JPH0560518B2 - - Google Patents

Info

Publication number
JPH0560518B2
JPH0560518B2 JP61010877A JP1087786A JPH0560518B2 JP H0560518 B2 JPH0560518 B2 JP H0560518B2 JP 61010877 A JP61010877 A JP 61010877A JP 1087786 A JP1087786 A JP 1087786A JP H0560518 B2 JPH0560518 B2 JP H0560518B2
Authority
JP
Japan
Prior art keywords
parts
coal
reaction
dispersant
hcho
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61010877A
Other languages
Japanese (ja)
Other versions
JPS62169896A (en
Inventor
Tomofumi Nakamoto
Masami Yamaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Kokusaku Pulp Co Ltd
Original Assignee
Sanyo Kokusaku Pulp Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Kokusaku Pulp Co Ltd filed Critical Sanyo Kokusaku Pulp Co Ltd
Priority to JP61010877A priority Critical patent/JPS62169896A/en
Publication of JPS62169896A publication Critical patent/JPS62169896A/en
Publication of JPH0560518B2 publication Critical patent/JPH0560518B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は石炭・水スラリー用分散剤に関する。 詳しくは酸性下でナフタレンスルホン酸と変性
リグニンスルホン酸とホルマリンとの反応生成物
を有効成分とする石炭・水スラリー用分散剤に関
するものである。 〔従来の技術〕 石炭・水スラリー(以下CWMと略す)用分散
剤としてリグニンスルホン酸塩(LSA塩)やナ
フタレンスルホン酸ホルムアルデヒド縮合物
(NSF)塩を用いる方法は、特開昭52−71506、
特公昭60−6395で既に公知である。 これを更に発展させた特許として、ナフタレン
スルホン酸(NS)とリグニンスルホン酸
(LSA)誘導体〔脱スルホンリグニンスルホン酸
塩(DSL)〕とホルムアルデヒド(HCHO)との
縮合反応生成物を分散剤として用いる方法(特開
昭58−34896)が開示されている。 また、特開昭60−26090には共縮合させるリグ
ニンスルホン酸は、木材チツプをスルホン化して
得られるものであり、その化学処理工程、加水分
解反応や酸化反応や脱スルホン化反応や脱メチル
化反応等を受けた変性リグニンスルホン酸や縮合
反応による縮合リグニンスルホン酸が示されてい
る。 しかしこの場合はただ単に一般な反応処理を例
記しただけである。例えば酸化反応1つを考えた
場合、酸化反応に用いる薬品、またその程度によ
つて変性リグニンスルホン酸は変わる。従つて化
学処理が適当でない場合は逆にマイナスに作用す
る。 特開昭58−34896に開示されている方法は特公
昭52−25433に記載されている方法に準じて得ら
れるものである。 従つてこの方法はセメント分散剤に適するよう
に反応処理されたものを、そのままそつくり
CWMに適用されたものと解釈される。 またセメント分散剤の分野では特開昭60−
5051、60−5052が開示されている。 これはDSLの代りに限外濾過したLSA塩を用
いて縮合反応させた後、酸化反応処理したものを
用いるものである。 しかしながらセメントと微粉末石炭は一見、同
じ微粒子を取扱うという点では似ているが、前者
は無機物であり水硬性物質であるのに対し、後者
は有機物であり水硬性はなくしかも表面構造も異
なつている。 特に前者の分散剤の場合には高分散性の他にコ
ンクリートの凝結遅延性や空気連行性が重視され
る。 縮合度が低い場合には、連行空気量が増加する
為に反応物の縮合度が重要で高縮合物にして用い
られるのが一般的である。 これに対して後者の場合は分散性の他に、でき
たCWMの貯蔵安定性が重視される。 従つてこれに用いられる最適な分散剤の製法が
異なつてくるのは当然の事と言える。 〔発明が解決しようとする問題点〕 工業的な使用に耐えうる経済的で高性能な
CWM用の分散剤が現在のところ知られていな
い。 ここで高性能な分散剤とは炭種による影響が少
なく、次の点に優れているものを言う、 (1) 低添加量で減粘効果が大きい。 (2) 貯蔵安定性が高い。 ことである。 〔問題点を解決するための手段〕 本発明者らはNSとHCHOに対して反応させる
べきリグニスルホン酸塩について詳細に鋭意研究
した結果、亜硫酸パルプ排液(SSL)をアルカリ
性下空気酸化した後に、限外濾過膜を用いて精製
し、酸化した限外濾過リグニスルホン酸塩を用い
ることによつて高性能なCWM用分散剤の開発に
成功した。 即ち本発明の変性リグニスルホン酸塩はSSLを
2段処理によつて得られる。 1段目は高温アルカリ空気酸化又は酸素酸化処
理を行い、2段目は得られた酸化LSA塩を限外
濾過膜を用いて低分子量物を除去、純度の高い精
製リグニスルホン酸塩を製造する。 これを、NS、HCHOと反応させることが最大
の特徴である。 更に詳しくは、1段目の反応はSSL中のLSA
塩のSO3H基はそのまま残し、即ち脱スルホン化
反応が生じるまで激しく酸化反応させない
(DSLのように酸性下で沈澱が生じるまで激しく
酸化反応しない)。 しかしLSA塩の官能基フエノール性OHや−
COOH等は増加するように適度に酸化反応を行
う。 具体的には、NaOHをSSL固形分に対して5〜
20%、温度150〜200℃、時間1〜2時間、空気又
は酸素を吹込みながら湿式酸化反応を行う。 次に2段目の限外濾過処理は酸化生成物中の低
分子量物を除去する。 具体的には酸化生成物を希釈して、分画分子量
5000〜50000の限外濾過膜を用いてLSA塩の純度
が80〜95%になるまで濃縮又は濃縮定容を行う。 こうして得られたUFLを用いてNS、HCHOと
反応させる。 この方法は特公昭52−25433に準じて行うが、
具体的に次に述べる。 分散剤の基本的な製法はNSに硫酸および水を
添加し、これを80〜95℃に加熱してから37%
HCHOを約2時間にわたつて添加する。 このものにHCHOとUFLを添加し、90〜120℃
で5〜20時間反応させ、中和し、無機塩を除去し
て製品とする。 反応に用いる薬品の比率は、UFLはNS100部
に対し5〜50部(重量部、以下部という)、好ま
しくは15〜40部である。 50部以上では末反応NSが多くなり好ましくな
い。また5%以下ではNSFに近くなつて、本発
明の特徴が発揮されなくなる。 次に最初に用いるHCHO量はNS100部に対し
て20〜25部が適当である。 UFLと共に添加するHCHOはUFL100部に対
し20〜100部である。 NSと最初に混合する水と硫酸はNS100部に対
し、水は15〜30部、好ましくは18〜25部であり、
硫酸は20〜40部である。 反応温度は90〜130℃、時間は5〜20時間であ
る。 本発明において上記HCHO反応物は、中和処
理してアルカリ金属塩、アンモニウム塩、低級ア
ミン塩等にされる。 アルカリ金属塩としてはNa、Li、K塩、低級
アミン塩としてはモノエタノールアミン、ジエタ
ノールアミン、トリエタノールアミン塩である。 本発明に用いられる分散剤が適用される石炭は
褐炭、亜歴青炭、歴青炭、無煙炭など特に制限は
ない。 石炭の粒度には特に規定はないが、200メツシ
ユ通過50%以上好ましくは70〜80%がよい。 また本発明において、CMC、MC、ポリアク
リル酸塩、縮合リン酸塩等公知の添加剤を併用す
ることも可能である。 また、他の分散剤例えばNSF、LSA塩も同様
に併用可能である。 〔作用〕 本発明において、UFLがNS、HCHOとの反応
系で、SSLの単なるUFリグニンとどのような反
応相違があるかは明確ではない。 しかしながら、UFLは次の点で単なる限外濾
過(UF)処理物とは異なつていると考えられる。 (1) 本発明の場合は官能基が多い。 (−SO3Hの他に−COOH、フエノール性−
OH) (2) リグニンスルホン酸塩以外のR.S、糖変成物
以外のものが反応阻害にならないように適度に
酸化処理されているので、UF精製の程度が多
少低くても目的が達成される。 共通点としては、LSA塩中のSO3Hが多いの
で、その量を増加させた場合でも反応系で沈澱が
生じない。 反応物の官能基量、LSA塩の比率が増加する
と、石炭との親和生が大きくなる為に、より高性
能な分散剤になるものと推定される。 〔実施例〕 <酸化、限外濾過処理したLSA塩の調製
(UFL)> (1) 1段目の反応 SSL−NaをNaOHでPH12に調製、高温150〜
160℃で2時間、アルカリ空気酸化した。 (2) 2段目の反応 (1)の液を濃度10%まで希釈した後、分画分子
量10000の限外濾過膜を用いて濃縮定容してリ
グニスルホン酸塩純度が90%になるまで精製し
た。 <NS・UFL・HCHO反応物の調製> NS100部、98%H2SO435部、水20部の混合物
を80〜90℃に加熱し、37%HCHO23部を2時間
にわたつて添加した。 その後UFL30部、37%HCHO23部からなる液
を1時間おきに3回に分けて添加し、95〜100℃
で12時間攪伴しながら反応を行わせた。 反応終了後、冷却、NaOHで中和し、Na2SO4
は晶析除去した。(A) 次に限外濾過精製リグニンスルホン酸Na
(LSA塩純度95%)も同様に反応させた。(B) <石炭・水スラリーの調製法および流動性測定
法> (1) 石炭・水スラリーの調製法 あらかじめ所定量の分散剤を溶解した水の中
に、200メツシユ80%パスまで粉砕した歴青炭
を投入し(全量400g)混ぜ棒で充分濡らした
後(ペースト化)、日本特殊機化工業製T.K.ホ
モミキサーを用い8000r.p.m.にて40分間攪伴し
て石炭・水スラリーを調製し、20℃で、BL型
回転粘度計を用いスラリー粘度を測定した。こ
の条件にて行なつた実施例および比較例を表1
に示した。粘度の低いものが流動性の良い事を
示している。 (2) 石炭・水スラリーの安定性測定法 (1)の条件で調製した石炭・水スラリーをシリ
ンダー(内径35mm、高さ250mm)に移し、直径
6mm、重さ30gのガラス棒をスラリーに貫入
し、落下状態を経日的に測定した。ガラス棒が
自重で下まで貫入する場合には、スラリーの安
定性が良好であるが、途中1/2以上で止まり、
手で押しても下方へ貫入しなくなると、安定性
は不良となる。 この条件にてスラリーの安定性を測定し、そ
の持続日数を測定した実施例および比較例を表
1に示した。持続日数が長いものが安定性の良
い事を示している。
[Industrial Field of Application] The present invention relates to a dispersant for coal/water slurry. Specifically, the present invention relates to a dispersant for coal/water slurry that contains as an active ingredient a reaction product of naphthalene sulfonic acid, modified lignin sulfonic acid, and formalin under acidic conditions. [Prior art] A method of using lignin sulfonate (LSA salt) or naphthalene sulfonic acid formaldehyde condensate (NSF) salt as a dispersant for coal-water slurry (hereinafter abbreviated as CWM) is disclosed in JP-A-52-71506;
It is already known in Japanese Patent Publication No. 60-6395. As a patent that further develops this, a condensation reaction product of naphthalene sulfonic acid (NS), a lignin sulfonic acid (LSA) derivative [desulfonated lignin sulfonate (DSL)], and formaldehyde (HCHO) is used as a dispersant. A method (Japanese Unexamined Patent Publication No. 58-34896) is disclosed. Furthermore, in JP-A-60-26090, the ligninsulfonic acid to be co-condensed is obtained by sulfonating wood chips, and the chemical treatment process, hydrolysis reaction, oxidation reaction, desulfonation reaction, and demethylation Modified ligninsulfonic acids that have undergone reactions and condensed ligninsulfonic acids that have undergone condensation reactions are shown. However, in this case, a general reaction treatment is merely exemplified. For example, when considering one oxidation reaction, the modified lignin sulfonic acid will vary depending on the chemical used for the oxidation reaction and the extent of the reaction. Therefore, if the chemical treatment is not appropriate, it will have a negative effect. The method disclosed in JP-A-58-34896 is obtained in accordance with the method described in JP-A-52-25433. Therefore, this method uses a cement dispersant that has been subjected to reaction treatment to be suitable for use as a cement dispersant.
It is interpreted as applied to CWM. In addition, in the field of cement dispersants,
5051, 60-5052 are disclosed. This uses an ultrafiltered LSA salt instead of DSL, which is subjected to a condensation reaction, and then subjected to an oxidation reaction. However, although cement and pulverized coal are similar at first glance in that they handle the same fine particles, the former is an inorganic and hydraulic substance, while the latter is an organic substance and has no hydraulic properties, and they also have different surface structures. There is. Particularly in the case of the former dispersant, in addition to high dispersibility, concrete setting retardation and air entrainment properties are important. When the degree of condensation is low, the amount of entrained air increases, so the degree of condensation of the reactant is important, and it is generally used as a high condensate. On the other hand, in the latter case, in addition to dispersibility, emphasis is placed on the storage stability of the resulting CWM. Therefore, it is natural that the manufacturing method of the optimal dispersant used for this will vary. [Problem to be solved by the invention] An economical and high-performance product that can withstand industrial use.
There are currently no known dispersants for CWM. Here, a high-performance dispersant is one that is less affected by the type of coal and has the following advantages: (1) It has a large viscosity-reducing effect with a small amount added. (2) High storage stability. That's true. [Means for Solving the Problems] As a result of intensive detailed research on lignosulfonate to be reacted with NS and HCHO, the present inventors found that after oxidizing sulfite pulp waste liquid (SSL) in alkaline air, We succeeded in developing a high-performance dispersant for CWM by using ultrafiltered lignosulfonate purified using an ultrafiltration membrane and oxidized. That is, the modified lignosulfonate of the present invention can be obtained by a two-stage treatment of SSL. In the first stage, high-temperature alkaline air oxidation or oxygen oxidation treatment is performed, and in the second stage, low molecular weight substances are removed from the obtained oxidized LSA salt using an ultrafiltration membrane to produce purified lignosulfonate with high purity. The biggest feature is that it reacts with NS and HCHO. More specifically, the first stage reaction is LSA during SSL.
The SO 3 H group of the salt is left intact, that is, it is not subjected to a vigorous oxidation reaction until a desulfonation reaction occurs (as in DSL, it is not subjected to a vigorous oxidation reaction under acidic conditions until a precipitation occurs). However, the functional group phenolic OH of LSA salt and −
COOH etc. undergo an oxidation reaction moderately to increase the amount. Specifically, the ratio of NaOH to SSL solid content is 5 to 5.
A wet oxidation reaction is carried out at a temperature of 150 to 200° C. for 1 to 2 hours while blowing air or oxygen. Next, the second ultrafiltration process removes low molecular weight substances from the oxidation products. Specifically, the oxidation product is diluted and the molecular weight cut-off is determined.
Perform concentration or constant volume concentration using a 5000-50000 ultrafiltration membrane until the purity of the LSA salt is 80-95%. The UFL thus obtained is reacted with NS and HCHO. This method is carried out according to Special Publication No. 52-25433, but
The details are explained below. The basic manufacturing method for dispersants is to add sulfuric acid and water to NS, heat this to 80-95℃, and then reduce the amount to 37%.
Add HCHO over approximately 2 hours. Add HCHO and UFL to this and heat to 90-120℃.
The product is reacted for 5 to 20 hours, neutralized, and the inorganic salts are removed. The ratio of chemicals used in the reaction is 5 to 50 parts (parts by weight, hereinafter referred to as parts), preferably 15 to 40 parts of UFL to 100 parts of NS. If it exceeds 50 parts, the amount of terminal reaction NS increases, which is not preferable. Moreover, if it is less than 5%, it becomes close to NSF and the characteristics of the present invention cannot be exhibited. Next, the appropriate amount of HCHO to be used initially is 20 to 25 parts per 100 parts of NS. The amount of HCHO added together with UFL is 20 to 100 parts per 100 parts of UFL. The amount of water and sulfuric acid initially mixed with NS is 15 to 30 parts, preferably 18 to 25 parts, per 100 parts of NS.
Sulfuric acid is 20-40 parts. The reaction temperature is 90-130°C and the reaction time is 5-20 hours. In the present invention, the HCHO reactant is neutralized to form an alkali metal salt, an ammonium salt, a lower amine salt, or the like. Examples of the alkali metal salts include Na, Li, and K salts, and examples of the lower amine salts include monoethanolamine, diethanolamine, and triethanolamine salts. Coal to which the dispersant used in the present invention is applied is not particularly limited, such as brown coal, subbituminous coal, bituminous coal, and anthracite coal. There are no particular regulations regarding the particle size of coal, but it is preferably 50% or more, preferably 70 to 80%, when passing through 200 meshes. In the present invention, it is also possible to use known additives such as CMC, MC, polyacrylates, and condensed phosphates. Other dispersants such as NSF and LSA salts can also be used in combination. [Effect] In the present invention, it is not clear how the reaction of UFL with NS and HCHO differs from that of simple UF lignin in SSL. However, UFL is considered to be different from a simple ultrafiltration (UF) product in the following points. (1) In the case of the present invention, there are many functional groups. (In addition to −SO 3 H, −COOH, phenolic −
OH) (2) Since RS other than lignin sulfonate and substances other than sugar modified products are appropriately oxidized so that they do not inhibit the reaction, the purpose can be achieved even if the degree of UF purification is somewhat low. The common feature is that LSA salt contains a large amount of SO 3 H, so even if the amount is increased, no precipitation occurs in the reaction system. It is presumed that as the amount of functional groups in the reactant and the ratio of LSA salt increase, the affinity with coal increases, resulting in a higher performance dispersant. [Example] <Preparation of LSA salt subjected to oxidation and ultrafiltration treatment (UFL)> (1) First stage reaction SSL-Na was adjusted to pH 12 with NaOH, high temperature 150~
Alkaline air oxidation was performed at 160°C for 2 hours. (2) Second stage reaction After diluting the solution from (1) to a concentration of 10%, it is concentrated to a constant volume using an ultrafiltration membrane with a molecular weight cutoff of 10,000 and purified until the purity of lignosulfonate is 90%. did. <Preparation of NS/UFL/HCHO reaction product> A mixture of 100 parts of NS, 35 parts of 98% H 2 SO 4 and 20 parts of water was heated to 80-90°C, and 23 parts of 37% HCHO was added over 2 hours. After that, a solution consisting of 30 parts of UFL and 23 parts of 37% HCHO was added in 3 portions at 1 hour intervals, and the mixture was heated to 95-100°C.
The reaction was carried out with stirring for 12 hours. After the reaction is complete, cool, neutralize with NaOH, and remove Na2SO4.
was removed by crystallization. (A) Next, ultrafiltration purified sodium ligninsulfonate
(LSA salt purity 95%) was also reacted in the same manner. (B) <Coal/water slurry preparation method and fluidity measurement method> (1) Coal/water slurry preparation method History of grinding 200 mesh to 80% pass in water in which a predetermined amount of dispersant has been dissolved in advance. After adding blue coal (400 g in total) and thoroughly moistening it with a mixing rod (making it into a paste), stir it for 40 minutes at 8000 rpm using a TK homomixer manufactured by Japan Tokushu Kika Kogyo to prepare a coal/water slurry. The slurry viscosity was measured at 20°C using a BL type rotational viscometer. Table 1 shows examples and comparative examples conducted under these conditions.
It was shown to. Low viscosity indicates good fluidity. (2) Stability measurement method for coal/water slurry The coal/water slurry prepared under the conditions in (1) was transferred to a cylinder (inner diameter 35 mm, height 250 mm), and a glass rod with a diameter of 6 mm and a weight of 30 g was penetrated into the slurry. The falling condition was measured over time. If the glass rod penetrates all the way to the bottom under its own weight, the stability of the slurry is good, but it stops at more than 1/2 of the way down.
If it does not penetrate downward even when pushed by hand, the stability becomes poor. Table 1 shows examples and comparative examples in which the stability of the slurry was measured under these conditions and the number of days it lasted. A longer duration indicates better stability.

【表】 〔発明の効果〕 本発明によれば従来のDSLに代えてUFLを
NS、HCHOとの反応に用いることにより、高性
能なCWM用の分散剤を得ることができる。前出
の比較例で示したように、DSLやLSA塩(SSL)
を用いた場合のNS、HCHOとの反応物は、同じ
濃度を得るのに分散剤の添加量が多く、また炭種
の影響が大きい。 これに対して本発明の場合はNS・HCHOとの
反応性向上と同時にリグニンスルホン酸塩の比率
が多くできるようになるので、分散性が向上し、
また炭種の影響が比較的少なくなる。 従来のDSL(特公昭58−34896)を用いた場合
はNS100部に対し、DSL30部が限度であつたの
に対し、本発明のUFLの場合は45部まで用いる
ことが可能である。 従つて従来の1.5倍量まで増加させることがで
きる。
[Table] [Effects of the invention] According to the present invention, UFL can be used instead of conventional DSL.
By using it in the reaction with NS and HCHO, a high-performance dispersant for CWM can be obtained. As shown in the comparative example above, DSL and LSA salt (SSL)
When using NS and HCHO, the amount of dispersant added is large to obtain the same concentration, and the type of coal has a large influence. On the other hand, in the case of the present invention, the ratio of lignin sulfonate can be increased at the same time as the reactivity with NS/HCHO is improved, so the dispersibility is improved.
In addition, the influence of coal type is relatively small. When using the conventional DSL (Japanese Patent Publication No. 58-34896), the limit was 30 parts of DSL compared to 100 parts of NS, whereas in the case of the UFL of the present invention, up to 45 parts can be used. Therefore, the amount can be increased to 1.5 times the conventional amount.

Claims (1)

【特許請求の範囲】 1 リグニンスルホン酸塩から次の2段処理によ
つて得られた変性リグニンスルホン酸塩 (i) 高温アルカリ空気酸化処理 (ii) 限外濾過処理 と、ナフタレンスルホン酸と、ホルムアルデヒド
との反応生成物を有効成分とする石炭・水スラリ
ー用分散材。 2 変性リグニンスルホン酸塩とナフタレンスル
ホン酸との割合が、5〜50部:100部(重量比)
である特許請求の範囲第1項記載の石炭・水スラ
リー用分散剤。
[Scope of Claims] 1. Modified lignin sulfonate obtained from lignin sulfonate by the following two-stage treatment (i) high temperature alkaline air oxidation treatment (ii) ultrafiltration treatment, and naphthalene sulfonic acid, A dispersant for coal/water slurry whose active ingredient is a reaction product with formaldehyde. 2 The ratio of modified lignin sulfonate and naphthalene sulfonic acid is 5 to 50 parts: 100 parts (weight ratio)
A dispersant for coal/water slurry according to claim 1.
JP61010877A 1986-01-21 1986-01-21 Dispersant for coal-water slurry Granted JPS62169896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61010877A JPS62169896A (en) 1986-01-21 1986-01-21 Dispersant for coal-water slurry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61010877A JPS62169896A (en) 1986-01-21 1986-01-21 Dispersant for coal-water slurry

Publications (2)

Publication Number Publication Date
JPS62169896A JPS62169896A (en) 1987-07-27
JPH0560518B2 true JPH0560518B2 (en) 1993-09-02

Family

ID=11762558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61010877A Granted JPS62169896A (en) 1986-01-21 1986-01-21 Dispersant for coal-water slurry

Country Status (1)

Country Link
JP (1) JPS62169896A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO974058L (en) * 1996-09-12 1998-03-13 Westvaco Corp Dye and process for making the same
CN102295964B (en) * 2011-07-21 2014-01-29 陕西科技大学 Naphthalene-system coal water slurry dispersant and preparation method thereof
JP5671430B2 (en) * 2011-09-02 2015-02-18 ハリマ化成株式会社 Modified lignin and phenolic resin molding material containing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5556051A (en) * 1978-10-16 1980-04-24 Sanyo Kokusaku Pulp Co Slump decrease preventing agent for mortar concrete and workability improvement thereby
JPS5845289A (en) * 1981-09-14 1983-03-16 Sanyo Kokusaku Pulp Co Ltd Improving method for fluidity of coal-water slurry

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5556051A (en) * 1978-10-16 1980-04-24 Sanyo Kokusaku Pulp Co Slump decrease preventing agent for mortar concrete and workability improvement thereby
JPS5845289A (en) * 1981-09-14 1983-03-16 Sanyo Kokusaku Pulp Co Ltd Improving method for fluidity of coal-water slurry

Also Published As

Publication number Publication date
JPS62169896A (en) 1987-07-27

Similar Documents

Publication Publication Date Title
JP5905081B2 (en) Method for producing additive for cementitious material, additive, and mixture containing additive
DE3530258A1 (en) USE OF SALTS OF WATER-SOLUBLE NAPHTALINE SULPHONIC ACID FORMALDEHYDE CONDENSATES AS ADDITIVES FOR INORGANIC BINDERS AND BUILDING MATERIAL
KR900005605B1 (en) Process for preparing low electrolyte sodium lignosulfonates
JPH0560518B2 (en)
US5043432A (en) Sulfonation of lignins
JPH0227359B2 (en)
US5049661A (en) Sulfonation of lignins
US2141570A (en) Concrete and hydraulic cement
JPH0520478B2 (en)
EP0020771B1 (en) Method for improving the workability of concrete mortar
JPH0520480B2 (en)
EP0166774B1 (en) Water reducing agent utilized in mortar and concrete
JPH0520479B2 (en)
CN111004362B (en) Preparation method of naphthalene-based superplasticizer
US4744882A (en) Polycondensates of sulfonated coal tar fractions
US2639274A (en) Sulfonated phenol formaldehyde condensation product and method for making same
JP2513932B2 (en) Method for producing thiolignin
JPH0251566A (en) Dye dispersant
JPH0128798B2 (en)
US5043434A (en) Oleum sulfonation of lignins
JPH03344B2 (en)
SU1271863A1 (en) Method of producing water-soluble phenolic resin
JPH0768058B2 (en) Cement dispersant
US5043433A (en) Oleum sulfonation of lignins
JPS59152994A (en) Viscosity reducing agent for coke and water slurry having high concentration

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees