JPH0520428A - Measurement method for silicon crushing rate of high silicon alluminium bore surface - Google Patents

Measurement method for silicon crushing rate of high silicon alluminium bore surface

Info

Publication number
JPH0520428A
JPH0520428A JP3195054A JP19505491A JPH0520428A JP H0520428 A JPH0520428 A JP H0520428A JP 3195054 A JP3195054 A JP 3195054A JP 19505491 A JP19505491 A JP 19505491A JP H0520428 A JPH0520428 A JP H0520428A
Authority
JP
Japan
Prior art keywords
image
primary crystal
crystal silicon
crushed
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3195054A
Other languages
Japanese (ja)
Other versions
JP3013524B2 (en
Inventor
Masahiko Iiizumi
雅彦 飯泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP3195054A priority Critical patent/JP3013524B2/en
Publication of JPH0520428A publication Critical patent/JPH0520428A/en
Application granted granted Critical
Publication of JP3013524B2 publication Critical patent/JP3013524B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To execute measurement by means of considerably adjusting it to the manufacture even if a large amount of cylinder blocks are manufactured by preventing the occurrence of a measurement error by means of objectively measuring rate and automatically measuring the crushing rate. CONSTITUTION:At the time of measuring the crushing rate of proeutectic silicon appearing on the bore surface 1a of the high silicon aluminum cylinder block, an optical magnifying glass 2 picks up the image of the bore surface 1a by a video camera 3. The image signal of the video camera 3 is image-processed in an image processor 4 and the total number of proeutectic silicon particles in the image processor 4 and the total number of proeutectic silicon particles in the image is counted. Then, it is judged that respective proeutectic silicon particles in the image are crushed or not, and the number of the crushed particles is counted. The number of the crushed particles is divided by the total number of the particles so as to calculate crushing rate of proeutectic silicon.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、ハイシリコンアルミ
シリンダブロックのボア表面に現れている初晶シリコン
の破砕率を検査するに際し用いて好適な破砕率測定方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a crushing rate measuring method suitable for use in inspecting the crushing rate of primary silicon appearing on the bore surface of a high silicon aluminum cylinder block.

【0002】[0002]

【従来の技術】ハイシリコンアルミシリンダブロックの
ボア表面に初晶シリコンを露出させてピストンの焼き付
きを防止することは一般に知られており、その焼き付き
防止効果を充分得るためには、初晶シリコンを広い面積
で露出させる必要があるので、表面腐食処理を行う前の
ボア表面における初晶シリコンの破砕率が低くなってい
る必要がある。このため通常、機械加工後のボア表面に
ついて初晶シリコンの破砕率の検査を行うが、かかる検
査を行うに際し、従来は検査員が、そのボア表面を顕微
鏡で拡大した像を目視で観察し、限度見本と見比べるこ
とにより破砕率を測定していた。
2. Description of the Related Art It is generally known that primary crystal silicon is exposed on the surface of a bore of a high silicon aluminum cylinder block to prevent piston seizure. Since it is necessary to expose a large area, it is necessary that the crushing rate of the primary crystal silicon on the surface of the bore before the surface corrosion treatment is low. For this reason, normally, the crushing rate of primary crystal silicon is inspected for the bore surface after machining, but when performing such an inspection, conventionally, an inspector visually observes an enlarged image of the bore surface with a microscope, The crushing rate was measured by comparing with the limit sample.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
このような目視官能検査では、客観的な測定ができず、
検査員が異なると測定結果が異なるため破砕率測定に誤
差が生じ易いという問題があり、さらに、測定の自動化
ができないため大量生産に適さないという問題もあっ
た。
However, in such a conventional visual sensory test, an objective measurement cannot be made,
There is a problem that the crushing rate measurement is likely to be in error due to different measurement results when different inspectors are used, and further, it is not suitable for mass production because the measurement cannot be automated.

【0004】[0004]

【課題を解決するための手段】この発明は、かかる課題
を有利に解決した破砕率測定方法を提供することを目的
とするものであり、この発明のハイシリコンアルミボア
表面のシリコン破砕率測定方法は、ハイシリコンアルミ
シリンダブロックのボア表面に現れている初晶シリコン
の破砕率を測定するに際し、前記ボア表面の像を光学式
拡大鏡により拡大してビデオカメラで撮像し、そのビデ
オカメラが出力する画像信号を画像処理して、その画像
中に現れている全初晶シリコン粒子数を計数し、前記画
像信号を画像処理して、その画像中に現れている各初晶
シリコン粒子が破砕しているか否かを判断した後破砕し
ている初晶シリコン粒子数を計数し、前記破砕している
初晶シリコン粒子数を前記全初晶シリコン粒子数で割っ
て初晶シリコンの破砕率を算出することを特徴とするも
のである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a crushing rate measuring method that advantageously solves the above problems, and a method of measuring the silicon crushing rate on the surface of a high silicon aluminum bore according to the present invention. When measuring the crushing rate of primary crystal silicon appearing on the bore surface of a high silicon aluminum cylinder block, the image of the bore surface is magnified with an optical magnifying glass and captured by a video camera, which outputs it. The image signal to be image-processed, the total number of primary crystal silicon particles appearing in the image is counted, and the image signal is image-processed so that each primary crystal silicon particle appearing in the image is crushed. After determining whether or not, the number of crushed primary crystal silicon particles is counted, and the number of crushed primary crystal silicon particles is divided by the number of all primary crystal silicon particles It is characterized in that to calculate the 砕率.

【0005】そしてこの発明では、各初晶シリコン粒子
の前記破砕判断に際し、前記画像信号を二値化処理およ
びマスク処理して、その画像中に現れている各初晶シリ
コン粒子の全面積を計測し、前記画像信号をマスク処理
および濃淡画像処理した後に二値化処理して、その画像
中に現れている各初晶シリコン粒子の破砕部の面積を計
測し、前記破砕部が初晶シリコン粒子を横切っている場
合、または前記破砕部の面積がその初晶シリコン粒子の
全面積に対し所定割合以上の場合に、その初晶シリコン
粒子が破砕していると判断することとしても良い。
According to the present invention, when judging the fracture of each primary crystal silicon particle, the image signal is binarized and masked to measure the total area of each primary crystal silicon particle appearing in the image. Then, the image signal is subjected to binarization processing after mask processing and grayscale image processing, and the area of the crushed portion of each primary crystal silicon particle appearing in the image is measured, and the crushed portion is the primary crystal silicon particle. It may be determined that the primary crystal silicon particles are crushed when the area of the crushed portion is equal to or more than a predetermined ratio with respect to the total area of the primary crystal silicon particles.

【0006】[0006]

【作用】かかる方法によれば、ボア表面の拡大像を示す
画像信号を画像処理することによってそれぞれ求めた全
初晶シリコン粒子数および破砕している初晶シリコン粒
子数から初晶シリコンの破砕率を算出するので、客観的
に破砕率測定を行い得て測定誤差の発生を防止すること
ができ、また、破砕率測定を自動化し得て、その測定を
大量生産に適合させることができる。
According to this method, the crushing rate of the primary crystal silicon is calculated from the total number of primary crystal silicon particles and the number of crushed primary crystal silicon particles, which are respectively obtained by image processing of the image signal showing the enlarged image of the bore surface. Therefore, it is possible to objectively measure the crushing rate and prevent the occurrence of a measurement error. Further, it is possible to automate the crushing rate measurement and adapt the measurement to mass production.

【0007】なお、画像信号を二値化処理、マスク処理
および濃淡画像処理して、各初晶シリコン粒子の全面積
に対する破砕部の面積の割合や破砕部の状態を求め、そ
れらに基づいて破砕判断を行うこととすれば、各初晶シ
リコン粒子の破砕判断を、客観的に、かつ容易に行うこ
とができる。
The image signal is subjected to binarization processing, mask processing and grayscale image processing to obtain the ratio of the area of the crushed portion to the total area of each primary crystal silicon particle and the state of the crushed portion, and the crushing is performed based on them. If the judgment is made, the crushing judgment of each primary crystal silicon particle can be made objectively and easily.

【0008】[0008]

【実施例】以下に、この発明の実施例を図面に基づき詳
細に説明する。図1は、この発明のハイシリコンアルミ
ボア表面のシリコン破砕率測定方法の一実施例に用いる
測定装置を示す構成図であり、図中1は検査対象である
ハイシリコンアルミシリンダブロック、2は通常の光学
式拡大鏡、3は前記光学式拡大鏡2に光学系を接続され
たビデオカメラとしての通常のCCDカメラ、4は前記
CCDカメラ3が出力する画像信号を画像処理する通常
の画像処理装置、5は前記画像処理装置4が処理した画
像をCRTにて表示する通常の画像出力装置、そして6
は前記画像処理装置4が画像処理および演算によって求
めた測定結果を印字出力するプリンタをそれぞれ示す。
かかる測定装置を用いてここでは、以下の如くしてハイ
シリコンアルミシリンダブロック1のボア表面1aに現れ
た初晶シリコンの破砕率測定を行う。
Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a configuration diagram showing a measuring device used in an embodiment of a method for measuring the silicon crushing rate of the surface of a high silicon aluminum bore of the present invention, in which 1 is a high silicon aluminum cylinder block to be inspected and 2 is a normal one. 3 is an ordinary CCD camera as a video camera in which an optical system is connected to the optical magnifying glass 2, and 4 is an ordinary image processing device for processing an image signal output from the CCD camera 3. 5 is an ordinary image output device for displaying an image processed by the image processing device 4 on a CRT, and 6
Are printers for printing out the measurement results obtained by the image processing device 4 by image processing and calculation.
Here, the crushing rate of the primary crystal silicon appearing on the bore surface 1a of the high silicon aluminum cylinder block 1 is measured by using such a measuring device as follows.

【0009】すなわち、この実施例では、図1に示すよ
うに、例えばホーニング加工を行った後のハイシリコン
アルミシリンダブロック1のボア内に光学式拡大鏡2を
挿入して、そのボア表面1aの所定範囲を拡大鏡2で適宜
拡大した像をCCDカメラ3で撮像し、そのCCDカメ
ラ3が出力する、図2(a)および図3(a)に示す如
き画像を示す画像信号を画像処理装置4に入力する。な
お、図中白く見える部分7はアルミ合金部分、黒く見え
る部分8はそこに析出した初晶シリコン粒子をそれぞれ
示す。
That is, in this embodiment, as shown in FIG. 1, the optical magnifying glass 2 is inserted into the bore of the high silicon aluminum cylinder block 1 after, for example, honing, and the bore surface 1a of the bore 1a is inserted. An image processing apparatus outputs an image signal showing an image as shown in FIGS. 2 (a) and 3 (a), which is output by the CCD camera 3 by capturing an image of a predetermined range appropriately magnified by the magnifying glass 2. Enter in 4. In the figure, a white portion 7 indicates an aluminum alloy portion, and a black portion 8 indicates primary crystal silicon particles deposited therein.

【0010】しかしてここにおける画像処理装置4は、
先ず、入力した上記画像信号を適当な閾値を用いて二値
化処理することにより、図2(b)に示す如く、初晶シ
リコン粒子8だけが明部となるようにし、その二値化画
像をラベリング処理することにより、その画像中に現れ
ている各初晶シリコン粒子8に識別ラベルを付けてそれ
らを互いに識別可能とし、その識別ラベルの数によっ
て、画像中の初晶シリコン粒子8の全粒子数Nを計数す
る。
However, the image processing device 4 here is
First, the input image signal is binarized by using an appropriate threshold value so that only the primary crystal silicon particles 8 become a bright portion as shown in FIG. 2B, and the binarized image is obtained. By labeling each primary crystal silicon particle 8 appearing in the image so that they can be distinguished from each other, and by the number of the identification labels, all primary crystal silicon particles 8 in the image can be identified. The number N of particles is counted.

【0011】次いで画像処理装置4は、上記ラベリング
処理した画像を特徴点抽出処理することにより、前記識
別ラベルを付けた各初晶シリコン粒子8の全面積Aを求
め、続いて図2(c)に示す如く、各初晶シリコン粒子
8毎にマスクパターンを作成し、そのマスクパターンを
用いて前記二値化前の画像をマスキング処理することに
より、図2(d)に示す如く、各初晶シリコン粒子8の
濃淡画像を作成し、その後、各粒子8毎の前記濃淡画像
を二値化して、その濃淡画像中で薄暗く見える部分であ
る破砕部9を、図2(e)に示す如く、暗部として明確
化し、その二値化画像を特徴点抽出処理することによ
り、各初晶シリコン粒子8中の破砕部9の面積Bを求
め、さらに、その二値化画像を拡散処理し、それによっ
て見掛け上拡大した破砕部9がその粒子8を横切って粒
子8を分割するか否かを確認する。
Next, the image processing apparatus 4 obtains the total area A of each of the primary crystal silicon particles 8 having the identification label by subjecting the labeled image to a feature point extraction process, and subsequently, FIG. As shown in FIG. 2, a mask pattern is created for each primary crystal silicon particle 8 and the image before binarization is masked using the mask pattern to obtain each primary crystal as shown in FIG. A grayscale image of the silicon particles 8 is created, and thereafter, the grayscale image of each particle 8 is binarized, and the crushing portion 9 which is a portion that appears to be dark in the grayscale image is converted into a grayscale image as shown in FIG. The area B of the crushed portion 9 in each primary crystal silicon particle 8 is obtained by clarifying as a dark portion and subjecting the binarized image to feature point extraction processing, and further, the binarized image is subjected to diffusion processing, thereby Apparently expanded damage Part 9 to check whether to divide the particles 8 across its particles 8.

【0012】かかる処理を行った後、画像処理装置4
は、前記識別ラベルを付けた各初晶シリコン粒子8毎
に、その破砕部9の面積Bが先に求めたその粒子8の全
面積A中で占める割合である破砕面積率Cを次式によっ
て求め、 C=(B/A)×100 例えば図3(a)に示す粒子8のように、破砕部9の破
砕面積率Cが例えば20%を越えている場合には、その初
晶シリコン粒子8は破砕していると判断する。また画像
処理装置4は、前記識別ラベルを付けた各初晶シリコン
粒子8毎に、上記拡散処理の結果破砕部9がその粒子8
を横切って分割したか否かの確認結果も調べ、破砕面積
率Cが20%以下でも、例えば図3(b)に示す粒子8の
ように、破砕部9が横切ることによって分割された初晶
シリコン粒子8は、破砕していると判断する。
After performing such processing, the image processing apparatus 4
Is the crushed area ratio C, which is the ratio of the area B of the crushed portion 9 to the previously obtained total area A of the particle 8 for each primary crystal silicon particle 8 with the identification label, according to the following equation. C = (B / A) × 100 For example, when the crushed area ratio C of the crushed portion 9 exceeds 20% like the particle 8 shown in FIG. 8 is judged to be crushed. Further, in the image processing device 4, for each primary crystal silicon particle 8 to which the identification label is attached, the crushing portion 9 is the particle 8 as a result of the diffusion processing.
Even if the crushed area ratio C is 20% or less, the primary crystal divided by the crushed portion 9 crosses even if the crushed area ratio C is 20% or less. It is determined that the silicon particles 8 are crushed.

【0013】しかる後画像処理装置4は、上記破砕して
いると判断した初晶シリコン粒子8の数Mをその識別ラ
ベルの数によって計数し、次いでその破砕している初晶
シリコン数Mの、先に求めた全初晶シリコン粒子数Nに
対する割合である初晶シリコン破砕率Rを次式によって
求め、 R=(M/N)×100 さらに、その初晶シリコン破砕率Rを所定の合否判定値
と比較して、破砕率Rがその合否判定値以下であれば合
格、合否判定値を越えていれば不合格と判定し、上記初
晶シリコン破砕率Rとその判定結果を、画像出力装置5
により表示するとともにプリンタ6により印字し、所要
に応じて各画像処理段階における画像も画像出力装置5
により表示する。
Thereafter, the image processing device 4 counts the number M of the primary crystal silicon particles 8 judged to be crushed by the number of the identification labels, and then the number M of the crushed primary crystal silicon M, The primary crystal silicon crushing rate R, which is the ratio to the total primary crystal silicon particle number N obtained earlier, is calculated by the following equation, and R = (M / N) × 100. If the crushing rate R is less than or equal to the pass / fail judgment value as compared with the value, it is determined as pass, and if it exceeds the pass / fail determination value, it is determined as fail. 5
Is displayed by the printer 6 and is printed by the printer 6, and the image in each image processing stage is also output by the image output device 5 as required.
To display.

【0014】上述の如くして、この実施例の破砕率測定
方法によれば、ボア表面1aの拡大像を示す画像信号を画
像処理することによってそれぞれ求めた全初晶シリコン
粒子数Nおよび破砕している初晶シリコン粒子数Mから
初晶シリコンの破砕率Rを算出するので、客観的に破砕
率測定を行い得て測定誤差の発生を防止することがで
き、また、破砕率測定を自動的に行うので、上記シリン
ダブロック1を大量生産する場合にも測定をその生産に
充分間に合わせて行うことができる。
As described above, according to the crushing rate measuring method of this embodiment, the number N of all primary crystal silicon particles and the number of crushed silicon particles obtained by image-processing the image signal showing the enlarged image of the bore surface 1a, respectively. Since the crushing rate R of the primary crystal silicon is calculated from the number M of primary crystal silicon particles, it is possible to objectively measure the crushing rate and prevent the occurrence of measurement error, and the crushing rate measurement is automatically performed. Therefore, even when the cylinder block 1 is mass-produced, the measurement can be performed sufficiently in time for the production.

【0015】しかも上記実施例によれば、画像信号を二
値化処理、マスク処理および濃淡画像処理して、各初晶
シリコン粒子8の全面積Aに対する破砕部9の面積Bの
割合Cや破砕部9の状態を求め、それらに基づいて破砕
か否かの判断を行うので、各初晶シリコン粒子8の破砕
判断を、客観的に、かつ容易に行うことができる。
Further, according to the above-described embodiment, the image signal is subjected to the binarization process, the mask process and the grayscale image process to obtain the ratio C of the area B of the crushing portion 9 to the total area A of each primary crystal silicon particle 8 and the crushing. Since the state of the portion 9 is obtained and whether or not the primary crystal grains 8 are crushed is determined based on them, the crushing determination of each primary crystal silicon particle 8 can be performed objectively and easily.

【0016】以上、図示例に基づき説明したが、この発
明は上述の例に限定されるものでなく、例えば、上記例
の如く直接的にシリンダボア表面の像を拡大してCCD
カメラで撮像するのでなく、一旦シリンダボア表面の顕
微鏡写真を撮影し、その写真をCCDカメラで撮像する
ようにしても良い。またビデオカメラは、対象物を撮像
してその画像を示す信号を出力するものであれば、上記
例のCCDカメラ以外のものでも良い。
Although the present invention has been described above based on the illustrated example, the present invention is not limited to the above example. For example, as in the above example, the image of the surface of the cylinder bore is directly enlarged to form a CCD.
Instead of taking a picture with a camera, a microscopic picture of the surface of the cylinder bore may be taken once and then taken with a CCD camera. The video camera may be other than the CCD camera of the above example as long as it captures an object and outputs a signal indicating the image.

【0017】[0017]

【発明の効果】かくしてこの発明の破砕率測定方法によ
れば、客観的に破砕率測定を行い得て測定誤差の発生を
防止することができ、また、破砕率測定を自動化し得
て、その測定を大量生産に適合させることができる。
As described above, according to the crush rate measuring method of the present invention, it is possible to objectively measure the crush rate and prevent the occurrence of a measurement error. Further, the crush rate measurement can be automated, The measurement can be adapted for mass production.

【0018】なお、画像信号を二値化処理、マスク処理
および濃淡画像処理して、各初晶シリコン粒子の全面積
に対する破砕部の面積の割合や破砕部の状態を求め、そ
れらに基づいて破砕判断を行うこととすれば、各初晶シ
リコン粒子の破砕判断を、客観的に、かつ容易に行うこ
とができる。
The image signal is subjected to binarization processing, mask processing and grayscale image processing to obtain the ratio of the area of the crushed portion to the total area of each primary crystal silicon particle and the state of the crushed portion, and the crushing is performed based on them. If the judgment is made, the crushing judgment of each primary crystal silicon particle can be made objectively and easily.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明のハイシリコンアルミボア表面のシリ
コン破砕率測定方法の一実施例に用いる測定装置を示す
構成図である。
FIG. 1 is a configuration diagram showing a measuring device used in an embodiment of a method for measuring a silicon crushing rate on a surface of a high silicon aluminum bore according to the present invention.

【図2】(a)〜(e)は、上記実施例の方法における
画像処理の各段階でのボア表面画像を示す説明図であ
る。
FIGS. 2A to 2E are explanatory views showing bore surface images at each stage of image processing in the method of the above embodiment.

【図3】(a)および(b)は、破砕していると判断す
る初晶シリコン粒子をそれぞれ例示する説明図である。
FIGS. 3 (a) and 3 (b) are explanatory views illustrating primary crystal silicon particles determined to be crushed, respectively.

【符号の説明】[Explanation of symbols]

1 ハイシリコンアルミシリンダブロック 1a ボア表面 2 光学式拡大鏡 3 CCDカメラ 4 画像処理装置 5 画像出力装置 6 プリンタ 7 アルミ合金部分 8 初晶シリコン粒子 9 破砕部 1 High silicon aluminum cylinder block 1a bore surface 2 optical magnifying glass 3 CCD camera 4 Image processing device 5 Image output device 6 printer 7 Aluminum alloy part 8 Primary crystal silicon particles 9 crushing section

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ハイシリコンアルミシリンダブロックの
ボア表面に現れている初晶シリコンの破砕率を測定する
に際し、 前記ボア表面の像を光学式拡大鏡により拡大してビデオ
カメラで撮像し、 そのビデオカメラが出力する画像信号を画像処理して、
その画像中に現れている全初晶シリコン粒子数を計数
し、 前記画像信号を画像処理して、その画像中に現れている
各初晶シリコン粒子が破砕しているか否かを判断した後
破砕している初晶シリコン粒子数を計数し、 前記破砕している初晶シリコン粒子数を前記全初晶シリ
コン粒子数で割って初晶シリコンの破砕率を算出するこ
とを特徴とする、ハイシリコンアルミボア表面のシリコ
ン破砕率測定方法。
1. When measuring the crushing rate of primary crystal silicon appearing on the bore surface of a high silicon aluminum cylinder block, the image of the bore surface is magnified by an optical magnifying glass and imaged by a video camera. Image processing the image signal output from the camera,
The total number of primary crystal silicon particles appearing in the image is counted, and the image signal is subjected to image processing to determine whether each primary crystal silicon particle appearing in the image is crushed and then crushed. Counting the number of primary crystal silicon particles, and dividing the number of primary crystal silicon particles being crushed by the total number of primary crystal silicon particles to calculate the crushing rate of primary crystal silicon, high silicon Method for measuring the crushing rate of silicon on the surface of aluminum bores.
【請求項2】 各初晶シリコン粒子の前記破砕判断に際
し、 前記画像信号を二値化処理およびマスク処理して、その
画像中に現れている各初晶シリコン粒子の全面積を計測
し、 前記画像信号をマスク処理および濃淡画像処理した後に
二値化処理して、その画像中に現れている各初晶シリコ
ン粒子の破砕部の面積を計測し、 前記破砕部が初晶シリコン粒子を横切っている場合、ま
たは前記破砕部の面積がその初晶シリコン粒子の全面積
に対し所定割合以上の場合に、その初晶シリコン粒子が
破砕していると判断することを特徴とする、請求項1記
載のハイシリコンアルミボア表面のシリコン破砕率測定
方法。
2. When determining the crushing of each primary crystal silicon particle, the image signal is binarized and masked to measure the total area of each primary crystal silicon particle appearing in the image, The image signal is subjected to binarization processing after mask processing and grayscale image processing, the area of the crushed portion of each primary crystal silicon particle appearing in the image is measured, and the crushed portion crosses the primary crystal silicon particles. The primary crystal silicon particles are determined to be crushed when the area of the crushed portion is equal to or more than a predetermined ratio with respect to the total area of the primary crystal silicon particles. Method for measuring the crushing rate of silicon on the surface of high silicon aluminum bores.
JP3195054A 1991-07-10 1991-07-10 Method for measuring silicon crushing rate on high silicon aluminum bore surface Expired - Fee Related JP3013524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3195054A JP3013524B2 (en) 1991-07-10 1991-07-10 Method for measuring silicon crushing rate on high silicon aluminum bore surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3195054A JP3013524B2 (en) 1991-07-10 1991-07-10 Method for measuring silicon crushing rate on high silicon aluminum bore surface

Publications (2)

Publication Number Publication Date
JPH0520428A true JPH0520428A (en) 1993-01-29
JP3013524B2 JP3013524B2 (en) 2000-02-28

Family

ID=16334790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3195054A Expired - Fee Related JP3013524B2 (en) 1991-07-10 1991-07-10 Method for measuring silicon crushing rate on high silicon aluminum bore surface

Country Status (1)

Country Link
JP (1) JP3013524B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07299342A (en) * 1994-05-09 1995-11-14 Mizuho Kogyo Kk Emulsion preparing apparatus
CN113567310A (en) * 2021-07-30 2021-10-29 重庆大学 Detection method and device for coated particles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07299342A (en) * 1994-05-09 1995-11-14 Mizuho Kogyo Kk Emulsion preparing apparatus
CN113567310A (en) * 2021-07-30 2021-10-29 重庆大学 Detection method and device for coated particles

Also Published As

Publication number Publication date
JP3013524B2 (en) 2000-02-28

Similar Documents

Publication Publication Date Title
US6799130B2 (en) Inspection method and its apparatus, inspection system
EP1096249B1 (en) Nondestructive flaw inspection method and apparatus
JP3884834B2 (en) Defect inspection method and apparatus
CN111272768B (en) Ceramic tube detection method
JPH07159337A (en) Fault inspection method for semiconductor element
JP2002257736A (en) Method and device for inspecting end face of honeycomb structure
JP3324699B2 (en) Method and apparatus for measuring fiber diameter distribution
JP5257063B2 (en) Defect detection method and defect detection apparatus
JP3013524B2 (en) Method for measuring silicon crushing rate on high silicon aluminum bore surface
JP2004279239A (en) Method of detecting display defect in liquid crystal panel, and inspection device for display defect therein
JP2004170374A (en) Apparatus and method for detecting surface defect
JPH07333197A (en) Automatic surface flaw detector
JPH09199560A (en) Inspecting method of semiconductor surface defect and its automatic inspecting equipment
CN112465780A (en) Method and device for monitoring abnormal film thickness of insulating layer
JP2711649B2 (en) Surface scratch detection method for inspection object
WO2020130786A1 (en) A method of analyzing visual inspection image of a substrate for corrosion determination
JP3745075B2 (en) Film thickness measuring device
JP2004150908A (en) Nondestructive inspection method and system of the same
JPH0735699A (en) Method and apparatus for detecting surface defect
JPH0337564A (en) Automatic magnetic-particle examination apparatus
KR101032917B1 (en) Hole cluster test method
JP2638121B2 (en) Surface defect inspection equipment
JP3506170B2 (en) Inspection apparatus and inspection method for semiconductor parts
JPH0781962B2 (en) Foreign object detection method
KR102028196B1 (en) LED module examine apparatus for using image processing

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071217

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees