JPH05204022A - Flash illumination device - Google Patents

Flash illumination device

Info

Publication number
JPH05204022A
JPH05204022A JP4014296A JP1429692A JPH05204022A JP H05204022 A JPH05204022 A JP H05204022A JP 4014296 A JP4014296 A JP 4014296A JP 1429692 A JP1429692 A JP 1429692A JP H05204022 A JPH05204022 A JP H05204022A
Authority
JP
Japan
Prior art keywords
light
circuit
voltage
flash
electric energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4014296A
Other languages
Japanese (ja)
Inventor
Takatoshi Ashizawa
隆利 芦沢
忠雄 ▲高▼木
Tadao Takagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP4014296A priority Critical patent/JPH05204022A/en
Publication of JPH05204022A publication Critical patent/JPH05204022A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a flash illumination device which can adjust projected light quantity every plural areas of a field without complicating the constitution of an electric circuit so much. CONSTITUTION:A low voltage power source 11 which generates a low voltage, a boosting circuit 12 which boosts the low voltage impressed from the power source 11 to the high voltage, a first charge accumulation circuit 13 which accumulates electric energy generated by the boosting circuit 12 and a light emission part 14 which emits light by the electric energy accumulated in the accumulation circuit 13 are provided. Besides, a light quantity adjustment means 16 is disposed in an optical path where a flash radiated outward from the light emission part 14 is passed. Then, the electric energy for controlling the transmitted light quantity of the adjustment means 16 is accumulated in a second charge accumulation circuit 15 by the boosting circuit 12 which generates the electric energy for flash illumination.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、発光部から外方に投射
される閃光の通過光路中に光量調節部を設け、たとえば
被写体の空間分布状態に応じて閃光発光時の配光分布を
制御することのできる閃光照明装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is provided with a light quantity adjusting section in the passage of a flash light projected outward from a light emitting section, and controls the light distribution distribution at the time of flash light emission in accordance with the spatial distribution state of a subject, for example. The present invention relates to a flash lighting device that can perform

【0002】[0002]

【従来の技術】本出願人は先に、特願平3−16014
1号明細書において、被写体の空間分布状態に応じて配
光分布を制御する新規な閃光照明装置を提案した。たと
えば図8に示すように距離が異なる3つの被写体を閃光
撮影する場合、人物が適正な露出で撮影されるように発
光部から均一な照射光を被写体に照射すると、人物より
手前の被写体の露出はオーバーとなり、後方の被写体の
露出はアンダーとなってしまう。
2. Description of the Related Art The present applicant has previously filed Japanese Patent Application No. 3-16014.
No. 1 specification has proposed a novel flash lighting device that controls the light distribution according to the spatial distribution of the subject. For example, in flash photography of three subjects with different distances as shown in FIG. 8, if the subject is illuminated with uniform irradiation light so that the person is photographed with an appropriate exposure, the subject in front of the person is exposed. Is over, and the subject behind is underexposed.

【0003】そこで、上記新規な閃光照明装置では、発
光部から投射される閃光の通過光路中にPLZT(投光
性セラミック)や液晶のような光量制御素子を配置し、
距離の異なる複数の被写体の露出が均一になるように各
領域の照射光量を調節する。具体的には、図8に示すよ
うに被写界を3つの領域L,C,Rに分割し、この3つ
の領域のそれぞれの投射光を個別に調節するように光量
制御素子を3つの領域に分割し、各領域内に存在する被
写体までの距離に応じて各領域の通過光量を制御する。
Therefore, in the above novel flash lighting device, a light quantity control element such as PLZT (light projecting ceramic) or liquid crystal is arranged in the passage of the flash light projected from the light emitting portion.
The irradiation light amount of each area is adjusted so that a plurality of subjects at different distances are uniformly exposed. Specifically, as shown in FIG. 8, the object field is divided into three regions L, C, and R, and the light amount control element is divided into three regions so as to individually adjust the projected light in each of the three regions. And the amount of light passing through each area is controlled according to the distance to the subject existing in each area.

【0004】ところで、光量制御素子として周知のPL
ZTを用いる場合、PLZTバルクを透明な対向電極で
挟み、さらに、一方の電極に偏光板を、他方の電極に検
光板を対向させ、偏光板と検光板の偏光軸を一致させて
配置する。対向電極間に所定の電圧を印加するとPLZ
Tバルクの入射光はその偏光軸が90度回転されて射出
される。したがって、電圧を印加しないときは光透過率
がほぼ100%、電圧を印加すると光透過率がほぼゼロ
%になる。そこで、図8の場合には、たとえば点線で区
画した3分割に対応して光量制御素子もその領域を3分
割し、3つの領域に存在する被写体からの反射光量を測
光し、測光値が所定値になったら領域のPLZTバルク
に電圧を印加して光透過率をほぼゼロにし、被写界の配
光分布を調節する。こうすることにより、領域Lの通過
光量<領域Cの通過光量<領域Rの通過光量となる。
By the way, a well-known PL as a light quantity control element
When ZT is used, the PLZT bulk is sandwiched by transparent counter electrodes, and a polarizing plate is placed on one of the electrodes and an analyzer plate is placed on the other electrode so that the polarizing axes of the polarizing plate and the analyzer plate coincide with each other. When a predetermined voltage is applied between the opposing electrodes, PLZ
The incident light of T bulk is emitted with its polarization axis rotated by 90 degrees. Therefore, when no voltage is applied, the light transmittance is almost 100%, and when a voltage is applied, the light transmittance is almost zero%. Therefore, in the case of FIG. 8, for example, the light amount control element is also divided into three regions corresponding to the three divisions defined by the dotted line, and the amount of light reflected from the subject existing in the three regions is measured to obtain a predetermined photometric value. When the value becomes a value, a voltage is applied to the PLZT bulk in the region to make the light transmittance almost zero, and the light distribution of the object field is adjusted. By doing so, the amount of light passing through the region L <the amount of light passing through the region C <the amount of light passing through the region R.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、PLZ
Tバルクの印加電圧は、カメラの電源として通常使用さ
れる数ボルト〜十数ボルトよりも高い電圧(数十ボルト
〜数百ボルト)が要求される。そのため、閃光装置と同
様に昇圧回路が不可欠であり、従来の閃光装置の回路構
成よりも複雑になる傾向がある。
However, the PLZ
The voltage applied to the T-bulk is required to be a voltage (several tens to several hundreds of volts) higher than several volts to several tens of volts which is usually used as a power source for a camera. Therefore, the booster circuit is indispensable like the flash device, and tends to be more complicated than the circuit configuration of the conventional flash device.

【0006】本発明の目的は、電気回路の構成をそれほ
ど複雑にせずに投射光量を被写界の複数の領域ごとに調
節できる閃光照明装置を提供することにある。
An object of the present invention is to provide a flashlight illuminating device capable of adjusting the amount of projected light for each of a plurality of regions of an object scene without making the structure of an electric circuit so complicated.

【0007】[0007]

【課題を解決するための手段】一実施例を示す図1に対
応づけて本発明を説明すると、本発明は、低電圧を発生
する低電圧電源11と、この低電圧電源11から印加さ
れる低電圧を高電圧に昇圧する昇圧回路12と、この昇
圧回路12で発生された電気エネルギを蓄積する第1の
電荷蓄積回路13と、この第1の電荷蓄積回路13に蓄
積された電気エネルギにより発光する発光部14とを備
えた閃光照明装置に適用される。 そして、昇圧回路1
2で発生された電気エネルギを蓄積する第2の電荷蓄積
回路15と、発光部14から外方に投射される閃光の通
過光路中に配設され、第2の電荷蓄積回路15から印加
される高電圧に応じてその通過光量を調節する光量調節
手段16とを備えることにより、上述の目的を達成す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described with reference to FIG. 1 showing an embodiment. In the present invention, a low voltage power source 11 for generating a low voltage and a low voltage power source 11 for applying the voltage are applied. A booster circuit 12 that boosts a low voltage to a high voltage, a first charge storage circuit 13 that stores the electrical energy generated by the booster circuit 12, and an electrical energy stored in the first charge storage circuit 13 The present invention is applied to a flash lighting device including a light emitting unit 14 that emits light. And the booster circuit 1
The second charge storage circuit 15 that stores the electric energy generated in 2 and the second charge storage circuit 15 that is arranged in the passage optical path of the flash light projected outward from the light emitting unit 14 and is applied from the second charge storage circuit 15. The above-described object is achieved by including the light amount adjusting means 16 that adjusts the passing light amount according to a high voltage.

【0008】[0008]

【作用】昇圧回路12から出力される高電圧により、発
光部14の発光エネルギを蓄積する第1の電荷蓄積回路
13と、光量制御素子16の光透過率を制御するための
電気エネルギを蓄積する第2の電荷蓄積回路15とがそ
れぞれ充電される。したがって、昇圧回路12が供用で
きる。
The high voltage output from the booster circuit 12 accumulates electric energy for controlling the light transmittance of the first charge accumulation circuit 13 for accumulating the emission energy of the light emitting section 14 and the light quantity control element 16. The second charge storage circuit 15 is charged respectively. Therefore, the booster circuit 12 can be used.

【0009】なお、本発明の構成を説明する上記課題を
解決するための手段と作用の項では、本発明を分かり易
くするために実施例の図を用いたが、これにより本発明
が実施例に限定されるものではない。
Incidentally, in the section of means and action for solving the above problems for explaining the constitution of the present invention, the drawings of the embodiments are used for making the present invention easy to understand. It is not limited to.

【0010】[0010]

【実施例】図1〜図7に基づいて本発明の一実施例を説
明する。図1は閃光照明装置を備えたカメラの制御ブロ
ック図を示し、10は閃光照明装置、30はこの閃光照
明装置が搭載もしくは接続されるカメラである。閃光照
明装置10は、低電圧を発生する低電圧電源11と、こ
の低電圧電源11から印加される低電圧を高電圧に昇圧
する昇圧回路12と、この昇圧回路12で発生された電
気エネルギを蓄積する第1の電荷蓄積回路13と、この
第1の電荷蓄積回路13に蓄積された電気エネルギによ
り発光する発光部14とを備える。また、昇圧回路12
で発生された電気エネルギを蓄積する第2の電荷蓄積回
路15と、発光部14から外方に投射される閃光の通過
光路中に配設され、第2の電荷蓄積回路15から印加さ
れる高電圧に応じてその通過光量を調節する配光分布制
御素子16と、配光分布制御素子16の通過制御回路1
7と、発光部14の閃光制御回路18と、被写体からの
反射光を受光して測光する測光回路19とを備える。閃
光制御回路18はカメラ側のCPU31からの閃光開始
指令を受けて発光部14を発光させる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a control block diagram of a camera equipped with a flash lighting device, 10 is a flash lighting device, and 30 is a camera on which the flash lighting device is mounted or connected. The flash lighting device 10 includes a low-voltage power supply 11 that generates a low voltage, a booster circuit 12 that boosts a low voltage applied from the low-voltage power supply 11 to a high voltage, and an electric energy generated by the booster circuit 12. A first charge storage circuit 13 that stores the light and a light emitting unit 14 that emits light by the electric energy stored in the first charge storage circuit 13 are provided. In addition, the booster circuit 12
The second charge storage circuit 15 for storing the electric energy generated in step S1, and the high charge applied from the second charge storage circuit 15 are arranged in the passage optical path of the flash light projected outward from the light emitting section 14. A light distribution control element 16 for adjusting the amount of light passing therethrough according to a voltage, and a passage control circuit 1 for the light distribution control element 16.
7, a flash control circuit 18 of the light emitting unit 14, and a photometric circuit 19 for receiving and measuring the reflected light from the subject. The flash control circuit 18 causes the light emitting unit 14 to emit light in response to a flash start command from the CPU 31 on the camera side.

【0011】図2は図1の各構成要素の詳細を示すもの
で、低電圧電源11はバッテリなどの直流電源で構成さ
れ、閃光照明装置10のスイッチ10Sを閉じると昇圧
回路12などに給電するように構成されている。昇圧回
路12は周知のとおり、トランジスタ12aと、抵抗1
2bと、コンデンサ12cと、発振トランス12dなど
とからなり、バッテリ11の低電圧を数十ボルト〜数百
ボルトに昇圧して出力する。第1の電荷蓄積回路13
は、昇圧回路12で昇圧された高電圧を整流するダイオ
ード13aと、整流された高電圧を充電する第1のコン
デンサ13bと、第1のコンデンサ13bの充電電位が
所定値以上になると点灯するネオン管13cとから構成
される。第2の電荷蓄積回路15は、第1の電荷蓄積回
路13と並列に設けられ、昇圧回路12で昇圧された高
電圧を整流するダイオード15aと、整流された高電圧
を充電する第2のコンデンサ15bとからなる。
FIG. 2 shows the details of each component of FIG. 1. The low-voltage power supply 11 is composed of a DC power supply such as a battery, and when the switch 10S of the flash lighting device 10 is closed, power is supplied to the booster circuit 12 and the like. Is configured. As is well known, the booster circuit 12 includes a transistor 12a and a resistor 1
2b, a capacitor 12c, an oscillating transformer 12d, etc., and boosts the low voltage of the battery 11 to several tens to several hundreds of volts and outputs it. First charge storage circuit 13
Is a diode 13a that rectifies the high voltage boosted by the booster circuit 12, a first capacitor 13b that charges the rectified high voltage, and a neon light that lights up when the charging potential of the first capacitor 13b becomes a predetermined value or more. It is composed of a tube 13c. The second charge storage circuit 15 is provided in parallel with the first charge storage circuit 13, and has a diode 15a that rectifies the high voltage boosted by the booster circuit 12 and a second capacitor that charges the rectified high voltage. 15b and.

【0012】閃光制御回路18は周知のとおり、抵抗1
8aと、トリガコンデンサ18bと、トリガトランス1
8cと、カメラ側からの発光開始信号により閉成される
トリガスイッチ18dとからなり、トリガスイッチ18
dが閉じるとトリガコンデンサ18bが放電してトリガ
トランス18cの2次側に高電圧が発生し、発光部14
の閃光管141をトリガする。
As is well known, the flash control circuit 18 has a resistor 1
8a, trigger capacitor 18b, and trigger transformer 1
8c and a trigger switch 18d that is closed by a light emission start signal from the camera side.
When d is closed, the trigger capacitor 18b is discharged and a high voltage is generated on the secondary side of the trigger transformer 18c.
The flash tube 141 of is triggered.

【0013】図3は閃光照明装置10の発光部14の内
部を示す詳細図である。この発光部14は、閃光管14
1と、反射笠142と、配光レンズ143とを有し、反
射笠142で反射して外方に投射される閃光の光路中に
配光分布制御素子16が設けられている。また、発光部
14には、後述するように9分割された測光素子191
と、この測光素子191に被写体反射光を入射させるレ
ンズ192が設けられている。
FIG. 3 is a detailed view showing the inside of the light emitting portion 14 of the flash lighting device 10. The light emitting unit 14 is a flash tube 14
1, the reflection shade 142, and the light distribution lens 143, and the light distribution control device 16 is provided in the optical path of the flash light reflected by the reflection shade 142 and projected to the outside. In addition, the light emitting unit 14 has a photometric element 191 divided into nine as described later.
Further, a lens 192 for making the reflected light of the subject incident on the photometric element 191 is provided.

【0014】配光分布制御素子16は透光性セラミック
(PLZT)や液晶で構成され、本例では図3に示すよ
うに、9分割された被写界の各領域と対応させて配光分
布制御素子16を領域1〜9に9分割している。この領
域1〜9が測光素子191の9分割領域とほぼ対応す
る。各領域1〜9の配光分布制御素子を符号16a〜1
6i、測光素子を符号191a〜191iでで示す。図
4は9つの領域にそれぞれ対応して設けられた透光性セ
ラミックの原理構成を示すものである。PLZTとして
PbLa(ZrTi)O3のバルク161が用いられ、そのバルク1
61の上下両面には透明電極162,163が設けら
れ、それら透明電極162,163とそれぞれ対向して
偏光板164と検光板165とが設けられている。図4
(a)に示すように、偏光板164と検光板165の各
偏光軸PD1は一致されている。
The light distribution control element 16 is made of translucent ceramic (PLZT) or liquid crystal, and in this example, as shown in FIG. 3, the light distribution distribution is made to correspond to each region of the 9-divided field. The control element 16 is divided into 9 areas 1. The areas 1 to 9 substantially correspond to the nine divided areas of the photometric element 191. Reference numerals 16a to 1 denote the light distribution control elements of the respective regions 1 to 9.
6i, the photometric elements are denoted by reference numerals 191a to 191i. FIG. 4 shows the principle structure of a translucent ceramic provided corresponding to each of the nine regions. As PLZT
A bulk 161 of PbLa (ZrTi) O 3 is used, and the bulk 1
Transparent electrodes 162 and 163 are provided on both upper and lower surfaces of 61, and a polarizing plate 164 and an analysis plate 165 are provided to face the transparent electrodes 162 and 163, respectively. Figure 4
As shown in (a), the polarization axes PD1 of the polarizing plate 164 and the analysis plate 165 are aligned.

【0015】図1において、配光分布制御素子16の光
透過率は通過制御回路17で制御される。この通過制御
回路17は図4に示すように定電圧回路171とスイッ
チ172とからなり、透明電極162,163間に定電
圧回路171とスイッチ172を直列に設け、各領域ご
との測光結果が所定値に達するとスイッチ172を閉
じ、PLZT161に定電圧を印加する。PLZT16
1に高電圧を印加するとその屈折率が変化し、これによ
って入射光の光学的位相差が変化して出力光が偏光す
る。したがって、スイッチ172が閉じてPLZT16
1に一定電圧が印加されたとき、偏光軸がpd1である
PLZT161の入射光を図4(b)に示す方向pd2
に偏光させて射出すれば、検光板165の偏光方向とP
LZT161の射出光の偏光方向とが90度ずれるの
で、光透過率がほぼゼロになる。PLZT161に電圧
を印加しない場合には、PLZT161の出射光は入射
光に対して光学的位相差は発生しないから、図4(a)
に示すように入射光および出射光の偏光軸はともにpd
1であり、光透過率はほぼ100%となる。また、印加
電圧を調節することにより光透過率を適宜調節できる
が、本実施例においては、所定の電圧を印加するかしな
いか、すなわち、光透過率を100%にするか、ほぼゼ
ロにするかの制御だけを行なう。
In FIG. 1, the light transmittance of the light distribution control element 16 is controlled by the passage control circuit 17. As shown in FIG. 4, the passage control circuit 17 is composed of a constant voltage circuit 171 and a switch 172. The constant voltage circuit 171 and the switch 172 are provided in series between the transparent electrodes 162 and 163 so that the photometry result for each area is predetermined. When the value is reached, the switch 172 is closed and a constant voltage is applied to the PLZT 161. PLZT16
When a high voltage is applied to 1, the refractive index changes, which changes the optical phase difference of the incident light and polarizes the output light. Therefore, switch 172 closes and PLZT16
1 when a constant voltage is applied, the incident light of the PLZT 161 with the polarization axis of pd1 is directed in the direction pd2 shown in FIG.
When the light is polarized and emitted,
Since the polarization direction of the light emitted from the LZT 161 is deviated by 90 degrees, the light transmittance becomes almost zero. When a voltage is not applied to the PLZT 161, the emitted light of the PLZT 161 does not cause an optical phase difference with respect to the incident light, so that FIG.
The polarization axes of the incident light and the emitted light are both pd
The light transmittance is about 100%. Further, the light transmittance can be appropriately adjusted by adjusting the applied voltage, but in the present embodiment, whether or not a predetermined voltage is applied, that is, the light transmittance is set to 100% or substantially zero. Control only that.

【0016】上述したように、定電圧回路171とスイ
ッチ172は通過制御回路17の一部を構成している。
すなわち、図2に示すように、通過制御回路17は、上
述した9つの領域のそれぞれの配光分布制御素子16a
〜16iにそれぞれ対応して設けられた定電圧回路17
1a〜171iと、各定電圧回路171a〜171iに
接続されて、測光回路19の各端子Cからハイレベル信
号が出力されるまでは開放されてPLZTに定電圧を印
加しないようにするとともに、ハイレベル信号が出力さ
れると閉成されて定電圧を印加するサイリスタ172a
〜172iを備える。さらに、通過制御回路17はサイ
リスタ172a〜172iをリセットするスイッチング
回路173を有する。
As described above, the constant voltage circuit 171 and the switch 172 form a part of the passage control circuit 17.
That is, as shown in FIG. 2, the passage control circuit 17 controls the light distribution control elements 16a in each of the above-mentioned nine regions.
16i corresponding to the constant voltage circuit 17 provided
1a to 171i and the constant voltage circuits 171a to 171i, which are open until a high level signal is output from each terminal C of the photometric circuit 19 so that a constant voltage is not applied to the PLZT. A thyristor 172a that is closed when a level signal is output and applies a constant voltage
~ 172i. Further, the passage control circuit 17 has a switching circuit 173 that resets the thyristors 172a to 172i.

【0017】各配光分布制御素子16a〜16iに接続
される定電圧回路171a〜171iはそれぞれたとえ
ば図5に示すように構成される。図5において、抵抗1
71aとツェナダイオード171bとが第2のコンデン
サ15bの両端子間に直列に配設され、ツェナダイオー
ド171bと並列に抵抗171cが接続される。このよ
うな回路構成により、第2のコンデンサ15bの電圧変
動により印加電圧が変動することがなく、安定して光透
過率を調節できる。
The constant voltage circuits 171a to 171i connected to the respective light distribution control elements 16a to 16i are constructed, for example, as shown in FIG. In FIG. 5, the resistor 1
71a and the Zener diode 171b are arranged in series between both terminals of the second capacitor 15b, and the resistor 171c is connected in parallel with the Zener diode 171b. With such a circuit configuration, the applied voltage does not change due to the voltage change of the second capacitor 15b, and the light transmittance can be adjusted stably.

【0018】スイッチ回路173は、図6(a)に示す
ように、サイリスタ172a〜172iのカソードにド
レインが接続され、ソースが抵抗173dを介して接地
ラインに接続された接合型FET173aと、第1のコ
ンデンサ13bの両端子間電圧によってこの接合型FE
T173aのゲート電圧を制御する抵抗173b、17
3cを備える。閃光管141の発光開始時は第1のコン
デンサ13bの両端子間電圧が高いから接合型FET1
73aはオンし、発光が進行して第1のコンデンサ13
bの両端子間電圧が低下する。すると抵抗173cにか
かる電圧も低下し、接合型FET173aのゲートに印
加する電圧がしきい値レベルまで低下すると接合型FE
T173aがオフする。接合型FET173aがオフす
ることにより9つのサイリスタ172a〜172iの全
てがリセットされる。
In the switch circuit 173, as shown in FIG. 6A, the drains are connected to the cathodes of the thyristors 172a to 172i, and the source is connected to the ground line via the resistor 173d, and the first FET 173a. This junction type FE depends on the voltage between both terminals of the capacitor 13b.
Resistors 173b and 17 for controlling the gate voltage of T173a
3c is provided. Since the voltage between both terminals of the first capacitor 13b is high at the start of light emission of the flash tube 141, the junction type FET1
73a is turned on, light emission progresses, and the first capacitor 13
The voltage between both terminals of b decreases. Then, the voltage applied to the resistor 173c also decreases, and when the voltage applied to the gate of the junction FET 173a decreases to the threshold level, the junction FE
T173a turns off. When the junction type FET 173a is turned off, all nine thyristors 172a to 172i are reset.

【0019】また図2において、測光回路19は、図3
に示すように9つの領域に分割された配光分布制御素子
16の各領域と対応する9つのシリコンフォトダイオー
ドのような測光素子191a〜191iと、測光素子1
91a〜191iからの測光信号により各領域に存在す
る被写体の光量が所定値になることを検出する測光回路
193a〜193iとを備える。図7は各測光回路19
3a〜193iの詳細を示し、各測光回路193a〜1
93iは、演算増幅器1931と、ダイオード1932
と、演算増幅器1931の出力でオン・オフが制御され
るトランジスタ1933と、トランジスタ1933が導
通しているときに端子B−A間に流れる低電圧電源11
からの電流を積分するコンデンサ1934と、基準電圧
1935とコンデンサ1934の両端子間電圧とを比較
しコンデンサ両端子間電圧が基準電圧以上になると端子
Cにハイレベル信号を出力する比較器1936とからな
る。
Further, in FIG. 2, the photometric circuit 19 is shown in FIG.
, The nine photometric elements 191a to 191i such as silicon photodiodes corresponding to the respective areas of the light distribution control element 16 divided into nine areas, and the photometric element 1
Photometric circuits 193a to 193i for detecting that the light intensity of the subject existing in each area reaches a predetermined value by the photometric signals from 91a to 191i. FIG. 7 shows each photometric circuit 19
3a to 193i are shown in detail, and the photometric circuits 193a to 1
93i is an operational amplifier 1931 and a diode 1932
And a transistor 1933 whose on / off is controlled by the output of the operational amplifier 1931, and a low-voltage power supply 11 flowing between the terminals B and A when the transistor 1933 is conductive.
From the capacitor 1934 which integrates the current from the comparator 1936 and the comparator 1936 which compares the reference voltage 1935 and the voltage between both terminals of the capacitor 1934 and outputs a high level signal to the terminal C when the voltage between both terminals of the capacitor becomes equal to or higher than the reference voltage. Become.

【0020】このように構成された閃光照明装置の動作
を説明する。説明を簡略化するために図8に示すように
被写界を3分割した場合について説明する。ここで、左
側領域Lに対応する配光分布制御素子を16L、中央領
域Cに対応する配光分布制御素子を16C、右側領域R
に対応する配光分布制御素子を16Rとし、同様に、左
側領域Lに対応する測光素子を191L、中央領域Cに
対応する測光素子を191C、右側領域Rに対応する測
光素子を191Rとする。その他の各部に対してもL,
R,Cを付して説明する。
The operation of the flashlight illuminating device configured as described above will be described. In order to simplify the description, a case where the object scene is divided into three as shown in FIG. 8 will be described. Here, the light distribution control element corresponding to the left side region L is 16L, the light distribution control element corresponding to the central region C is 16C, and the right side region R.
Let 16R be the light distribution control element corresponding to, the photometric element corresponding to the left area L be 191L, the photometric element corresponding to the central area C be 191C, and the photometric element corresponding to the right area R be 191R. For other parts, L,
A description will be given with R and C attached.

【0021】閃光照明装置10のスイッチ10Sを閉じ
ると低電圧電源11の低電圧は昇圧回路12に供給さ
れ、たとえば100ボルト程度の高電圧に昇圧される。
この昇圧回路12からの高電圧はダイオード13aで整
流されて第1のコンデンサ13bを充電するとともに、
ダイオード15aで整流されて第2のコンデンサ15b
を充電する。第1のコンデンサ13bがフル充電される
とネオン管13cが点灯する。このとき、閃光制御回路
18のトリガスイッチ18dが開いていて閃光管141
がトリガされていないから、閃光管141は発光しな
い。一方、第2のコンデンサ15bもフル充電される
が、測光回路193L〜193Rの各出力端子Cはロー
レベルであり、サイリスタ172L〜172Rは閉じて
いるので、各PLZT161には電圧が印加されず、配
光分布制御素子16L〜16Rに入射する光はそのまま
射出可能な状態である。
When the switch 10S of the flash lighting device 10 is closed, the low voltage of the low voltage power source 11 is supplied to the booster circuit 12 and boosted to a high voltage of, for example, about 100 volts.
The high voltage from the booster circuit 12 is rectified by the diode 13a to charge the first capacitor 13b, and
The second capacitor 15b is rectified by the diode 15a.
To charge. When the first capacitor 13b is fully charged, the neon tube 13c lights up. At this time, the trigger switch 18d of the flash control circuit 18 is open and the flash tube 141
Is not triggered, the flash tube 141 does not emit light. On the other hand, although the second capacitor 15b is also fully charged, the output terminals C of the photometric circuits 193L to 193R are at a low level and the thyristors 172L to 172R are closed, so that no voltage is applied to each PLZT 161. The light incident on the light distribution control elements 16L to 16R is ready to be emitted.

【0022】ここで、レリーズ釦操作により撮影が開始
されてカメラ30のCPU31から閃光開始信号が出力
されると、閃光制御回路18のスイッチ18dが閉じ、
トリガトランス18cの2次側に高電圧が発生して閃光
管141をトリガする。閃光管141の両端子間には第
1のコンデンサ13bに充電されている電圧が印加され
ているから、このようなトリガにより閃光を開始する。
閃光管141から射出される光は反射笠142で反射さ
れ、配光分布制御素子16L〜16Rを通過して被写体
を照明する。このとき、配光分布制御素子16L〜16
Rの各光透過率は100%である。被写体からの反射光
はレンズ192をとおって測光素子191L,191
C,191Cに入射する。
When shooting is started by operating the release button and a flash light start signal is output from the CPU 31 of the camera 30, the switch 18d of the flash light control circuit 18 is closed,
A high voltage is generated on the secondary side of the trigger transformer 18c to trigger the flash tube 141. Since the voltage charged in the first capacitor 13b is applied between both terminals of the flash tube 141, flashing is started by such a trigger.
The light emitted from the flash tube 141 is reflected by the reflection shade 142, passes through the light distribution control elements 16L to 16R, and illuminates the subject. At this time, the light distribution control elements 16L-16
Each light transmittance of R is 100%. The reflected light from the subject passes through the lens 192 and the photometric elements 191L and 191.
It is incident on C and 191C.

【0023】各測光素子191L〜191Rからの測光
信号により測光回路193L〜193Rのトランジスタ
1933が導通してコンデンサ1934が充電される。
今、領域L,C,Rの各被写体の反射率がほぼ等しいと
すると、最至近領域Lの被写体からの反射光を受光する
測光素子191Lの光電流が最も高く、ついで、測光素
子191Cの光電流、測光素子191Rの光電流の順と
なる。したがって、これに対応する測光回路193Lの
コンデンサ1934の両端子間電圧が最初に基準電源1
935の電圧よりも高くなる。その結果、まず測光回路
193Lの比較器1936が端子Cにハイレベル信号を
出力する。これにより、サイリスタ172Lがターンオ
ンして領域Lに対応するPLZT161に第2のコンデ
ンサ15bの電圧が印加され、配光分布制御素子16L
の光透過率がほぼゼロになり、領域Lへの照明光の照射
が停止される。ついで、領域Cに対応する測光回路19
3Cが所定光量を検出すると配光分布制御素子16Cの
光透過率がゼロとなり、最後に領域Rに対応する測光回
路193Rが所定光量を検出すると配光分布制御素子1
6Rの光透過率がゼロとなる。
The transistors 1933 of the photometric circuits 193L to 193R are turned on by the photometric signals from the photometric elements 191L to 191R to charge the capacitor 1934.
Now, assuming that the reflectances of the subjects in the regions L, C, and R are substantially equal, the photocurrent of the photometric element 191L that receives the reflected light from the subject in the closest region L is the highest, and then the light of the photometric element 191C is the same. The order of the current is the photocurrent of the photometric element 191R. Therefore, the voltage between both terminals of the capacitor 1934 of the photometric circuit 193L corresponding to this is first determined by the reference power source 1
Higher than the voltage at 935. As a result, first, the comparator 1936 of the photometric circuit 193L outputs a high level signal to the terminal C. As a result, the thyristor 172L is turned on, the voltage of the second capacitor 15b is applied to the PLZT 161 corresponding to the region L, and the light distribution control element 16L.
The light transmittance of is almost zero, and the irradiation of the illumination light to the region L is stopped. Next, the photometric circuit 19 corresponding to the area C
When 3C detects the predetermined light amount, the light transmittance of the light distribution control element 16C becomes zero, and finally when the photometric circuit 193R corresponding to the region R detects the predetermined light amount, the light distribution control element 1
The light transmittance of 6R becomes zero.

【0024】その後、第1のコンデンサ13bの電荷が
所定値以下となって閃光管141の発光が停止される。
また、第1のコンデンサ13bの両端子間電圧が所定値
以下になると、スイッチング回路173の接合型FET
173aがオフし、サイリスタ172L〜172Rがタ
ーンオフされる。
After that, the charge of the first capacitor 13b becomes less than a predetermined value and the light emission of the flash tube 141 is stopped.
Further, when the voltage between both terminals of the first capacitor 13b becomes equal to or lower than a predetermined value, the junction FET of the switching circuit 173 is connected.
173a is turned off, and thyristors 172L to 172R are turned off.

【0025】このような実施例によれば、PLZT16
1に印加する電気エネルギを蓄積する第2のコンデンサ
15bは閃光用の第1のコンデンサ13bと同様に昇圧
回路12により充電されるから、専用の昇圧回路などを
設ける必要がなく、回路構成を簡素化できる。
According to such an embodiment, the PLZT16
The second capacitor 15b for accumulating the electric energy applied to 1 is charged by the booster circuit 12 like the first capacitor 13b for flash light, so that it is not necessary to provide a dedicated booster circuit or the like, and the circuit configuration is simplified. Can be converted.

【0026】図6(b)のようなスイッチング回路27
3によりサイリスタ172a〜172iをリセットする
ようにしてもよい。図6(b)において、各サイリスタ
のカソードと接地ライン間にトランジスタ273aを設
け、このトランジスタ273aをT型フリップフロップ
274bでオン・オフする。T型フリップフロップ27
3bにはオアゲート273cの出力が接続され、そのオ
アゲート273cには先幕が走行を開始するとオンする
スイッチからのパルス信号と、後幕が走行を終了すると
オンするスイッチからのパルス信号とがそれぞれ接続さ
れている。
A switching circuit 27 as shown in FIG.
Alternatively, the thyristors 172a to 172i may be reset according to the step 3. In FIG. 6B, a transistor 273a is provided between the cathode of each thyristor and the ground line, and this transistor 273a is turned on / off by a T-type flip-flop 274b. T-type flip-flop 27
An output of an OR gate 273c is connected to 3b, and a pulse signal from a switch that is turned on when the front curtain starts traveling and a pulse signal from a switch that is turned on when the rear curtain finishes traveling are connected to the OR gate 273c, respectively. Has been done.

【0027】このようなスイッチング回路273では、
先幕走行開始時のパルスによりT型フリップフロップ2
73bの出力が0から1に変化してトランジスタ273
aがオンし、後幕走行終了時のパルスによりT型フリッ
プフロップ273bの出力が1から0に変化してトラン
ジスタ273aをオフする。こうして、閃光撮影が終了
したらサイリスタ172a〜172iをリセットするこ
ともできる。
In such a switching circuit 273,
T-type flip-flop 2 by the pulse when the first curtain starts
The output of 73b changes from 0 to 1 and transistor 273
a is turned on, and the output of the T-type flip-flop 273b is changed from 1 to 0 by the pulse at the end of the trailing curtain, and the transistor 273a is turned off. In this way, the thyristors 172a to 172i can be reset when the flash photography is completed.

【0028】以上では、被写界を9分割するとともに、
調光領域もそれに応じて9分割するようにしたが、9分
割以下あるいは以上に分割してもよい。また以上では、
被写体からの反射光量を測光し、その値が所定値以上に
なったときに配光分布制御素子の光透過率をほぼ100
%からほぼゼロ%にするようにしたが、各被写体までの
距離を予め求め、近い被写体ほど光透過率を低くするよ
うに発光開始前に制御するものにも本発明を適用でき
る。同様に、距離によらず、撮影に先立って予めプリ発
光して各領域の反射光量を計測し、この結果により各領
域の光透過率を予め設定するようにしたものにも適用で
きる。
In the above, the field is divided into 9
Although the dimming area is also divided into nine parts in accordance therewith, it may be divided into nine parts or less. Again,
The amount of light reflected from the subject is measured, and when the value exceeds a predetermined value, the light transmittance of the light distribution control element is almost 100.
However, the present invention can also be applied to a device in which the distance to each subject is obtained in advance and the light transmittance is controlled to be lower for closer subjects before the start of light emission. Similarly, the present invention can also be applied to those in which pre-emission is performed in advance of photographing regardless of the distance and the amount of reflected light in each area is measured, and the light transmittance of each area is preset based on the result.

【0029】さらに、PLZTに代えてKH2PO4,NH4H2PO
4,Bi12SiO20のようなバルク型電気光学変調素子を使用
してもよい。さらには、PLZTのように光の進行方向
と同一方向に電圧を印加するのではなく直交する方向に
電圧を印加するバルク型電気光学変調素子を使用するこ
ともできる。その代表的な材料として、LiNBO3,LiTa
O3,BaNaNa5O15,SrXBa1-XNb2O6,PbOXNbO3など(xは任意
数)が挙げられる。この場合、透明電極は不要である。
Furthermore, instead of PLZT, KH 2 PO 4 , NH 4 H 2 PO
Bulk electro-optic modulators such as 4 , Bi 12 SiO 20 may be used. Further, a bulk type electro-optical modulator, such as PLZT, which applies a voltage in a direction orthogonal to the light traveling direction instead of applying a voltage can also be used. LiNBO 3 and LiTa are typical materials.
O 3, BaNaNa 5 O 15, Sr X Ba 1-X Nb 2 O 6, PbO X NbO 3 , etc. (x is an arbitrary number) and the like. In this case, the transparent electrode is unnecessary.

【0030】また以上では、反射笠で反射した光束を配
光分布制御素子で各領域ごとに光量を制御するようにし
たが、反射笠の反射面を上記と同様に複数の領域に区画
し、各区画領域の反射率をそれぞれ可変制御するように
してもよい。この場合、反射面にECD(エレクトロク
ロミックデバイス)などの素子を用いれば反射率の制御
が可能である。
In the above, the luminous flux reflected by the reflection shade is controlled by the light distribution control element for each area, but the reflection surface of the reflection shade is divided into a plurality of areas in the same manner as described above. The reflectance of each partitioned area may be variably controlled. In this case, the reflectance can be controlled by using an element such as an ECD (electrochromic device) on the reflecting surface.

【0031】[0031]

【発明の効果】以上詳細に説明したように本発明によれ
ば、光量制御素子に印加する電気エネルギを蓄積する第
2の電荷蓄積回路を閃光管発光用の第1の電荷蓄積回路
と並列に設け、この第2の電荷蓄積回路を第1の電荷蓄
積回路と同じ昇圧回路で充電するようにしたので、電気
回路の構成が複雑にならず、しかもコンパクトにかつ低
コストにできる。
As described in detail above, according to the present invention, the second charge storage circuit for storing the electric energy applied to the light quantity control element is arranged in parallel with the first charge storage circuit for flash tube light emission. Since the second charge storage circuit is provided and charged by the same booster circuit as the first charge storage circuit, the structure of the electric circuit is not complicated, and the size and cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】全体構成を示すブロック図FIG. 1 is a block diagram showing the overall configuration.

【図2】図1の詳細を示す回路図FIG. 2 is a circuit diagram showing details of FIG.

【図3】発光部の内部を切断して示す図FIG. 3 is a view showing the inside of a light emitting part by cutting.

【図4】配光分布制御素子を構成する透光性セラミック
の原理を示す斜視図
FIG. 4 is a perspective view showing the principle of a translucent ceramic forming a light distribution control element.

【図5】透光性セラミックに接続される定電圧回路を示
す図
FIG. 5 is a diagram showing a constant voltage circuit connected to a translucent ceramic.

【図6】サイリスタをリセットするスイッチング回路を
示す図
FIG. 6 is a diagram showing a switching circuit for resetting a thyristor.

【図7】測光回路の詳細を示す図FIG. 7 is a diagram showing details of a photometric circuit.

【図8】被写界を3分割して示す図FIG. 8 is a diagram showing a scene divided into three parts.

【符号の説明】[Explanation of symbols]

10 閃光照明装置 11 低電圧
電源 12 昇圧回路 13 第1の
電荷蓄積回路 13b 第1のコンデンサ 14 発光
部 15 第2の電荷蓄積回路 15b 第2
のコンデンサ 16,16a〜16i 配光分布制御素子 17 通過制御回路 18 閃光制
御回路 19 測光回路 161 PL
ZT 162,163 透明電極 164 偏
光板 165 検光板 171a〜
171i 定電圧回路 191a〜191i 測光素子 193a〜
193i 測光回路
10 Flash Lighting Device 11 Low Voltage Power Supply 12 Booster Circuit 13 First Charge Storage Circuit 13b First Capacitor 14 Light Emitting Section 15 Second Charge Storage Circuit 15b Second
Condensers 16, 16a to 16i Light distribution control element 17 Pass control circuit 18 Flash control circuit 19 Photometric circuit 161 PL
ZT 162,163 Transparent electrode 164 Polarizing plate 165 Analyzing plate 171a-
171i constant voltage circuit 191a to 191i photometric element 193a to
193i photometric circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 低電圧を発生する低電圧電源と、 この低電圧電源から印加される低電圧を高電圧に昇圧す
る昇圧回路と、 この昇圧回路で発生された電気エネルギを蓄積する第1
の電荷蓄積手段と、 この第1の電荷蓄積手段に蓄積された電気エネルギによ
り発光する発光部とを備えた閃光照明装置において、 前記昇圧回路で発生された電気エネルギを蓄積する第2
の電荷蓄積手段と、 前記発光部から外方に投射される閃光の通過光路中に配
設され、前記第2の電荷蓄積手段から印加される高電圧
に応じてその通過光量を調節する光量調節手段とを備え
ることを特徴とする閃光照明装置。
1. A low-voltage power supply that generates a low voltage, a booster circuit that boosts a low voltage applied from the low-voltage power supply to a high voltage, and a first energy-storing electric energy generated by the booster circuit.
A charge accumulating means and a light emitting section which emits light by the electric energy accumulated in the first charge accumulating means, wherein the electric energy generated by the booster circuit is accumulated
Of the electric charge accumulating means and the light quantity adjusting means arranged in the passage optical path of the flash light projected outward from the light emitting portion and adjusting the quantity of the passing light according to the high voltage applied from the second electric charge accumulating means. And a flash illumination device.
JP4014296A 1992-01-29 1992-01-29 Flash illumination device Pending JPH05204022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4014296A JPH05204022A (en) 1992-01-29 1992-01-29 Flash illumination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4014296A JPH05204022A (en) 1992-01-29 1992-01-29 Flash illumination device

Publications (1)

Publication Number Publication Date
JPH05204022A true JPH05204022A (en) 1993-08-13

Family

ID=11857136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4014296A Pending JPH05204022A (en) 1992-01-29 1992-01-29 Flash illumination device

Country Status (1)

Country Link
JP (1) JPH05204022A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010004489A (en) * 2008-06-23 2010-01-07 Canon Inc Imaging apparatus and control method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010004489A (en) * 2008-06-23 2010-01-07 Canon Inc Imaging apparatus and control method thereof

Similar Documents

Publication Publication Date Title
US5909245A (en) Fill-in light emitting apparatus and still video camera
CN100517045C (en) Image capture apparatus and control method thereof
US4618235A (en) Focus detecting device for a camera
US5408341A (en) Method and apparatus for recording optical information in a photoelectric transducer controlled by a sensed condition thereof
US4717861A (en) Electronic flash device
US6349175B1 (en) Flash photography system
US5614970A (en) Flash lighting apparatus and a camera equipped with the flash lighting apparatus
US6498900B1 (en) Automatic focusing apparatus
JPH05204022A (en) Flash illumination device
US4325621A (en) Electronic flash device
US4527880A (en) Flash device and/or photographic apparatus usable with the same
US5424797A (en) Flash lighting apparatus
US4162426A (en) Zone responsive, light-sensing circuit for controlling flash photographing
US6717565B1 (en) Illuminating apparatus for a liquid crystal monitor and a digital camera having a liquid crystal monitor utilizing an illuminating apparatus thereof
JP2000267151A (en) Camera
JPS62188918A (en) Electric charge storage type photoelectric transducer element
JPS59140429A (en) Camera used together with flash light emitting device
US5809350A (en) Flash device having flat emission mode
JPH0961910A (en) Camera system and stroboscopic device
JPH10177854A (en) Flashing device and flash photographic device
JP3658054B2 (en) Flash photography device
JP2000075370A (en) Stroboscope camera system
JPH0915490A (en) Automatic focusing device and camera
EP0632346B1 (en) Method and apparatus for recording information
JPS6173133A (en) Image pickup device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090817

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090817

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20110817

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20110817

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20120817

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20120817

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20120817

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20130817

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250