JPH0369389B2 - - Google Patents

Info

Publication number
JPH0369389B2
JPH0369389B2 JP61010873A JP1087386A JPH0369389B2 JP H0369389 B2 JPH0369389 B2 JP H0369389B2 JP 61010873 A JP61010873 A JP 61010873A JP 1087386 A JP1087386 A JP 1087386A JP H0369389 B2 JPH0369389 B2 JP H0369389B2
Authority
JP
Japan
Prior art keywords
coal
reaction
sulfonic acid
salt
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61010873A
Other languages
Japanese (ja)
Other versions
JPS62169892A (en
Inventor
Toshihiro Sugiwaki
Masami Yamaki
Masato Tamao
Morihiko Sawada
Takao Wada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Kokusaku Pulp Co Ltd
Ube Corp
Original Assignee
Sanyo Kokusaku Pulp Co Ltd
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Kokusaku Pulp Co Ltd, Ube Industries Ltd filed Critical Sanyo Kokusaku Pulp Co Ltd
Priority to JP61010873A priority Critical patent/JPS62169892A/en
Publication of JPS62169892A publication Critical patent/JPS62169892A/en
Publication of JPH0369389B2 publication Critical patent/JPH0369389B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は原燃料として用いられる石炭・水スラ
リーを製造、使用するための石炭・水スラリー用
分散剤に関する。 〔従来の技術および発明が解決すべき問題点〕 二度にわたるオイルシヨツクによつてエネルギ
ー源あるいは原材料としての石油に対する依存体
制は今、変わりつつある。エネルギー源としては
原子力、天然ガス、水力、石炭、石油コークスな
ど多種多様のエネルギーの利用へと移行しており
原材料としては石炭の見直しが多くの角度から検
討された実用化の段階にはいつている。 しかしながら、石炭および石油コークスは固体
であるために輸送、貯蔵、燃焼などの面でまだ多
くの問題を有している。石炭の場合には採用地か
らの搬出、貨車や船への積み出しなどいわゆる輸
送上の問題解決が石炭等の固体原燃料を更に有効
に利用するための課題となつている。その一方法
として、石炭を水、メタノール、石油などの液体
中に分散させてパイプライン輸送する方法が提案
されている。この中で石炭粉末を水中に分散させ
てスラリー化する方式は種々の利点を有してお
り、一部において実用化されている。 しかしながら、スラリー中の石炭濃度を高くす
るとスラリーの流動性が悪くなるための輸送効
率、燃焼効率などの面で問題があり、広く普及す
るには至つていない。石炭・水スラリーの高濃度
化を図る方法として石炭粉末の粒度調整や分散剤
の添加などの提案がなされている。 石炭・水スラリー用分散剤としては、すでに公
知のリグニンスルホン酸塩(特開昭52−71506)
や、ナフタレンスルホン酸ホルマリン縮合物(特
公昭60−6395)があるが、実用面でいまだ不充分
であり、使用炭種により差があるが石炭濃度60%
以上では流動性が低下する。 本発明者らはナフタレンスルホン酸(以下NS
と略す。)リグニンスルホン酸(LSAと略す。)
塩、HCHO系の反応について長い研究を続け、
また反応に用いるLSA塩の種類、変成方法につ
いても鋭意研究を続けてきた。その結果、NS、
LSA塩、HCHOを反応させるに際し、NSを分割
しLSA塩、HCHOと交互逐次添加して反応させ
ることにより、石炭・水スラリー用分散剤として
高性能な分散剤を開発するのに成功した。 従来技術としては、NSとLSA誘導体〔脱スル
ホンリグニンスルホン酸塩(DSL)〕とHCHOと
の縮合反応生成物を、分散剤として用いる方法が
特開昭58−34896に開示されている。 また、特開昭60−26090には共縮合させるリグ
ニンスルホン酸は「木材チツプをスルホン化して
得られるものであり、その化学処理工程、加水分
解反応や酸化反応や脱スルホン化反応や、脱メチ
ル化反応等を受けた変性リグニンスルホン酸や縮
合反応による縮合リグニンスルホン酸をいう」と
ある。しかしこの場合はただ単に一般に反応処理
を例記されただけである。例えば酸化反応1つを
考えた場合、酸化反応に用いる薬品、またその程
度によつて変性リグニンスルホン酸は変わる。従
つて化学処理が適当でない場合は逆にマイナスに
作用する。 特開昭58−34896に開示されている方法は特公
昭52−24533に記載されている方法に準じて得ら
れるものである。 従つてこの方法はセメント分散剤に適するよう
に反応処理されたものを、そのままそつくり石
炭・水スラリーに適用されたものと解釈される。 またセメント分散剤の分野では特開昭60−
5051、60−5052が開示されている。これはDSL
の代りに限外濾過したLSA塩を用いて縮合反応
させた後、酸化反応処理したものを用いるもので
ある。 しかしながらセメントと微粉末石炭は一見同じ
微粒子を取扱うという点では似ているが、前者は
無機物であり水硬性物質であるのに対し、後者は
有機物であり水硬性はなくしかも表面構造も異な
つている。 特に前者の分散性剤の場合には高分散性の他に
コンクリートの凝結遅延性や空気連行性が重視さ
れる。縮合度が低い場合には、連行空気量が増加
する為に反応物の縮合度が重要で高縮合物にして
用られるのが一般的である。これに対して後者の
場合は分散性の他に、出来た石炭・水スラリーの
貯蔵安定性が重視される。従つてこれに用いられ
る最適な分散剤の製法が異なつてくるのは当然の
事と言える。 本発明の目的は、石炭・スラリー系において、
本分散剤を添加することによつてスラリーの流動
性が改善され、特に60%以上の高濃度であつても
優れた流動性を示し、ポンプ輸送が容易な石炭・
水スラリーを製造することのできる分散剤を提供
することにある。 〔問題を解決するための手段〕 本発明に係わる石炭・水スラリー用分散剤は分
散剤の有効成分としてNSとLSA塩とHCHOを交
互逐次添加して得た反応生成物からなることを特
徴とする。 本発明の石炭・水スラリー用分散剤の基本的は
製法の1例を次に示す。分割したNSに硫酸およ
び水を添加し、これを80〜95℃に加熱してから37
%濃度のHCHOを1〜2時間にわたつて添加す
る。このものにLSA塩+HCHOを添加し、次い
でNS+HCHOを添加する。このようにしてLSA
塩+HCHO、NS+HCHOを交互に逐次添加し液
温を90〜130℃に保ちながら5〜25Hr反応させ
る。反応終了後、室温まで冷却しアルカリで中和
し無機塩を除いて製品とする。反応に使用する薬
品の比率は以下に述べる通りである。 LSA液はNS100部に対して10〜60部、好まし
くは15〜50部である。LSA塩の量が多すぎると、
未反応のNSが多くなり、石炭・水スラリー用分
散剤としての性能が低下する。またLSA塩が少
なすぎるとNS単独の縮合物に近くなり、本発明
の特徴が発揮されなくなる。最初に仕込むNSは
全体の20〜40%、HCHO量はNS100部に対し20
〜30部が適当である。LSA塩、NSと共に交互逐
次添加するHCHOはLSA塩の場合、交互逐次添
加するLSA塩100部に対し20〜50部が好適であり
NSの場合、NS100部に対し15〜30部が好適であ
る。それぞれの上限以上ではホルマリンが残留
し、下限以下では反応不充分となる。交互逐次の
回数は10〜20回が適当である。NSと最初に混合
すると水と硫酸はNS100部に対し水は10〜40部、
好ましくは15〜30部であり硫酸は20〜50部が好適
である。 水が過度に多くなると反応に時間がかかり過
ぎ、少なすぎると粘度が高くなり過ぎて反応タン
ク等での撹拌が困難となる。反応温度は90〜130
℃が好適であり反応時間は5〜25Hrが好適であ
る。反応温度が低すぎると反応速度が遅くまた高
すぎると反応のコントロールが困難となる。反応
時間は当然反応温度と深く関係するが、5Hr以下
では未反応物が多くなる。本発明に使用する
LSA塩とはフエニルプロパン単位あたりスルホ
ン化度0.8〜0.2のLSA塩が好適である。 以上の反応によつて得られたHCHO反応物は、
中和処理してアルカリ金属塩、アンモニウム液、
低級アミン塩等にされる。 本発明の分散剤が適用される石炭・水スラリー
はこれを原燃料として用いるものであれば特に制
限はない。石炭の種類としては例えば褐炭、亜歴
青炭、歴青炭、無煙炭などが挙げられる。また石
炭と類似の炭素質粉体として石炭から製造される
コークスも挙げられる。石炭等の粒度に特に制限
はないが、粒度が大きすぎると安定性に問題が残
るため、一般に200Mesh pass(74μm以下)50重
量%以上好ましくは60〜90%がよい。 本発明において、CMC、MC、ポリアクリル
酸塩、NSF、LSA塩などの公知の添加剤、分散
剤を併用することも可能である。 〔作用〕 本発明において、NS、LSA塩、HCHO系の反
応を交互逐次添加法を適用して得た反応生成物
が、従来の製造法によるものと比べて、構造上ど
のような違いがあるかは明確でない。 しかしながら従来法では、NSFのオリゴマー
とLSA塩との反応が主反応と考えられるのに対
し、本発明の交互逐次添加法はNSモノマー、
LSA塩、HCHOが逐次供給されるので、そのメ
チロールとの反応、あるいはその縮合度の非常に
低いNSFオリゴマーとの反応が主反応になるも
のと推定される。 従来法に比べ本発明による分散剤の性能が向上
する理由は明らかではないが、上述した反応でで
きた生成物が石炭粒子に効果的に吸着し、石炭ス
ラリーの分散を促し、その安定性にも寄与するも
のと考えられる。 〔発明の効果〕 従来法と異なる交互逐次添加法によつてNS、
LSA塩、HCHO反応させた石炭・水スラリー用
分散剤を用いることにより、スラリーの流動性が
改善され、特に60%以上の高濃度であつても優れ
た流動性を示しポンプ輸送が容易な石炭・水スラ
リーを得ることが出来る。 〔実施例〕 NS、LSA塩、HCHO反応生成物の調整 〓本発明品〓 NS35部、98%硫酸15部、水10部の混合物を80
〜90℃に加熱し、HCHO9部を、1Hrにわたつて
添加した、その後NS65部とHCHO17部、LSA塩
25部とホルマリン10部からなるそれぞれの液を10
回に分けて交互に添加し、95〜120℃で20Hr撹拌
しながら反応を行なわせた。反応終了後、冷却し
水酸化ナトリウム溶液で中和し、無機物を晶析除
去した。 〓比較例〓 NS100部、98%硫酸35部、水20部の混合物を80
〜90℃に加熱し、HCHO23部を2Hrにわたつて
添加した。その後LSA塩20部、HCHO15部から
なる液を4回に分けて添加し、95〜100℃にて19
時間撹拌しながら反応を行なわせた。反応終了
後、室温まで冷却し水酸化ナトリウム溶液で中和
し、無機物を晶析除去した。 石炭・水スラリーの調整法および流動性測定法
あらかじめ所定量の分散剤を溶解した水の中に、
200メツシユ80%パスまで粉砕した歴青炭を投入
し(全量400g)混ぜ棒で充分濡らした後(ペー
スト化)、日本特殊機化工業製T.K.ホモミキサー
を用い8000r.p.m.にて40分間攪拌して石炭・水ス
ラリーを調整し、20℃で、BL型回転粘度計を用
いスラリー粘度を測定した。この条件にて行なつ
た実施例および比較例を表2に示した。粘度の低
いものが流動性の良い事を示している。石炭・水
スラリーの安定性測定法 上の条件で調整した石炭・水スラリーをシリン
ダー(内径35mm、高さ250mm)に移し、直径6mm、
重さ30gのガラス棒をスラリーに貫入し、落下状
態を経日的に測定した。ガラス棒が自重で下まで
貫入する場合には、スラリーの安定性が良好であ
るが、途中1/2以上で止まり、手で押しても下方
へ貫入しなくなると、安定性は不良となる。 この条件にてスラリーの安定性を測定し、その
持続日数を測定した実施例および比較例を表に示
した。持続日数が長いものが安定性が良く○で示
している。
[Industrial Application Field] The present invention relates to a dispersant for coal/water slurry for producing and using coal/water slurry used as raw fuel. [Problems to be solved by conventional techniques and inventions] Due to the two oil shocks, the system of dependence on oil as an energy source or raw material is currently changing. Energy sources have shifted to the use of a wide variety of energies such as nuclear power, natural gas, hydropower, coal, and petroleum coke, and coal as a raw material has been reviewed from many angles. There is. However, since coal and petroleum coke are solids, they still have many problems in transportation, storage, combustion, etc. In the case of coal, solving so-called transportation problems, such as transporting it from the site of adoption and shipping it to freight cars or ships, is an issue in order to make more effective use of solid raw fuels such as coal. As one method, a method has been proposed in which coal is dispersed in a liquid such as water, methanol, or petroleum, and then transported by pipeline. Among these methods, the method of dispersing coal powder in water to form a slurry has various advantages and has been put into practical use in some cases. However, increasing the coal concentration in the slurry deteriorates the fluidity of the slurry, causing problems in terms of transportation efficiency, combustion efficiency, etc., and it has not been widely used. As a method of increasing the concentration of coal/water slurry, proposals have been made such as adjusting the particle size of coal powder and adding a dispersant. As a dispersant for coal/water slurry, lignin sulfonate is already known (Japanese Patent Application Laid-Open No. 71506/1986).
There is also a naphthalene sulfonic acid formalin condensate (Japanese Patent Publication No. 60-6395), but it is still insufficient for practical use, and although it varies depending on the type of coal used, the coal concentration is 60%.
Above that, the fluidity decreases. The present inventors have discovered that naphthalene sulfonic acid (hereinafter referred to as NS)
It is abbreviated as ) Lignosulfonic acid (abbreviated as LSA)
Continuing long research on salt and HCHO-based reactions,
We have also continued to conduct intensive research on the types of LSA salts used in the reaction and the denaturation methods. As a result, NS,
When reacting LSA salt and HCHO, we succeeded in developing a high-performance dispersant for coal/water slurry by dividing NS and adding it to LSA salt and HCHO alternately and reacting. As a prior art, JP-A-58-34896 discloses a method in which a condensation reaction product of NS, an LSA derivative [desulfonated lignin sulfonate (DSL)], and HCHO is used as a dispersant. In addition, it is stated in JP-A-60-26090 that the ligninsulfonic acid to be co-condensed is obtained by sulfonating wood chips, and its chemical treatment process, hydrolysis reaction, oxidation reaction, desulfonation reaction, demethylation reaction, etc. It refers to modified ligninsulfonic acid that has undergone a chemical reaction, etc., and condensed ligninsulfonic acid that has undergone a condensation reaction. However, in this case only the reaction process in general is illustrated. For example, when considering one oxidation reaction, the modified lignin sulfonic acid will vary depending on the chemical used for the oxidation reaction and the extent of the reaction. Therefore, if the chemical treatment is not appropriate, it will have a negative effect. The method disclosed in Japanese Patent Publication No. 58-34896 is obtained in accordance with the method described in Japanese Patent Publication No. 52-24533. Therefore, this method can be interpreted as applying a reaction-treated cement dispersant to a coal-water slurry. In addition, in the field of cement dispersants,
5051, 60-5052 are disclosed. This is DSL
Instead, an ultrafiltered LSA salt is used to perform a condensation reaction, followed by an oxidation reaction. However, although cement and pulverized coal seem to be similar in that they handle the same fine particles, the former is an inorganic substance and is a hydraulic substance, whereas the latter is an organic substance and has no hydraulic properties, and they also have different surface structures. . In particular, in the case of the former dispersant, in addition to high dispersibility, concrete setting retardation and air entrainment properties are important. When the degree of condensation is low, the amount of entrained air increases, so the degree of condensation of the reactant is important and it is common to use a high condensate. On the other hand, in the latter case, in addition to dispersibility, emphasis is placed on the storage stability of the resulting coal/water slurry. Therefore, it is natural that the manufacturing method of the optimal dispersant used for this will vary. The purpose of the present invention is to provide coal/slurry systems with
By adding this dispersant, the fluidity of the slurry is improved, and it shows excellent fluidity even at a high concentration of 60% or more, and it is easy to transport coal by pumping.
The object of the present invention is to provide a dispersant capable of producing an aqueous slurry. [Means for solving the problem] The dispersant for coal/water slurry according to the present invention is characterized in that it consists of a reaction product obtained by alternately and sequentially adding NS, LSA salt, and HCHO as active ingredients of the dispersant. do. An example of a basic manufacturing method for the dispersant for coal/water slurry of the present invention is shown below. Add sulfuric acid and water to the divided NS, heat it to 80-95℃, and then
% HCHO over 1-2 hours. To this add LSA salt + HCHO, then NS + HCHO. In this way LSA
Salt + HCHO and NS + HCHO are added sequentially and alternately, and the reaction is carried out for 5 to 25 hours while maintaining the liquid temperature at 90 to 130°C. After the reaction is complete, the product is cooled to room temperature and neutralized with an alkali to remove inorganic salts. The proportions of chemicals used in the reaction are as described below. The LSA solution is used in an amount of 10 to 60 parts, preferably 15 to 50 parts, per 100 parts of NS. If the amount of LSA salt is too high,
The amount of unreacted NS increases, and the performance as a dispersant for coal/water slurry decreases. Furthermore, if the amount of LSA salt is too small, the product becomes close to a condensation product of NS alone, and the characteristics of the present invention cannot be exhibited. Initially, NS is 20-40% of the total, and the amount of HCHO is 20% for 100 parts of NS.
~30 copies is appropriate. In the case of LSA salt, 20 to 50 parts of HCHO, which is added alternately and sequentially with LSA salt and NS, is preferably 20 to 50 parts per 100 parts of LSA salt, which is added sequentially and alternately.
In the case of NS, 15 to 30 parts per 100 parts of NS is suitable. Above each upper limit, formalin remains, and below the lower limit, the reaction becomes insufficient. The appropriate number of alternating cycles is 10 to 20 times. When first mixed with NS, water and sulfuric acid will be 100 parts of NS and 10 to 40 parts of water.
The amount is preferably 15 to 30 parts, and 20 to 50 parts of sulfuric acid is suitable. If the amount of water is too large, the reaction will take too long, and if the amount is too small, the viscosity will become too high, making stirring in a reaction tank or the like difficult. Reaction temperature is 90-130
C. and the reaction time is preferably 5 to 25 hours. If the reaction temperature is too low, the reaction rate will be slow, and if the reaction temperature is too high, it will be difficult to control the reaction. The reaction time is naturally closely related to the reaction temperature, but if the reaction time is 5 hours or less, there will be a large amount of unreacted substances. Used in the present invention
The LSA salt is preferably an LSA salt having a degree of sulfonation of 0.8 to 0.2 per phenylpropane unit. The HCHO reactant obtained by the above reaction is
After neutralization, alkali metal salts, ammonium liquid,
It is made into lower amine salts, etc. The coal/water slurry to which the dispersant of the present invention is applied is not particularly limited as long as it is used as a raw fuel. Examples of the types of coal include brown coal, subbituminous coal, bituminous coal, and anthracite coal. Another example of carbonaceous powder similar to coal is coke produced from coal. There is no particular restriction on the particle size of coal, etc., but if the particle size is too large, stability will remain a problem, so it is generally 200 Mesh pass (74 μm or less) 50% by weight or more, preferably 60 to 90%. In the present invention, it is also possible to use together known additives and dispersants such as CMC, MC, polyacrylates, NSF, and LSA salts. [Function] In the present invention, what is the structural difference between the reaction products obtained by applying the alternating sequential addition method of NS, LSA salt, and HCHO-based reactions compared to those produced by conventional production methods? It is not clear whether However, in the conventional method, the reaction between the NSF oligomer and the LSA salt is considered to be the main reaction, whereas the alternating sequential addition method of the present invention
Since the LSA salt and HCHO are supplied sequentially, it is presumed that the main reaction is the reaction with methylol or the reaction with the NSF oligomer, which has a very low degree of condensation. The reason why the performance of the dispersant of the present invention is improved compared to the conventional method is not clear, but the products formed by the above-mentioned reaction are effectively adsorbed onto the coal particles, promoting the dispersion of the coal slurry and improving its stability. It is thought that this also contributes. [Effect of the invention] NS,
By using a dispersant for coal/water slurry reacted with LSA salt and HCHO, the fluidity of the slurry is improved, and especially coal that shows excellent fluidity even at high concentrations of 60% or more and is easy to pump.・Water slurry can be obtained. [Example] Preparation of NS, LSA salt, and HCHO reaction product〓Product of the present invention〓 A mixture of 35 parts of NS, 15 parts of 98% sulfuric acid, and 10 parts of water was mixed with 80 parts of NS, LSA salt, and HCHO reaction product.
Heated to ~90°C and added 9 parts HCHO over 1 hour, followed by 65 parts NS and 17 parts HCHO, LSA salt.
10 of each solution consisting of 25 parts and 10 parts formalin.
The mixture was added alternately in batches, and the reaction was carried out at 95 to 120°C with stirring for 20 hours. After the reaction was completed, the mixture was cooled and neutralized with a sodium hydroxide solution to crystallize and remove inorganic substances. 〓Comparative example〓 A mixture of 100 parts of NS, 35 parts of 98% sulfuric acid, and 20 parts of water was mixed with 80 parts of
Heated to ~90°C and added 23 parts HCHO over 2 hours. After that, a solution consisting of 20 parts of LSA salt and 15 parts of HCHO was added in 4 parts, and the mixture was heated at 95 to 100°C for 19
The reaction was allowed to proceed with stirring for a period of time. After the reaction was completed, the mixture was cooled to room temperature, neutralized with a sodium hydroxide solution, and inorganic substances were crystallized and removed. Coal/water slurry preparation method and fluidity measurement method
Add bituminous coal that has been crushed to 80% pass (total amount: 400 g), thoroughly wet it with a mixing rod (make a paste), and stir for 40 minutes at 8000 rpm using a TK homo mixer manufactured by Japan Tokushu Kika Kogyo. A coal/water slurry was prepared using a BL-type rotational viscometer at 20°C, and the viscosity of the slurry was measured using a BL-type rotational viscometer. Examples and comparative examples conducted under these conditions are shown in Table 2. Low viscosity indicates good fluidity. Stability measurement method for coal/water slurry Transfer the coal/water slurry prepared under the above conditions to a cylinder (inner diameter 35 mm, height 250 mm),
A glass rod weighing 30 g was penetrated into the slurry, and the falling state was measured over time. If the glass rod penetrates all the way to the bottom due to its own weight, the stability of the slurry is good, but if it stops at more than 1/2 of the way and does not penetrate downward even when pushed by hand, the stability becomes poor. Examples and comparative examples in which the stability of the slurry was measured under these conditions and the number of days it lasted are shown in the table. Those that last for a long time have good stability and are indicated by ○.

【表】【table】

【表】【table】

【表】 表2の結果から明らかなように本発明の場合は
比較例の場合に比しはるかに少ない添加量で同等
の低粘度スラリーを与え、しかも安定性に優れた
スラリーが得られており、本発明の優位性が認め
られる。
[Table] As is clear from the results in Table 2, in the case of the present invention, a slurry with an equivalent low viscosity can be obtained with a much smaller addition amount than in the case of the comparative example, and a slurry with excellent stability can be obtained. , the superiority of the present invention is recognized.

Claims (1)

【特許請求の範囲】 1 ナフタレンスルホン酸および/またはアルキ
ルナフタレンスルホン酸の一部に予め硫酸および
水次いでホルマリンを添加反応させた後、リグニ
ンスルホン酸またはその塩、残部のナフタレンス
ルホン酸および/またはアルキルナフタレンスル
ホン酸を夫々それに必要なホルマリンと共に10〜
20回に分けて交互逐次添加する反応方法によつて
得られた反応中和生成物を有効成分とする石炭・
水スラリー用分散剤。 2 ナフタレンスルホン酸および/またはアルキ
ルナフタレンスルホン酸とリグニンスルホン酸ま
たはその塩との各総計添加割合が重量比で90:10
〜40:60である特許請求の範囲第1項記載の石
炭・水スラリー用分散剤。
[Scope of Claims] 1. After adding sulfuric acid, water, and then formalin to a portion of naphthalene sulfonic acid and/or alkyl naphthalene sulfonic acid in advance, lignin sulfonic acid or its salt, and the remaining naphthalene sulfonic acid and/or alkyl naphthalene sulfonic acid are reacted. Naphthalenesulfonic acid with the necessary formalin for 10~
Coal whose active ingredient is a reaction neutralization product obtained by a reaction method of alternating and sequential addition in 20 times.
Dispersant for water slurry. 2 The total addition ratio of naphthalene sulfonic acid and/or alkylnaphthalene sulfonic acid to lignin sulfonic acid or its salt is 90:10 by weight.
The dispersant for coal/water slurry according to claim 1, wherein the ratio is 40:60.
JP61010873A 1986-01-21 1986-01-21 Dispersant for coal-water slurry Granted JPS62169892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61010873A JPS62169892A (en) 1986-01-21 1986-01-21 Dispersant for coal-water slurry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61010873A JPS62169892A (en) 1986-01-21 1986-01-21 Dispersant for coal-water slurry

Publications (2)

Publication Number Publication Date
JPS62169892A JPS62169892A (en) 1987-07-27
JPH0369389B2 true JPH0369389B2 (en) 1991-10-31

Family

ID=11762452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61010873A Granted JPS62169892A (en) 1986-01-21 1986-01-21 Dispersant for coal-water slurry

Country Status (1)

Country Link
JP (1) JPS62169892A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834896A (en) * 1981-08-26 1983-03-01 Nippon Oil & Fats Co Ltd Additive for coal/water slurry
JPS606395A (en) * 1983-06-24 1985-01-14 株式会社日立製作所 Detector for position

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834896A (en) * 1981-08-26 1983-03-01 Nippon Oil & Fats Co Ltd Additive for coal/water slurry
JPS606395A (en) * 1983-06-24 1985-01-14 株式会社日立製作所 Detector for position

Also Published As

Publication number Publication date
JPS62169892A (en) 1987-07-27

Similar Documents

Publication Publication Date Title
US3277162A (en) Water-soluble condensation products of naphthalenesulfonic acid and formaldehyde
US4195975A (en) Stabilized fuel slurry
CN103951836B (en) A kind of preparation method of sulfonated polycondensation modified humic acid coal water slurry dispersing agent
EP0191964A1 (en) Low-viscosity coal-water slurries containing sulfonated humic acids
US4457762A (en) Stabilized water slurries of carbonaceous materials
JPH0369389B2 (en)
US4541965A (en) Dispersants for aqueous slurries
JPH0520480B2 (en)
GB2106527A (en) Dispersing composition
US4514189A (en) Carbonaceous materials water mixtures
US2718498A (en) Emulsion mud
JPS5834896A (en) Additive for coal/water slurry
US4744882A (en) Polycondensates of sulfonated coal tar fractions
JPH0488095A (en) Dispersion stabilizer for aqueous slurry of coal powder
US4554020A (en) Hydraulic cement admixture compositions
JPH0128798B2 (en)
JPH0520478B2 (en)
JPH0520479B2 (en)
JPH07109474A (en) Condensate or cocondensate and additive comprising them and used for coal/water slurry
JPS59152994A (en) Viscosity reducing agent for coke and water slurry having high concentration
JPH0132877B2 (en)
JPS60120795A (en) Dispersant for coal/water slurry
CN103980963A (en) Coal water slurry additive and application thereof
JPH06192668A (en) Dispersion stabilizer for coal/water slurry and coal/ water slurry
JPS5829894A (en) Additive for coal/water slurry

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term