K.ホ
モミキサーを用い8000r.p.m.にて40分間攪拌し
て石炭・水スラリーを調製し、20℃で、BL型
回転粘度計を用いスラリー粘度を測定した。こ
の条件にて行なつた実施例および比較例を表1
および表2に示した。粘度の低いものが流動性
の良い事を示している。 (2) 石炭・水スラリーの安定性測定法 (1)の条件で調製した石炭・水スラリーをシリ
ンダー(内径35mm、高さ250mm)に移し、直径
6mm、重さ30gのガラス棒をスラリーに貫入
し、落下状態を経日的に測定した。ガラス棒が
自重で下まで貫入する場合には、スラリーの安
定性が良好であるが、途中1/2以上で止まり、
手で押しても下方へ貫入しなくなると、安定性
は不良となる。 この条件にてスラリーの安定性を測定し、そ
の持続日数を測定した実施例および比較例を表
1および表2に示した。持続日数が長いものが
安定性の良い事を示している。
[Industrial Field of Application] The present invention relates to a dispersant for a coal/water chiller. Specifically, it relates to a reaction product of a modified lignin sulfonate, naphthalene disulfonic acid, and naphthalene sulfonic acid under acidic conditions. [Prior art] A method of using lignin sulfonate (LSA salt) or naphthalene sulfonic acid formaldehyde condensate (NSF) salt as a dispersant for a coal-water chiller (hereinafter abbreviated as CWM) is described in JP-A-52-71506;
It is already known in Japanese Patent Publication No. 60-6395. As a patent that further develops this, a condensation reaction product of naphthalene sulfonic acid (NS), lignin sulfonic acid (LSA) derivative [desulfonated lignin sulfonate (DSL)], and formaldehyde (HCHO) is used as a dispersant. A method (Japanese Patent Application Laid-Open No. 58-34896) is disclosed. In addition, in JP-A-60-26090, the ligninsulfonic acid to be co-condensed is obtained by sulfonating wood chips, and the chemical treatment process, hydrolysis reaction, oxidation reaction, desulfonation reaction, and demethylation reaction is A condensed lignin sulfonic acid with a modified lignin sulfonic acid, which has been subjected to the following methods, is disclosed. However, in this case, a general reaction treatment is merely exemplified. For example, when considering one oxidation reaction, the modified lignin sulfonic acid will vary depending on the chemical used for the oxidation reaction and the extent of the reaction. Therefore, if the chemical treatment is not appropriate, it will have a negative effect. The method disclosed in JP-A-58-34896 is obtained in accordance with the method described in JP-A-52-25433. Therefore, this method uses a cement dispersant that has been subjected to reaction treatment to be suitable for use as a cement dispersant.
It is interpreted as applied to CWM. In addition, in the field of cement dispersants,
5051, 60-5052 are disclosed. This uses an ultrafiltered LSA salt instead of DSL, which is subjected to a condensation reaction, and then subjected to an oxidation reaction. However, at first glance, cement pulverized coal is similar in that it handles the same fine particles, but the former is an inorganic substance and is a hydraulic substance, whereas the latter is an organic substance and has no hydraulic properties, and also has a different surface structure. . Particularly in the case of the former dispersant, in addition to high dispersibility, concrete setting retardation and air entrainment properties are important. When the degree of condensation is low, the amount of entrained air increases, so the degree of condensation of the reactant is important, and it is generally used as a high condensate. On the other hand, in the latter case, in addition to dispersibility, emphasis is placed on the storage stability of the resulting CWM. Therefore, it is natural that the manufacturing method of the optimal dispersant used for this will be different. [Problem to be solved by the invention] An economical and high-performance product that can withstand industrial use.
CWM dispersants are currently unknown. Here, a high-performance dispersant is one that is less affected by the type of coal and has the following advantages: (1) It has a large viscosity-reducing effect with a small amount added. (2) High storage stability. That's true. [Means for solving the problem] The present inventors have developed CWM based on NS, LSA salt, and HCHO.
As a result of detailed and intensive research into dispersants, we have found that high performance can be achieved by using a special lignin sulfonate treated with naphthalene disulfonic acid and an oxidation reaction.
Successfully developed a dispersant for CWM. That is, in the present invention, high-temperature alkaline air oxidation treatment was performed.
NS,
The main feature is that it reacts with HCHO. For more details, please refer to the sulfite pulp waste liquid (SSL)
The SO 3 H group is left intact, i.e., it is not subjected to a vigorous oxidation reaction until the desulfonation reaction occurs (DSL
(Does not undergo violent oxidation reaction until precipitation occurs under acidic conditions), increases other functional groups such as phenolic OH and carboxyl groups, and at the same time, reducing sugars and sugar denatured products other than LSA salts do not become reaction inhibitors. A suitable oxidation reaction is carried out. Specifically, NaOH is 5 to 20% of the SSL solid content.
% addition, temperature 150-200°C, time 1-2 hours, wet oxidation while blowing air or oxygen. Naphthalenedisulfonic acid (NDS) referred to here
refers to a substance whose main component is 2,6-naphthalene disulfonic acid and which also contains 2,7-naphthalene disulfonic acid and the like. The thus obtained modified LSA salt (TLS′) and NDS
React with NS and HCHO using both. This method is carried out according to Special Publication No. 52-25433,
The details will be described next. The basic manufacturing method for dispersants is to add sulfuric acid and water to NS and NDS, heat this to 80-95℃, and then
Add 37% HCHO over approximately 2 hours. Add HCHO and TLS′ to this, and add 90 to 120
The product is made by reacting at ℃ for 5 to 20 hours to neutralize and remove inorganic salts. The ratio of chemicals used in the reaction is 5 to 50 parts (parts by weight, the same hereinafter), preferably 15 to 40 parts, per 100 parts of NS. If it is more than 50 copies, there will be a lot of unreacted NS, which is not preferable. Moreover, if it is less than 5%, it becomes close to NSF and the characteristics of the present invention cannot be exhibited. NDS is 5 to 20 parts per 100 parts of NS, preferably
10 to 15 parts is good. Next, the appropriate amount of HCHO to be used initially is 20 to 25 parts per 100 parts of NS. The amount of HCHO added together with TLS' is 20 to 100 parts per 100 parts of TLS'. The amount of water and sulfuric acid initially mixed with NS is 15 to 30 parts, preferably 18 to 25 parts, per 100 parts of NS.
Sulfuric acid is 20-40 parts. The reaction temperature is 90-130°C and the reaction time is 5-20 hours. In the present invention, the HCHO reactant is neutralized to form an alkali metal salt, an ammonium salt, a lower amine salt, or the like. The alkali metals include Na, Li, and K salts, and the lower amine salts include monoethanolamine, diethanolamine, and triethanolamine salts. The coal to which the dispersant used in the present invention is applied is not particularly limited, and may include lignite, subbituminous coal, bituminous coal, anthracite coal, and the like. There is no particular limitation on the particle size of the coal, but it is preferably 50% or more, preferably 70 to 80%, when passing through 200 meshes. In the present invention, it is also possible to use known additives such as CMC, MC, polyacrylates, and condensed phosphates. Other dispersants such as NSF and LSA salts can also be used in combination. [Operation] What is the difference in reaction between the TLS' and NDS combination system obtained by oxidation reaction treatment under special conditions in the present invention and the reaction system with DSL, NS, and HCHO that have been used conventionally? It's not clear. However, since DSL contains less SO 3 H, precipitation occurs in the reaction system when the amount is increased, whereas this does not occur in the case of TLS'. Furthermore, functional groups such as phenolic OH and carboxyl groups are increased compared to ordinary LSA salts, and reducing sugars and sugar modifications are in a form that does not inhibit the reaction, resulting in higher reactivity. Conceivable. NDS used in combination has a negative effect when producing high-performance water reducer NSF high condensation using ordinary concrete admixtures, but it has a positive effect when used in combination with TLS' as in the present invention. The reason for this is unknown, but it seems to be related to its affinity with TLS'. It is assumed that as the amount of functional groups in the reactant and the ratio of LSA salt increase, the affinity with coal increases, resulting in a higher performance dispersant. [Example] <Preparation of special lignin sulfonate (TLS')> Na of sulfite pulp concentrate (SSL-Na)
The pH was adjusted to 12 with NaOH, and alkaline air oxidation was performed at a high temperature of 150 to 160°C for 2 hours. <Preparation of NS/NDS/TLS'/HCHO reactant> A mixture of 80 parts of NS, 20 parts of NDS, 35 parts of 98% H 2 SO 4 and 20 parts of water was heated to 80-90°C, and 23 parts of 37% HCHO was heated for 2 hours. Added over time. After that, a solution consisting of 30 parts of TLS' and 23 parts of 37% HCHO was added in 4 portions at 1 hour intervals, and the mixture was heated to 95-100°C.
The reaction was allowed to proceed with stirring for 2 hours. After the reaction is complete, cool, neutralize with NaOH, and remove Na2SO4.
was removed by crystallization. (A 1 ) DSL was reacted in the same manner. (B 1 ) A 2 was also reacted in the same manner at the proportions shown in Table 1. <Preparation method of coal/water chiller and flowability measurement method> (1) Preparation method of coal/water chiller Add bituminous coal pulverized to 200 mesh to 80% pass into water in which a predetermined amount of dispersant has been dissolved in advance. After adding (total amount 400g) and thoroughly moistening it with a mixing stick (making it into a paste), stir it at 8000rpm for 40 minutes using a Nippon Tokushu Kika Kogyo TK Homo mixer to prepare a coal/water slurry, and heat it at 20℃. The slurry viscosity was measured using a BL rotational viscometer. Table 1 shows examples and comparative examples conducted under these conditions.
and shown in Table 2. Low viscosity indicates good fluidity. (2) Stability measurement method for coal/water slurry The coal/water slurry prepared under the conditions in (1) was transferred to a cylinder (inner diameter 35 mm, height 250 mm), and a glass rod with a diameter of 6 mm and a weight of 30 g was penetrated into the slurry. The falling condition was measured over time. If the glass rod penetrates all the way to the bottom under its own weight, the slurry will have good stability, but it will stop at 1/2 or more of the way down.
If it does not penetrate downward even when pushed by hand, the stability becomes poor. Tables 1 and 2 show examples and comparative examples in which the stability of the slurry was measured under these conditions and the number of days it lasted. A longer duration indicates better stability.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

本発明によれば従来のDSLに代えて、TLS′と
NDSをNS、HCHOとの反応に用いることによ
り、高性能なCWM用の分散剤を得ることができ
る。 TLS′とNDSの両者を用いた場合、前出の実施
例で示すように、DSLを用いた分散剤に比べ添
加量が少なく、炭種による影響が少ない。 これは反応物中のリグニンスルホン酸塩の比率
が高くできるようになつた為に、石炭との親和性
が増加したためと考えられる。 従来のDSL(特公昭58−34896)を用いた場合
はNS100部に対し、DSL30部が限度であつたの
に対し、本発明のTLS′の場合は50部まで用いる
ことが可能である。 従つて従来の約1.5倍量まで増加させることが
できる。
According to the present invention, TLS′ can be used instead of conventional DSL.
By using NDS in the reaction with NS and HCHO, a high-performance dispersant for CWM can be obtained. When both TLS' and NDS are used, as shown in the previous example, the amount added is smaller than that of a dispersant using DSL, and there is less influence by the type of coal. This is thought to be because the ratio of lignin sulfonate in the reactant became high, which increased its affinity for coal. When using the conventional DSL (Japanese Patent Publication No. 58-34896), the limit was 30 parts of DSL compared to 100 parts of NS, whereas in the case of TLS' of the present invention, up to 50 parts can be used. Therefore, the amount can be increased to about 1.5 times the conventional amount.

Claims (1)

【特許請求の範囲】 1 酸化反応処理を行つた変性リグニンスルホン
酸塩とナフタレンジスルホン酸とナフタレンスル
ホン酸とホルムアルデヒドとの反応生成物を有効
成分とする石炭・水スリラー用分散剤。 2 変性リグニンスルホン酸とナフタレンジスル
ホン酸とナフタレンスルホン酸との割合が、10〜
50:5〜20:100部である特許請求の範囲第1項
記載の石炭・水スラリー用分散剤。
[Scope of Claims] 1. A dispersant for a coal/water chiller containing as an active ingredient a reaction product of a modified lignin sulfonate subjected to an oxidation reaction treatment, naphthalene disulfonic acid, naphthalene sulfonic acid, and formaldehyde. 2 The ratio of modified lignin sulfonic acid, naphthalene disulfonic acid, and naphthalene sulfonic acid is 10 to
The dispersant for coal/water slurry according to claim 1, wherein the dispersant is 50:5 to 20:100 parts.
JP61010876A 1986-01-21 1986-01-21 Dispersant for coal-water slurry Granted JPS62169895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61010876A JPS62169895A (en) 1986-01-21 1986-01-21 Dispersant for coal-water slurry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61010876A JPS62169895A (en) 1986-01-21 1986-01-21 Dispersant for coal-water slurry

Publications (2)

Publication Number Publication Date
JPS62169895A JPS62169895A (en) 1987-07-27
JPH0520480B2 true JPH0520480B2 (en) 1993-03-19

Family

ID=11762532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61010876A Granted JPS62169895A (en) 1986-01-21 1986-01-21 Dispersant for coal-water slurry

Country Status (1)

Country Link
JP (1) JPS62169895A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103937565B (en) * 2014-04-09 2016-06-29 黄河三角洲京博化工研究院有限公司 A kind of preparation method of coal tar emulsifying agent
CN104560247B (en) * 2014-12-29 2016-12-07 福建清源科技有限公司 A kind of composite coal-water fluid additive and preparation method thereof

Also Published As

Publication number Publication date
JPS62169895A (en) 1987-07-27

Similar Documents

Publication Publication Date Title
US3277162A (en) Water-soluble condensation products of naphthalenesulfonic acid and formaldehyde
JP5905081B2 (en) Method for producing additive for cementitious material, additive, and mixture containing additive
US5286412A (en) Modified lignosulfonate dispersant for gypsum
US3505243A (en) Dispersants from spent sulfite liquor
JPH0520480B2 (en)
US3668123A (en) Dispersants from spent sulfite liquor
JPH0520478B2 (en)
JPS61117143A (en) Slurry silica fume for admixing cement
JPH0560518B2 (en)
JPS5855034A (en) Dispersant composition
WO2022116596A1 (en) Concrete micro-foaming agent and preparation method therefor
JPH0520479B2 (en)
EP0166774B1 (en) Water reducing agent utilized in mortar and concrete
US2639274A (en) Sulfonated phenol formaldehyde condensation product and method for making same
US3398005A (en) Cement composition and products thereof
US4744882A (en) Polycondensates of sulfonated coal tar fractions
CA1227226A (en) Hydraulic cement admixture compositions
JPH0369389B2 (en)
JPH0128798B2 (en)
JPH0768058B2 (en) Cement dispersant
JPS62168531A (en) Production of high performance dispersant
JP2503155B2 (en) Process for producing high molecular weight sulfonate neutral salt
JPS59152994A (en) Viscosity reducing agent for coke and water slurry having high concentration
JPH0132877B2 (en)
JPS59113094A (en) Dispersing agent for coal-water slurry