JPH05203825A - Optical ring filter - Google Patents

Optical ring filter

Info

Publication number
JPH05203825A
JPH05203825A JP3431392A JP3431392A JPH05203825A JP H05203825 A JPH05203825 A JP H05203825A JP 3431392 A JP3431392 A JP 3431392A JP 3431392 A JP3431392 A JP 3431392A JP H05203825 A JPH05203825 A JP H05203825A
Authority
JP
Japan
Prior art keywords
heater
ring
optical waveguide
optical
light guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3431392A
Other languages
Japanese (ja)
Inventor
Toshiki Ito
伊藤  俊樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP3431392A priority Critical patent/JPH05203825A/en
Publication of JPH05203825A publication Critical patent/JPH05203825A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent a frequency jump of output light from being caused even when ambient temperature varies greatly and abruptly. CONSTITUTION:Directional coupling parts 8A and 8B are formed nearby the straight parts 21 of a ring light guide 2 in parallel and extending input/output light guides 3 and 4 are provided. A heater 5 which heats part of the ring light guide 2 and a temperature sensor 6 which detects the temperature of the ring light guide 2 are provided. A heater energizing circuit 7 controls the energizing quantity to the heater 5 so that the sum of the optical distance of the part of the ring light guide 2 where the heater 5 is provided and the optical distance of the part of the right light guide 2 where the heater 5 is not provided becomes equal to the overall optical distance of the ring light guide 2 below the upper limit value of the ambient temperature. Even if the ambient temperature varies, the overall optical distance of the ring light guide 2 is held constant, so the resonance frequency of the ring light guide 2 varies and no frequency jump is caused.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光リングフィルタに関
し、特に雰囲気温度により特性が変動しない光リングフ
ィルタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical ring filter, and more particularly to an optical ring filter whose characteristics do not change depending on the ambient temperature.

【0002】[0002]

【従来の技術】光多重通信における分波、合波等の用途
に光リングフィルタが使用されており、これは所定の光
学距離を有するリング光導波路を、平行な入出力光導波
路間に介在せしめて、リング光導波路内で共振する光波
を選択的に分波ないし合波するものである。
2. Description of the Related Art Optical ring filters are used for demultiplexing, multiplexing, etc. in optical multiplex communication, in which a ring optical waveguide having a predetermined optical distance is interposed between parallel input / output optical waveguides. Thus, the light waves resonating in the ring optical waveguide are selectively demultiplexed or combined.

【0003】かかる光リングフィルタにおいて、外乱特
に雰囲気温度の変化によりリング光導波路の光学距離が
変動して、入出力光導波路に得られる分波等された光波
の強度が低下することがある。
In such an optical ring filter, the optical distance of the ring optical waveguide may fluctuate due to disturbances, particularly changes in the ambient temperature, and the intensity of the demultiplexed light waves obtained in the input / output optical waveguide may decrease.

【0004】そこで、特開昭62−100706号公報
では、入出力光導波路の出力ポートにミラーを設けて出
力光の一部をフィードバックし、出力光強度が最大とな
るように光導波路の一部に設けたヒータに通電して、こ
の部分の光学距離を調節するものが開示されている。
Therefore, in Japanese Patent Laid-Open No. 62-100706, a mirror is provided at the output port of the input / output optical waveguide to feed back a part of the output light so that the output light intensity is maximized. It is disclosed that the heater provided in the above is energized to adjust the optical distance of this portion.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来の光リングフィルタでは、雰囲気温度が急激かつ大き
く変動した時等に光学距離の調整が追従しきれない場
合、リング光導波路の共振周波数が変化して他の波長光
の周波数に一致すると、やはり出力光強度がピークを示
すため、周波数跳びを生じるという問題がある。また、
ミラー反射光の大部分がリング光導波路に戻ってしまう
ためフィードバック光の帰還効率が悪く、制御の確実性
を維持することが困難であった。
However, in the above-mentioned conventional optical ring filter, when the adjustment of the optical distance cannot be followed when the ambient temperature changes rapidly and greatly, the resonance frequency of the ring optical waveguide changes. When the frequency of the light of another wavelength coincides with the frequency of the light of another wavelength, the output light intensity also shows a peak, which causes a problem of frequency jump. Also,
Since most of the mirror reflected light returns to the ring optical waveguide, the feedback efficiency of the feedback light is poor, and it is difficult to maintain the control certainty.

【0006】本発明はかかる課題を解決するもので、雰
囲気温度が急激かつ大きく変動した場合にも出力光の周
波数跳びを生じない光リングフィルタを提供することを
目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to provide an optical ring filter which does not cause frequency jump of output light even when the ambient temperature changes abruptly and largely.

【0007】[0007]

【課題を解決するための手段】本発明の構成を説明する
と、リング光導波路2と、これに近接して方向性結合部
8A,8Bを形成して延びる複数の入出力光導波路3,
4とを同一基板1上に設けた光リングフィルタにおい
て、上記リング光導波路2の少なくとも一部を加熱する
ヒータ5と、リング光導波路2の温度を検出する手段6
とを設け、かつ、上記ヒータ5を設けたリング光導波路
部の光学距離とヒータ5を設けないリング光導波路部の
光学距離との和が、雰囲気温度の上限値下でのリング光
導波路全体の光学距離に等しくなるように上記ヒータ5
への通電量を制御する手段7を設けたものである。
The structure of the present invention will be described. A ring optical waveguide 2 and a plurality of input / output optical waveguides 3 that extend by forming directional coupling portions 8A and 8B in the vicinity thereof.
In the optical ring filter in which 4 and 4 are provided on the same substrate 1, a heater 5 for heating at least a part of the ring optical waveguide 2 and a means 6 for detecting the temperature of the ring optical waveguide 2 are provided.
And the sum of the optical distance of the ring optical waveguide portion provided with the heater 5 and the optical distance of the ring optical waveguide portion not provided with the heater 5 of the entire ring optical waveguide at the upper limit of the ambient temperature. The heater 5 so that it is equal to the optical distance
It is provided with a means 7 for controlling the amount of electricity supplied to the device.

【0008】[0008]

【作用】上記構成において、通電量制御手段7によりヒ
ータ5への通電量が制御されて、ヒータ5を設けたリン
グ光導波路部の光学距離とヒータ5を設けないリング光
導波路部の光学距離との和が、雰囲気温度の変動に関わ
らず、雰囲気温度の上限値下でのリング光導波路2全体
の光学距離に常に等しくなるように維持される。したが
って、リング光導波路2の共振周波数が変動して周波数
跳びを生じることはない。
In the above structure, the energization amount control means 7 controls the energization amount to the heater 5, and the optical distance of the ring optical waveguide portion provided with the heater 5 and the optical distance of the ring optical waveguide portion not provided with the heater 5. Is maintained to be always equal to the optical distance of the entire ring optical waveguide 2 under the upper limit value of the ambient temperature, regardless of the variation of the ambient temperature. Therefore, the resonance frequency of the ring optical waveguide 2 does not fluctuate and the frequency jump does not occur.

【0009】また、雰囲気温度の上限値下での光学距離
に一致せしめるように制御しているから、雰囲気温度の
変動に対してヒータ5への通電量を調整するのみで、冷
却は不要である。
Further, since the control is performed so as to match the optical distance under the upper limit value of the ambient temperature, only the amount of electricity to the heater 5 is adjusted with respect to the variation of the ambient temperature, and cooling is unnecessary. ..

【0010】従来の如き、フィードバック光強度が低い
ため確実な制御性が維持できないという問題も生じな
い。
As in the conventional case, since the feedback light intensity is low, the problem that the reliable controllability cannot be maintained does not occur.

【0011】[0011]

【実施例】図1において、基板1上には平行な直線部2
1を有する楕円形のリング光導波路2が形成され、これ
を挟んで平行に直線状の入出力光導波路3,4が形成さ
れている。これら基板1と光導波路2,3,4は石英あ
るいは多成分ガラス等の誘電体材料で構成され、光導波
路2,3,4の屈折率が基板1のそれよりも大きくして
ある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In FIG. 1, a straight line portion 2 parallel to a substrate 1 is formed.
1, an elliptical ring optical waveguide 2 is formed, and linear input / output optical waveguides 3 and 4 are formed in parallel to sandwich the ring optical waveguide 2. The substrate 1 and the optical waveguides 2, 3, 4 are made of a dielectric material such as quartz or multi-component glass, and the optical waveguides 2, 3, 4 have a refractive index higher than that of the substrate 1.

【0012】光導波路2,3,4はイオン交換法によ
り、あるいはCVD法やスパッタ法で光導波路材料を成
膜後フォトリソグラフィ工程を経て所定形状に成形する
ことにより形成される。なお、基板1の屈折率が光導波
路2,3,4のそれよりも大きい場合には、基板1と光
導波路2,3,4との間に屈折率の小さいバッファ層を
設ける。この場合は、基板1としてシリコン等の半導体
材料を使用することが可能である。
The optical waveguides 2, 3 and 4 are formed by an ion exchange method or by forming an optical waveguide material by a CVD method or a sputtering method and then forming it into a predetermined shape through a photolithography process. When the refractive index of the substrate 1 is larger than that of the optical waveguides 2, 3 and 4, a buffer layer having a small refractive index is provided between the substrate 1 and the optical waveguides 2, 3 and 4. In this case, a semiconductor material such as silicon can be used as the substrate 1.

【0013】リング光導波路2の直線部21とこれに近
接する入出力光導波路3,4の部分は、一方より他方へ
光波が伝播する方向性結合部8A,8Bとなっており、
所定の光学距離に設定されたリング光導波路2内では次
式を満足する周波数f1 の光波が共振状態となる。
The linear portion 21 of the ring optical waveguide 2 and the portions of the input / output optical waveguides 3 and 4 adjacent thereto are directional coupling portions 8A and 8B for propagating a light wave from one to the other.
In the ring optical waveguide 2 set to a predetermined optical distance, a light wave having a frequency f1 satisfying the following expression is in a resonance state.

【0014】[0014]

【数1】Nc/f1 =nr Lr … ここで、Nは整数、cは光速、nr は光導波路2の屈折
率、Lr はその長さであり、nr Lr は光学距離であ
る。
## EQU1 ## Nc / f1 = nr Lr Here, N is an integer, c is the speed of light, nr is the refractive index of the optical waveguide 2, Lr is its length, and nr Lr is an optical distance.

【0015】しかして、入出力光導波路3の入力ポート
より図の矢印で示す如く、周波数f1 ,f2 ,f3 の光
波を混合した光信号が入力すると、方向性結合部8Aで
周波数f1 の光波のみがリング光導波路2に伝播し、上
記光導波路3の出力ポートからは周波数f2 ,f3 の光
波のみを含む光信号が出力される。
However, when an optical signal in which light waves of frequencies f1, f2 and f3 are mixed is input from the input port of the input / output optical waveguide 3 as shown by an arrow in the figure, only the light wave of frequency f1 is input to the directional coupling section 8A. Is propagated to the ring optical waveguide 2, and an optical signal containing only light waves of frequencies f2 and f3 is output from the output port of the optical waveguide 3.

【0016】リング光導波路2に選択入力して共振する
周波数f1 の光波は方向性結合部8Bを経て入出力光導
波路4に伝播し、該光導波路4の出力ポートより出力さ
れる。
A light wave of frequency f1 which is selectively input to the ring optical waveguide 2 and resonates propagates to the input / output optical waveguide 4 through the directional coupling portion 8B and is output from the output port of the optical waveguide 4.

【0017】なお、リング光導波路2の周波数選択性を
確保するためには、その共振周波数間隔をf1 とf3 の
間隔以上とする必要があるから、その長さLr は次式
を満足する範囲内に抑える必要がある。
In order to secure the frequency selectivity of the ring optical waveguide 2, it is necessary that the resonance frequency interval be equal to or greater than the interval between f1 and f3. Therefore, the length Lr is within the range that satisfies the following equation. Need to be kept to.

【0018】[0018]

【数2】Lr <c/(f3 −f1 )nr …## EQU2 ## Lr <c / (f3 -f1) nr ...

【0019】上記リング光導波路2上には湾曲部の一方
に温度センサ6が形成され、他方にヒータ5が形成され
ている。温度センサ6はアモルファスシリコン等の半導
体薄膜で構成され、ヒータ5はNi−CrやITOなど
の高抵抗の導体薄膜で構成される。温度センサ6の出力
信号はヒータ通電回路7に入力し、該回路7はこの温度
信号に基づいて上記ヒータ5への通電量を決定する。
On the ring optical waveguide 2, a temperature sensor 6 is formed on one side of the curved portion, and a heater 5 is formed on the other side. The temperature sensor 6 is composed of a semiconductor thin film such as amorphous silicon, and the heater 5 is composed of a high resistance conductor thin film such as Ni-Cr or ITO. The output signal of the temperature sensor 6 is input to the heater energizing circuit 7, and the circuit 7 determines the energizing amount to the heater 5 based on this temperature signal.

【0020】すなわち、基板1の置かれた雰囲気温度が
0℃〜50℃の間で変化する場合、ヒータ5を設けたリ
ング光導波路部の屈折率をnv 、長さをLv とし、ヒー
タ5を設けないリング光導波路部の屈折率をnr-v 、長
さをLr-v とすると、次式を満足するようにヒータ通
電量を決定する。
That is, when the atmosphere temperature on which the substrate 1 is placed changes between 0 ° C. and 50 ° C., the refractive index of the ring optical waveguide portion provided with the heater 5 is nv, and the length is Lv. When the refractive index of the ring optical waveguide portion not provided is nr-v and the length thereof is Lr-v, the heater energization amount is determined so as to satisfy the following equation.

【0021】[0021]

【数3】nr (50)Lr (50)=nv (Tc)Lv
(Tc)+nr-v (Ta)Lr-v (Ta)… ここで、nr (T)、Lr (T)は温度T℃におけるリ
ング光導波路2のそれぞれ屈折率および長さであり、T
cはヒータ温度、Taは温度センサの検出温度である。
なお、nr (50)、Lr (50)は定数であり、nv
(Tc)、Lv(Tc)はヒータ通電量との関係を、nr
-v (Ta)、Lr-v (Ta)は検出温度との関係をそ
れぞれ予めマップ化しておくことが可能である。
## EQU3 ## nr (50) Lr (50) = nv (Tc) Lv
(Tc) + nr-v (Ta) Lr-v (Ta) ... Here, nr (T) and Lr (T) are the refractive index and the length of the ring optical waveguide 2 at the temperature T ° C., respectively, and
c is the heater temperature, and Ta is the temperature detected by the temperature sensor.
Note that nr (50) and Lr (50) are constants and nv
(Tc) and Lv (Tc) are related to the heater energization amount by nr
The relationship between -v (Ta) and Lr-v (Ta) and the detected temperature can be mapped in advance.

【0022】かくして、ヒータ5を設けたリング光導波
路部の光学距離nv (Tc)Lv (Tc)とヒータ5を
設けないリング光導波路部の光学距離nr-v (Ta)L
r-v(Ta)との和が、雰囲気温度の上限値(50℃)
下でのリング光導波路2全体の光学距離nr (50)L
r (50)に等しくなるように上記ヒータ5への通電量
を制御することにより、雰囲気温度が変動してもリング
光導波路2の共振周波数は変化せず、周波数跳びの不具
合は生じない。
Thus, the optical distance nv (Tc) Lv (Tc) of the ring optical waveguide portion provided with the heater 5 and the optical distance nr-v (Ta) L of the ring optical waveguide portion not provided with the heater 5 are obtained.
The sum of rv (Ta) is the upper limit of atmospheric temperature (50 ° C)
The optical distance nr (50) L of the entire ring optical waveguide 2 below
By controlling the energization amount to the heater 5 so as to be equal to r (50), the resonance frequency of the ring optical waveguide 2 does not change even if the ambient temperature changes, and the frequency jump problem does not occur.

【0023】また、本発明ではリング光導波路の光学距
離を雰囲気温度の上限値下での光学距離に一致せしめる
ように制御するから、雰囲気温度の変動に対してヒータ
5への通電量を調整するのみで、冷却は不要であり、温
度調節系が簡素化される。
Further, in the present invention, since the optical distance of the ring optical waveguide is controlled so as to match the optical distance under the upper limit value of the ambient temperature, the amount of electricity supplied to the heater 5 is adjusted with respect to the variation of the ambient temperature. By itself, no cooling is required and the temperature control system is simplified.

【0024】なお、ヒータ設置部に温度センサを設けて
直接この部分の温度信号を得るようにもできる。
It is also possible to provide a temperature sensor at the heater installation portion to directly obtain the temperature signal of this portion.

【0025】[0025]

【実施例2】図2において、入出力光導波路4の出力端
部に光波の一部を取り出すY分岐光導波路41を形成
し、その出力ポートに得られる光強度を受光素子9で検
出する。検出信号はヒータ通電回路7に入力され、検出
信号がピーク値を維持するようにヒータ通電量が補正さ
れる。かかる構成により、さらに良好な分波機能が実現
される。
Second Embodiment In FIG. 2, a Y-branch optical waveguide 41 for extracting a part of a light wave is formed at the output end of the input / output optical waveguide 4, and the light intensity obtained at the output port is detected by the light receiving element 9. The detection signal is input to the heater energization circuit 7, and the heater energization amount is corrected so that the detection signal maintains the peak value. With this configuration, a better demultiplexing function is realized.

【0026】なお、上記各実施例において、ヒータをリ
ング光導波路全体に設けてその温度を雰囲気上限値に維
持する構造としても良い。
In each of the above embodiments, a heater may be provided over the entire ring optical waveguide to maintain the temperature at the upper limit of the atmosphere.

【0027】[0027]

【発明の効果】以上の如く、本発明の光リングフィルタ
によれば、雰囲気温度の変化に無関係に常に良好なフィ
ルタリング機能を得ることができる。
As described above, according to the optical ring filter of the present invention, it is possible to always obtain a good filtering function irrespective of changes in the ambient temperature.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における光リングフィルタの
斜視図である。
FIG. 1 is a perspective view of an optical ring filter according to an embodiment of the present invention.

【図2】本発明の他の実施例における光リングフィルタ
の斜視図である。
FIG. 2 is a perspective view of an optical ring filter according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 基板 2 リング光導波路 3,4 入出力光導波路 5 ヒータ 6 温度センサ(温度検出手段) 7 ヒータ通電回路(通電量制御手段) 8A,8B 方向性結合部 1 substrate 2 ring optical waveguide 3,4 input / output optical waveguide 5 heater 6 temperature sensor (temperature detecting means) 7 heater energizing circuit (energizing amount controlling means) 8A, 8B directional coupling section

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 リング光導波路と、これに近接して方向
性結合部を形成して延びる複数の入出力光導波路とを同
一基板上に設けた光リングフィルタにおいて、上記リン
グ光導波路の少なくとも一部を加熱するヒータと、リン
グ光導波路の温度を検出する手段とを設け、かつ、上記
ヒータを設けたリング光導波路部の光学距離とヒータを
設けないリング光導波路部の光学距離との和が、雰囲気
温度の上限値下でのリング光導波路全体の光学距離に等
しくなるように上記ヒータへの通電量を制御する手段を
設けたことを特徴とする光リングフィルタ。
1. An optical ring filter comprising a ring optical waveguide and a plurality of input / output optical waveguides formed adjacent to the ring optical waveguide and extending on the same substrate, wherein at least one of the ring optical waveguides is provided. A heater for heating the portion and a means for detecting the temperature of the ring optical waveguide, and the sum of the optical distance of the ring optical waveguide portion provided with the heater and the optical distance of the ring optical waveguide portion not provided with the heater. An optical ring filter comprising means for controlling the amount of electricity to the heater so as to be equal to the optical distance of the entire ring optical waveguide under the upper limit of the ambient temperature.
JP3431392A 1992-01-24 1992-01-24 Optical ring filter Pending JPH05203825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3431392A JPH05203825A (en) 1992-01-24 1992-01-24 Optical ring filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3431392A JPH05203825A (en) 1992-01-24 1992-01-24 Optical ring filter

Publications (1)

Publication Number Publication Date
JPH05203825A true JPH05203825A (en) 1993-08-13

Family

ID=12410677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3431392A Pending JPH05203825A (en) 1992-01-24 1992-01-24 Optical ring filter

Country Status (1)

Country Link
JP (1) JPH05203825A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009025843A (en) * 2008-11-04 2009-02-05 Kyocera Corp Optoelectronic hybrid substrate
JP2010175743A (en) * 2009-01-28 2010-08-12 Hiroshima Univ Optical switching device and optical integrated circuit equipped with the same
US20100296768A1 (en) * 2007-12-14 2010-11-25 Wei Wu Ring resonator with inductance coupled heat tuning
JP2013130738A (en) * 2011-12-21 2013-07-04 Fujitsu Ltd Optical switch element, optical demultiplexer and optical demultiplexing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100296768A1 (en) * 2007-12-14 2010-11-25 Wei Wu Ring resonator with inductance coupled heat tuning
US8571363B2 (en) * 2007-12-14 2013-10-29 Hewlett-Packard Development Company, L.P. Ring resonator with inductance coupled heat tuning
JP2009025843A (en) * 2008-11-04 2009-02-05 Kyocera Corp Optoelectronic hybrid substrate
JP4531103B2 (en) * 2008-11-04 2010-08-25 京セラ株式会社 Optoelectronic mixed substrate
JP2010175743A (en) * 2009-01-28 2010-08-12 Hiroshima Univ Optical switching device and optical integrated circuit equipped with the same
JP2013130738A (en) * 2011-12-21 2013-07-04 Fujitsu Ltd Optical switch element, optical demultiplexer and optical demultiplexing method
US9184865B2 (en) 2011-12-21 2015-11-10 Fujitsu Limited Optical switch, optical demodulator, and optical demodulation method having feedback control of temperature regulator based on optical detector output

Similar Documents

Publication Publication Date Title
US5408319A (en) Optical wavelength demultiplexing filter for passing a selected one of a plurality of optical wavelengths
JP4631089B2 (en) Tunable etching diffraction grating for WDM optical communication system
EP2026123B1 (en) Tunable all-pass optical filters with large free spectral ranges
JP2002520665A (en) Method and compensator for compensating polarization mode dispersion
US6259847B1 (en) Optical communication system including broadband all-pass filter for dispersion compensation
EP1423751B1 (en) Integrated optical signal handling device
EP0346024B1 (en) A wavelength selective optical waveguide coupler
US6498877B1 (en) Tunable optical fiber bragg and long period grating
US20030133658A1 (en) Method and apparatus for tuning a Bragg grating in a semiconductor substrate
JPH05203825A (en) Optical ring filter
US4865408A (en) Low crosstalk reversed Δβ electrodes for directional coupler switch
US6856732B2 (en) Method and apparatus for adding/droping optical signals in a semiconductor substrate
JPH05181028A (en) Optical ring resonator
US20030091265A1 (en) Optical component having a light distribution component with an index of refraction tuner
JPH0727943A (en) Fabry-perot etalon
JP2003510628A (en) Temperature compensation of controlled stress for filters
US7010198B2 (en) Birefringence trimming of integrated optical devices by elevated heating
JPS63147145A (en) Waveguide type mach-zehnder interferometer
US20030077037A1 (en) Method and apparatus of a semiconductor-based tunable optical dispersion compensation system with multiple system with multiple channels
JPH05313109A (en) Waveguide type polarization controller
JPH05232333A (en) Waveguide type optical multiplexer demultiplexer
JP2002511157A (en) Narrowband transmission filter using Bragg grating for mode conversion
JPH0659293A (en) Tunable optical filter
US20020186920A1 (en) Coupler assisted tunable add/drop filter
KR100400890B1 (en) Variable optical attenuator of in-line type and fabrication method thereof