JPS59140429A - Camera used together with flash light emitting device - Google Patents

Camera used together with flash light emitting device

Info

Publication number
JPS59140429A
JPS59140429A JP1568083A JP1568083A JPS59140429A JP S59140429 A JPS59140429 A JP S59140429A JP 1568083 A JP1568083 A JP 1568083A JP 1568083 A JP1568083 A JP 1568083A JP S59140429 A JPS59140429 A JP S59140429A
Authority
JP
Japan
Prior art keywords
photodetector
light
potential
output
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1568083A
Other languages
Japanese (ja)
Other versions
JPH0715546B2 (en
Inventor
Tadashi Okino
沖野 正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP58015680A priority Critical patent/JPH0715546B2/en
Publication of JPS59140429A publication Critical patent/JPS59140429A/en
Publication of JPH0715546B2 publication Critical patent/JPH0715546B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B7/00Control of exposure by setting shutters, diaphragms or filters, separately or conjointly
    • G03B7/08Control effected solely on the basis of the response, to the intensity of the light received by the camera, of a built-in light-sensitive device
    • G03B7/099Arrangement of photoelectric elements in or on the camera

Abstract

PURPOSE:To simplify the constitution of a system, and also to raise the accuracy of a dimming control by combining a photodetector for an automatic focusing and a photodetector for a dimming control. CONSTITUTION:When a photodetecting operating circuit 3 is used for an automatic focusing, a difference of output voltages of differential amplifiers 113, 114, namely, a difference of infrared light quantities which are made incident to a photodetector 103 and 110 is detected by an output of a differential amplifier 115, and a focusing operation is executed by a driving means 4. In a flash photographing state, the potential of gates 102, 104, 109 and 111 becomes a high level, the photodetector 103 and 110, and potential wells 101, 105 and 108, 112 are reduced to a non-conducting state, also the potential of a gate 106 becomes a low level, and the photodetector 103 and 110, and a potential well 107 are reduced to a conducting state. Accordingly, a reflected light by an object to be photographed of a flash light emission is made incident to the photodetectors 103, 110, photoelectrically converted, added and accumulated to the potential well 107 as a charge, and when it exceeds voltage ER of a reference voltage source 118, an output of a comparator 117 is varied to a high level, a light quantity controlling circuit is operated through a terminal 119 and the light emission is stopped instantaneously.

Description

【発明の詳細な説明】 く技術分野〉 本発明は閃光発光装置と共に使用されるカメラに関し、
特に調光可能な閃光発光装置と共に使用され、自動焦点
調節装置を備えたカメラに関する。
[Detailed Description of the Invention] Technical Field> The present invention relates to a camera used with a flash light emitting device,
In particular, it relates to a camera for use with a dimmable flashlight device and equipped with an automatic focusing device.

〈従来技術の説明〉 近年、自動焦点調節装置を備えたカメラが開発、販売さ
れている。かかる調節装置にはカメラ側から光を被写体
に投影してその反射光を受光して測距を行うアクティブ
方式と、被写体がらの光を受けて測距するパッシブ方式
とがある。
<Description of Prior Art> In recent years, cameras equipped with automatic focus adjustment devices have been developed and sold. Such adjustment devices include an active type that measures distance by projecting light onto a subject from the camera side and receives the reflected light, and a passive type that measures distance by receiving light from the subject.

いずれも受光装置が必要となる。Both require a light receiving device.

父、現在では調光式の閃光発光装置が主流であり、発光
装置からの光の被写体からの反射を検出して、発光を停
止せしめている。
Nowadays, dimmable flash devices are the mainstream, and they stop emitting light by detecting the reflection of light from the subject.

このように閃光発光装置にも受光装置が必要る場合、各
々独立に受光装置を設けなくてはならなかった。
In this way, when a light receiving device is also required for a flashlight emitting device, a light receiving device must be provided for each device independently.

〈発明の目的〉 本発明は上述の如き欠点に鑑み、カメラ撮影時に焦点調
節と閃光発光が同時に行なわれないことに着目し、閃光
発光装置の調光用受光素子と、自動焦点調節装置の受光
素子を兼用すると共に、正確な調光制御を行いうるカメ
ラを提供することを目的としている。
<Object of the Invention> In view of the above-mentioned drawbacks, the present invention focuses on the fact that focus adjustment and flashlight emission are not performed at the same time during camera photography. It is an object of the present invention to provide a camera that can use a dual-purpose element and perform accurate light control.

尚、かかるカメ2は閃光発光装置と一体に構成されてい
ても、夫々別々に構成されても構わない。
Incidentally, the camera 2 may be configured integrally with the flashlight emitting device, or may be configured separately.

〈実施例の説明〉 第1図は自動焦点調節の為の制御ブロック図である。図
において、1は赤外光発光素子、2はカメラの結像面6
への被写体光9結像光学系、3は受光演算回路、4は焦
点調節用レンズ位置駆動手段である。
<Description of Embodiments> FIG. 1 is a control block diagram for automatic focus adjustment. In the figure, 1 is an infrared light emitting element, and 2 is an imaging plane 6 of the camera.
9 is an imaging optical system for subject light, 3 is a light receiving calculation circuit, and 4 is a focusing lens position driving means.

赤外光発光素子1から発せられた赤外光は光学系2を介
して被写体に投影され、被写体からの反射光は再び光学
系を介して受光演算回路3で受け、焦点状態検出信号を
得て、駆動手段4を駆動して焦点調節を行う。レンズ位
置検出用ポテンシオメータはレンズ位置、即ち測距され
た距離に基づいたデータに応じた電圧を出方する。
The infrared light emitted from the infrared light emitting element 1 is projected onto the subject via the optical system 2, and the reflected light from the subject is received by the light receiving calculation circuit 3 via the optical system again to obtain a focus state detection signal. Then, the driving means 4 is driven to perform focus adjustment. The lens position detection potentiometer outputs a voltage according to data based on the lens position, that is, the measured distance.

尚、被写体からの反射赤外光の受光感度を高める為に受
光素子の前には照射赤外光付近の光のみを通す光学フィ
ルタが配置された方が望ましい。
Note that in order to increase the sensitivity of receiving reflected infrared light from the subject, it is desirable to place an optical filter in front of the light receiving element that passes only light near the irradiated infrared light.

第2図は第1図の受光演算回路3の詳細図である。FIG. 2 is a detailed diagram of the light reception calculation circuit 3 of FIG. 1.

受光素子103および110はゲート102,104お
ヨヒクー ) 109,111を介してポテンシャルの
井戸101 、105および108,112に接続され
ると共にゲート106を介してポテンシャル井戸107
に接続される。ボテンシャルの井戸101および105
け差動増幅器1130反転および非反転入力に接続され
る。またポテンシャルの井戸108および112は差動
増幅器114の反転および非反転入力に接続される。差
動増幅器115の非反転入力には差動増幅器113の出
力が、またその反転入力には差動増幅器114の出力が
接続され、その出力は焦点調節駆動手絆接続されこれを
駆動する。ポテンシャルの井戸107はコンパレータ1
17の非反転入力に接続される。コンパレータ117の
反転入力は基準電圧源118に接続され、その出力は端
子119に接続される。
The light receiving elements 103 and 110 are connected to the potential wells 101 , 105 and 108 , 112 through the gates 102 , 104 and 109 , 111 , and to the potential well 107 through the gate 106 .
connected to. Botential wells 101 and 105
is connected to the inverting and non-inverting inputs of differential amplifier 1130. Potential wells 108 and 112 are also connected to the inverting and non-inverting inputs of differential amplifier 114. The output of the differential amplifier 113 is connected to the non-inverting input of the differential amplifier 115, and the output of the differential amplifier 114 is connected to the inverting input of the differential amplifier 115.The output of the differential amplifier 115 is connected to a focusing drive handshaft to drive it. Potential well 107 is comparator 1
17 non-inverting inputs. The inverting input of comparator 117 is connected to reference voltage source 118 and its output is connected to terminal 119.

受光回路の構成は上に述べたようになっており、以Fに
第3図も参照しながらその作動について説明する。第3
図においてtlで示す測距動作中、赤外光発光素子1は
第3図(a)に示す如く点(ハイレベル)滅(ローレベ
ル)ヲ< ?かえす。またグー) 102,109の電
極A、Bの電位は第3図(b)に示す如く赤外光発光素
子と同相でハイレベル、ローレベルを<bかえし、グー
) 104゜111の電極A′、B′の電位は第3図(
c)に示す如く赤外光発光素子と逆相でハイレベル、ロ
ーレベルをくりかえす。またゲート1o6の電極Cの電
位はハイレベルになったiまでである。これらゲートに
はその電極がハイレベルにある時に受光素子とポテンシ
ャル井戸の間が非導通状態に、1 ftニー o −L
/ ヘルにある時受光素子とポテンシャル井戸の間が導
通状態になる。すると上に説明した事から赤外光発光素
子1が消灯中ゲート102.109はローレベルとなっ
て受光素子103および110とポテンシャルの井戸1
o1およヒ1o8が導通し外光強度に比例した量の電荷
をポテンシャル井戸にたくゎえ、その結果ボテ/クヤル
井戸にはその電荷に比例した螺圧が発生する。
The configuration of the light receiving circuit is as described above, and its operation will be explained below with reference to FIG. Third
During the distance measuring operation indicated by tl in the figure, the infrared light emitting element 1 turns off (high level) and off (low level) as shown in FIG. 3(a). Return. Also, the potentials of electrodes A and B at 102 and 109 are in phase with the infrared light emitting element as shown in Fig. 3(b), and the high level and low level are returned to <b. , B' potential is shown in Figure 3 (
As shown in c), the high level and low level are repeated in opposite phase to the infrared light emitting element. Further, the potential of the electrode C of the gate 1o6 is up to i, which is a high level. For these gates, when the electrode is at a high level, the light receiving element and the potential well are in a non-conducting state, 1 ft knee o -L
/ When in Hell, conduction occurs between the photodetector and the potential well. Then, from the above explanation, while the infrared light emitting element 1 is off, the gates 102 and 109 are at a low level, and the light receiving elements 103 and 110 and the potential well 1 are connected to each other.
O1 and H1O8 are electrically conductive, storing an amount of charge in the potential well in proportion to the intensity of external light, and as a result, a screw pressure proportional to the charge is generated in the both/kuyaru well.

また赤外光発光素子1が点灯中にゲート1o4と111
がローレベルになって受光素子105および110とポ
テンシャル井戸105および112が導通し、同様にし
て〔外光強度十赤外光強度〕に比[2 例した量の電各詳っで電圧を発生する。ゲート106は
常にハイレベルだから受光素子103,110のいずれ
ともポテンシャル井戸107は非導通となり電荷すなわ
ち電圧の発生はない。
Also, while the infrared light emitting element 1 is on, the gates 1o4 and 111
becomes low level, the light receiving elements 105 and 110 and the potential wells 105 and 112 conduct, and in the same way, a voltage is generated with an amount of electricity equal to [2] compared to [the intensity of external light and the intensity of infrared light]. do. Since the gate 106 is always at a high level, the potential well 107 of both the light receiving elements 103 and 110 is non-conductive, and no charge or voltage is generated.

上の説明より差動増幅器113によってポテンシャル井
戸105および101の差成圧をとると出力には受光素
子103に入射する赤外光発光素子1からの赤外光強度
に比例した電圧が発生する。
As explained above, when the differential amplifier 113 takes the differential pressure between the potential wells 105 and 101, a voltage proportional to the intensity of the infrared light from the infrared light emitting element 1 incident on the light receiving element 103 is generated at the output.

同様に差動増幅器114の出力には受光素子110に入
射する赤外光発光素子1からの赤外光強度に比例する電
圧が発生する。差動増幅器115によって差動増幅器1
13,114の出力電圧の差すなわち受光素子103お
よび110に入射する赤外光量の差に比例する電圧がそ
の出力に発生する。
Similarly, a voltage proportional to the intensity of the infrared light from the infrared light emitting element 1 incident on the light receiving element 110 is generated at the output of the differential amplifier 114. Differential amplifier 1 by differential amplifier 115
13 and 114, that is, a voltage proportional to the difference in the amount of infrared light incident on the light receiving elements 103 and 110 is generated at their outputs.

光学系は受光素子105に入射する赤外光の方が受光素
子110に入射する赤外光よりも強い場合すなわち差動
増幅器115の出力が正の場合被写体より近い位置で焦
点が合い、受光素子103゜外光の方が受光素子110
に入射する赤外光よりも弱い場合すなわち差動増幅器1
15の出力が負の場合被写体より遠い位置で焦点が合う
ように構成されている。
When the infrared light incident on the photodetector 105 is stronger than the infrared light incident on the photodetector 110, that is, when the output of the differential amplifier 115 is positive, the optical system focuses at a position closer to the subject, and the photodetector 103° external light is the light receiving element 110
In other words, if it is weaker than the infrared light incident on the differential amplifier 1
When the output of No. 15 is negative, the camera is configured to focus at a position farther from the subject.

差動増幅器115の出力が正のとき焦点調節用駆動手段
4は現在よ抄さらに遠い位置に焦点が合うように駆動さ
れ、差動増幅器115の出力が負の時駆動手段4は現在
よりさらに近い点に焦点が合うように駆動され、差動増
幅器115の出力がゼロの時駆動手段4は現在の焦点位
置を保持。このようにして差動増幅器115の出力によ
って現在の焦点の合い具合を検出し、駆動手段4が焦点
合わせ作動がなされ焦点が合った状態に保持される。
When the output of the differential amplifier 115 is positive, the focusing driving means 4 is driven to focus on a position further away from the current position, and when the output of the differential amplifier 115 is negative, the driving means 4 is driven to focus at a position further away than the current position. The driving means 4 is driven to focus on a point, and when the output of the differential amplifier 115 is zero, the driving means 4 maintains the current focal position. In this way, the current state of focus is detected from the output of the differential amplifier 115, and the driving means 4 is operated to perform focusing, thereby maintaining the focused state.

第2図の作動説明において明らかには示さなかったがゲ
ートがローレベルになり受光素子とポテンシャル井戸が
導通状態になる直前にそれまであったぽ荷がクリアされ
、また導通状態になってからポテンシャルの井戸にだく
わえられる電荷量が定常状態になるまでの時間は点滅周
期に比べて十分短かく、またゲートがハイレベルとなっ
てポテンシャル井戸が孤立状態になった時、その直前ま
でたくわえられた電荷はそのままポテンシャル井戸に保
持される為、ポテンシャル井戸の電位変動はない。
Although it was not clearly shown in the explanation of the operation in Figure 2, just before the gate becomes low level and the light receiving element and the potential well become conductive, the voltage that was there is cleared, and after the gate becomes conductive again, the potential well becomes conductive. The time it takes for the amount of charge stored in the well to reach a steady state is sufficiently short compared to the blinking period, and when the gate becomes high level and the potential well becomes isolated, the amount of charge stored in the well is stored until just before that point. Since the charges are held as they are in the potential well, there is no potential fluctuation in the potential well.

次に第3図の期間t2で示す閃光撮影時の作動について
第4図の閃光発光装置の電気回路図も診照しながら説明
する。
Next, the operation during flash photography shown in period t2 in FIG. 3 will be explained with reference to the electric circuit diagram of the flash light emitting device shown in FIG.

自動焦点による焦点合わせが終り、閃光撮影態勢に入る
時刻T1より第3図(b) 、 tc) 、 (d)に
示す如くゲート102.104.109.111の電位
がハイレベルとなり受光素子103および110とポテ
ンシャルの井戸101,105および108,112は
非導通状態になるとともにゲート106の電位がローレ
ベルとなり、受光素子103と110とポテンシャルの
井戸107が導通状態になる。従ってポテンシャル井戸
107には受光素子103と110の加算電荷が蓄積さ
れる。
At time T1 when autofocusing is completed and the flash photography mode is entered, the potential of the gates 102, 104, 109, 111 becomes high level as shown in FIGS. 110 and the potential wells 101, 105, 108, and 112 become non-conductive, and the potential of the gate 106 becomes low level, and the light receiving elements 103, 110 and the potential well 107 become conductive. Therefore, the added charges of the light receiving elements 103 and 110 are accumulated in the potential well 107.

ここで第4図を用いて閃光発光装置を説明する。第4図
において201は電池でありこれは直流電圧を昇圧する
DC−DCコンバータ202の低圧れ 入力側に接続さる。DC−DCコンバータ202の高△ 圧側出力は整流ダイオード203を介して、抵抗205
とトリガキャパシタ206とトリガトランス207とト
リガサイリスタ208と抵抗209よりな216と副ナ
イリスタ217よりなる公知の光量制御回路220、お
よび主キャパシタ221の並列回路に接続される。閃光
放電管210は整流ダイオード203と主サイリスタ2
16の間に陽極と陰極が接続され、そのトリガ電極はト
リガトランス207の高圧端子に接続される。シンクロ
スイッチ222と抵抗223の直列回路が電池201の
陽極とトリガサイリスタ208のゲートの間に接続され
る。また転流ナイリスタ217のゲートは調光制御端子
Pに接続され、Pは第2図の出力端子119に直結され
る。
Here, the flash light emitting device will be explained using FIG. In FIG. 4, 201 is a battery, which is connected to the low voltage input side of a DC-DC converter 202 that boosts the DC voltage. The high voltage side output of the DC-DC converter 202 is connected to the resistor 205 via the rectifier diode 203.
, a trigger capacitor 206 , a trigger transformer 207 , a trigger thyristor 208 , a resistor 209 216 , and a sub-nyristor 217 , which are connected to a known light amount control circuit 220 and a main capacitor 221 in a parallel circuit. The flash discharge tube 210 has a rectifier diode 203 and a main thyristor 2.
An anode and a cathode are connected between the trigger transformer 207 and the trigger electrode thereof is connected to the high voltage terminal of the trigger transformer 207 . A series circuit of a synchro switch 222 and a resistor 223 is connected between the anode of the battery 201 and the gate of the trigger thyristor 208. Further, the gate of the commutating Nyristor 217 is connected to a dimming control terminal P, which is directly connected to the output terminal 119 in FIG.

以上が第4図の構成であり、次にその作動について説明
する。図に示されていない閃光発光装置用の電源スィッ
チをオンするとDC−DC!コンバータ202が働いて
トリガキャパシタ206、転流キャパシタ213、キャ
パシタ215、主キャパシタ221を図示の極性にほぼ
同じ電圧まで充電値になった後第3図の時刻T2におい
てシンクロスイッチ222をm−オンする。するとシン
クロスイッチ222、抵抗223を介して電池201よ
りトリガサイリスタ208にゲート這流が供給され、ト
リガサイリスタ208がターンオンして公知のトリガ回
路204が作動して閃光放電管210をイオン化して導
通させる。すると主サイリスタ216の陽極が高圧とな
抄、転流キャパシタ213、抵抗214、キャパシタ2
15を介して主サイリスタ216にゲート戒流を流し、
主サイリスタ216がターンオンして閃光発光が開始す
る。
The configuration shown in FIG. 4 has been described above, and its operation will now be explained. When you turn on the power switch for the flashlight emitting device (not shown in the diagram), DC-DC! After the converter 202 operates to charge the trigger capacitor 206, commutating capacitor 213, capacitor 215, and main capacitor 221 to almost the same voltage with the polarity shown, the synchronizer switch 222 is turned on at time T2 in FIG. . Then, a gate current is supplied from the battery 201 to the trigger thyristor 208 via the synchronizer switch 222 and the resistor 223, the trigger thyristor 208 is turned on, and the known trigger circuit 204 is activated to ionize the flash discharge tube 210 and make it conductive. . Then, the anode of the main thyristor 216 becomes high voltage, commutation capacitor 213, resistor 214, capacitor 2
15 to the main thyristor 216,
The main thyristor 216 turns on and flash light emission begins.

閃光発光の被写体による反射光が第2図の受光素子10
3.110に入射して光電変換され電荷としてポテンシ
ャル井戸107に加算蓄積される。
The light reflected by the subject emitting flash light is reflected by the light receiving element 10 in FIG.
3.110, is photoelectrically converted, and is added and accumulated in the potential well 107 as a charge.

時刻T3に基準電圧源118の電圧ffRを越えようと
する。するとその瞬間コンパレータ117の反転入力電
圧[Rよりも非反転入力であるポテンシャル井戸107
の′電圧の方が高くなるだめ第3図(f)ニ示スコンパ
レータ117の出力はローレベルからハイレベルに変化
する。これが端子119を介して副サイリスタ217に
ゲート′亀流を流し、副サイリスタ217をターンオン
させる。すると公知の光量制御回路220が作動して瞬
時のうちに発光は停止する。その後間に示されていない
クリア信号によってポテンシャル井戸107の電荷が第
6図の時刻T4においてクリアされると、第3図(e)
に示す如くポテンシャル井戸107の電圧はゼロとなる
。従って第3図(f)に示す如くコンパレータ117の
出力電圧はハイレベルカラ再107の電荷がクリアされ
時刻T1〜T2の間に外部から入射した閃光発光でない
光の影響を取除いている。
At time T3, the voltage attempts to exceed the voltage ffR of the reference voltage source 118. Then, at that moment, the inverting input voltage of the comparator 117 [R] is higher than the potential well 107 which is the non-inverting input.
3(f), the output of the display comparator 117 changes from low level to high level. This causes a gate current to flow through the terminal 119 to the sub-thyristor 217, turning the sub-thyristor 217 on. Then, a known light amount control circuit 220 is activated and the light emission is stopped instantaneously. After that, when the charge in the potential well 107 is cleared at time T4 in FIG. 6 by a clear signal not shown in between, as shown in FIG.
As shown in , the voltage of the potential well 107 becomes zero. Therefore, as shown in FIG. 3(f), the output voltage of the comparator 117 is set to a high level, and the charge of the color converter 107 is cleared, thereby removing the influence of non-flash light incident from the outside between times T1 and T2.

このように、自動焦点調節の為の複数の受光素子の出力
の和により調光制御を行っているので調光制御の為の感
度が上がり、正確な制御が程正確な調光制御が可能とな
る。
In this way, since dimming control is performed by the sum of the outputs of multiple light receiving elements for automatic focus adjustment, the sensitivity for dimming control increases and accurate control becomes possible. Become.

なお上ですでに説明した如く、受光素子103゜110
の前には赤外光発光素子10発光波長材近の光のみを通
す光学フィルタが置かれている。
Furthermore, as already explained above, the light receiving elements 103°110
An optical filter is placed in front of the infrared light emitting device 10 to pass only light having a wavelength close to the emission wavelength material.

従って閃光発光の調光はこの付近の波長成分のみを用い
て行なわれることになる。しかしながら赤外光発光素子
1より発光される赤外光の波長Fi可視光に非常に近く
、また現在実用化されている調光式閃光装置に用いられ
る反射光受光率からもわかるように上述の光学フィルタ
が存在する事によって調光特性に悪影響を与える事はな
い。
Therefore, the dimming of flash light emission is performed using only wavelength components in this vicinity. However, the wavelength Fi of the infrared light emitted from the infrared light emitting element 1 is very close to visible light, and as can be seen from the reflected light reception rate used in dimmable flash devices currently in practical use, the above-mentioned The presence of the optical filter does not adversely affect the dimming characteristics.

又、本実施例ではアクティブ方式の自動焦点#A節架装
置例に説明したが、複数の受光素子を用いるならばパッ
シブ方式であっても適用可能である。又、受光素子を2
つ使う例を用いたが3個以上であっても適用可能であり
、その際少くとも2つの受光素子の出力の和を用いて副
光制御を行えばよい。
Furthermore, although this embodiment has been described as an example of an active type autofocus #A joint device, a passive type can also be applied if a plurality of light receiving elements are used. Also, the light receiving element is 2
Although an example in which one light receiving element is used is used, it is also possible to use three or more light receiving elements, and in that case, the sub light control may be performed using the sum of the outputs of at least two light receiving elements.

〈効果の説明〉 以上説明したように、本発明に依れば自動焦点調節の為
の受光素子と調光制御の為の受光素、子の兼用が可能と
なり、システムの構成が簡略化されると共に、調光制御
を正確に行うことが可能となる。
<Description of Effects> As explained above, according to the present invention, it is possible to use the light receiving element for automatic focus adjustment as well as the light receiving element for dimming control, which simplifies the system configuration. At the same time, it becomes possible to perform dimming control accurately.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は自動焦点調節装置の一実施例の概略ブロック図
、第2図は第1図の受光演算回路の詳細回路図、第3図
は第2図の各部の動作タイミング図、第4図は本実施例
のカメラと共に使用される閃光発光装置の電気回路図で
ある。 図において 1・・・赤外光発光素子 2・・・結像光学系 3・・・受光演算回路 4・・・焦点調節用レンズ位置駆動手段乞夫9示す。 出願人 キャノン株式会社
Fig. 1 is a schematic block diagram of an embodiment of an automatic focus adjustment device, Fig. 2 is a detailed circuit diagram of the light receiving calculation circuit shown in Fig. 1, Fig. 3 is an operation timing diagram of each part of Fig. 2, and Fig. 4 1 is an electrical circuit diagram of a flashlight emitting device used with the camera of this embodiment. In the figure, 1...infrared light emitting element 2...imaging optical system 3...light receiving calculation circuit 4...focus adjustment lens position driving means 9 are shown. Applicant Canon Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 自動焦点調節の為に外光を受光する。複数の受光素子を
閃光発光装置の調光制御を行う為の受光素子と兼用する
と共に、調光制御を前記複数の受光素子の出力の和を用
いて行うことを特徴とする閃光発光装置と共に使用され
るカメラ。
Receives external light for automatic focus adjustment. Used with a flash light emitting device characterized in that a plurality of light receiving elements are used also as light receiving elements for performing dimming control of the flash light emitting device, and the dimming control is performed using the sum of the outputs of the plurality of light receiving elements. camera.
JP58015680A 1983-02-01 1983-02-01 camera Expired - Lifetime JPH0715546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58015680A JPH0715546B2 (en) 1983-02-01 1983-02-01 camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58015680A JPH0715546B2 (en) 1983-02-01 1983-02-01 camera

Publications (2)

Publication Number Publication Date
JPS59140429A true JPS59140429A (en) 1984-08-11
JPH0715546B2 JPH0715546B2 (en) 1995-02-22

Family

ID=11895461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58015680A Expired - Lifetime JPH0715546B2 (en) 1983-02-01 1983-02-01 camera

Country Status (1)

Country Link
JP (1) JPH0715546B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61261710A (en) * 1985-05-16 1986-11-19 Matsushita Electric Ind Co Ltd Image forming device
EP0481729A2 (en) * 1990-10-16 1992-04-22 Nikon Corporation Exposure calculation device for camera

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56146109A (en) * 1980-04-16 1981-11-13 Olympus Optical Co Ltd Photometric device
JPS57172331A (en) * 1981-04-16 1982-10-23 Canon Inc Exposure confirming system using focusing detector
JPS57172326A (en) * 1981-04-17 1982-10-23 Canon Inc Exposure control system using focusing detecting device
JPS584109A (en) * 1981-06-30 1983-01-11 Canon Inc Defocusing detector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56146109A (en) * 1980-04-16 1981-11-13 Olympus Optical Co Ltd Photometric device
JPS57172331A (en) * 1981-04-16 1982-10-23 Canon Inc Exposure confirming system using focusing detector
JPS57172326A (en) * 1981-04-17 1982-10-23 Canon Inc Exposure control system using focusing detecting device
JPS584109A (en) * 1981-06-30 1983-01-11 Canon Inc Defocusing detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61261710A (en) * 1985-05-16 1986-11-19 Matsushita Electric Ind Co Ltd Image forming device
EP0481729A2 (en) * 1990-10-16 1992-04-22 Nikon Corporation Exposure calculation device for camera

Also Published As

Publication number Publication date
JPH0715546B2 (en) 1995-02-22

Similar Documents

Publication Publication Date Title
US4717861A (en) Electronic flash device
JPH0379684B2 (en)
US6498900B1 (en) Automatic focusing apparatus
JPS59119336A (en) Camera used together with flashing device
EP0036588B1 (en) Photographing apparatus for an endoscope
JPS59140429A (en) Camera used together with flash light emitting device
JPH0253770B2 (en)
JPH0231965B2 (en)
JPH0677098B2 (en) Camera focus detection device using image sensor
JPS59121323A (en) Control device for exposing
JPS62188918A (en) Electric charge storage type photoelectric transducer element
JPH0647000A (en) Photographing apparatus and flash apparatus
US4298261A (en) Camera automatically synchronized with an electronic flash
JPH11237665A (en) Electronic image photographic device
JP3749639B2 (en) Ranging device
JP3015099B2 (en) Distance measuring device
JPS5988721A (en) Range finder of camera
JPH0430007B2 (en)
JP4130726B2 (en) camera
JPH05204022A (en) Flash illumination device
JPS62217176A (en) Active range finding device
JPH0534584A (en) Distance detecting device for camera
JPH0527846B2 (en)
JPS58220132A (en) Device for controlling flash photographing
JPH0814674B2 (en) Photometric device using focus detection device