JPH05232333A - Waveguide type optical multiplexer demultiplexer - Google Patents

Waveguide type optical multiplexer demultiplexer

Info

Publication number
JPH05232333A
JPH05232333A JP3658492A JP3658492A JPH05232333A JP H05232333 A JPH05232333 A JP H05232333A JP 3658492 A JP3658492 A JP 3658492A JP 3658492 A JP3658492 A JP 3658492A JP H05232333 A JPH05232333 A JP H05232333A
Authority
JP
Japan
Prior art keywords
optical
directional coupling
optical waveguide
waveguide
coupling portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3658492A
Other languages
Japanese (ja)
Other versions
JP2567175B2 (en
Inventor
Kaname Jinguji
要 神宮寺
Masao Kawachi
正夫 河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3658492A priority Critical patent/JP2567175B2/en
Publication of JPH05232333A publication Critical patent/JPH05232333A/en
Application granted granted Critical
Publication of JP2567175B2 publication Critical patent/JP2567175B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3132Digital deflection, i.e. optical switching in an optical waveguide structure of directional coupler type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3136Digital deflection, i.e. optical switching in an optical waveguide structure of interferometric switch type

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To improve the transmission characteristics of the waveguide type optical multiplexer demultiplexer without spoiling its speediness. CONSTITUTION:The waveguide type optical multiplexer demultiplexer 10 includes a silicon substrate 11, a glass layer (not shown in figure) formed on the silicon substrate 11, a 1st optical waveguide 131 and a 2nd optical waveguide 132 which are formed in the glass layer, 1st-5th directional coupling parts 141-145 which are formed by putting the intermediate parts of the optical waveguides 131 and 132 put close to each other at five places, 1st-8th thin film heaters 151-158; and a 1st fundamental constitution circuit and a 2nd fundamental constitution circuit are arranged almost optically symmetrically about the center point (3rd directional coupling part 143) of the circuit.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、導波路型光合分波器に
関し、特に、光通信分野などで用いられる、波長の異な
る2つ以上の信号光を合波または分波する導波路型光合
分波器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a waveguide type optical multiplexer / demultiplexer, and more particularly to a waveguide type optical multiplexer / demultiplexer for multiplexing or demultiplexing two or more signal lights having different wavelengths used in the field of optical communication. It relates to a duplexer.

【0002】[0002]

【従来の技術】光通信分野では、周波数の異なる信号光
を多重化して伝送する技術が重要である。すなわち、異
なる光導波路をそれぞれ伝搬してきた、周波数の異なる
2つ以上の信号光を合波して一本の光導波路に収束させ
るとともに、一本の光導波路を伝搬してきた、周波数の
異なる2つ以上の信号光を分波して各光導波路に周波数
ごとに分解するための光合分波器は、光通信分野におい
てキーとなる部品である。
2. Description of the Related Art In the field of optical communication, a technique for multiplexing and transmitting signal lights having different frequencies is important. That is, two or more signal lights having different frequencies, which have respectively propagated through different optical waveguides, are combined and converged into one optical waveguide, and two signals having different frequencies propagated through one optical waveguide. The optical multiplexer / demultiplexer for demultiplexing the above signal light and decomposing it into each optical waveguide for each frequency is a key component in the field of optical communication.

【0003】図8は、従来の代表的な導波型光合分波器
の一つであるマッハツェンダ光干渉計型光合分波器の一
例を示す平面図である。
FIG. 8 is a plan view showing an example of a Mach-Zehnder optical interferometer type optical multiplexer / demultiplexer, which is one of typical conventional guided wave type optical multiplexer / demultiplexers.

【0004】マッハツェンダ光干渉計型光合分波器100
は、平面基板101 と、平面基板101上に形成された第1
の光導波路102aおよび第2の光導波路102bと、各光導波
路102a,101bの中間部が2箇所で互いに近接されて形成
された第1の方向性結合部103aおよび第2の方向性結合
部103bと、第1の方向性結合部103aと第2の方向性結合
部103bとの間の第1の光導波路102aの上方に形成された
第1の薄膜ヒータ108aと、第1の方向性結合部103aと第
2の方向性結合部103bとの間の第2の光導波路102bの上
方に形成された第2の薄膜ヒータ108bとを含む。ここ
で、第1の方向性結合部103aと第2の方向性結合部103b
とはそれぞれ、3dBカップラとして機能する。
Mach-Zehnder optical interferometer type optical multiplexer / demultiplexer 100
Is a flat substrate 101 and a first substrate formed on the flat substrate 101.
Optical waveguide 102a and second optical waveguide 102b, and a first directional coupling portion 103a and a second directional coupling portion 103b which are formed such that the intermediate portions of the respective optical waveguides 102a and 101b are close to each other at two locations. And a first thin film heater 108a formed above the first optical waveguide 102a between the first directional coupling portion 103a and the second directional coupling portion 103b, and the first directional coupling portion. The second thin film heater 108b is formed above the second optical waveguide 102b between the 103a and the second directional coupling portion 103b. Here, the first directional coupling portion 103a and the second directional coupling portion 103b.
And each function as a 3 dB coupler.

【0005】マッハツェンダ光干渉計型光合分波器100
では、第1の方向性結合部103aと第2の方向性結合部10
3bとの間の第2の光導波路102bの導波路長L+ΔLは、
第1の方向性結合部103aと第2の方向性結合部103bとの
間の第1の光導波路102aの導波路長Lよりも導波路長差
ΔLだけ長くなっているため、第2の光導波路102bの入
力ポート104bから入力された、第1の周波数fの信号光
through と第2の周波数f+Δfの信号光Pcross
が多重された信号光Pinは、第1の方向性結合部103aお
よび第2の方向性結合部103bを通過することによって等
パワーに分割され、第1の周波数fの信号光Pthrough
は第2の光導波路102bの出力ポート105bから出力され、
第2の周波数f+Δfの信号光Pcross は第1の光導波
路102aの出力ポート105aから出力される。信号光Pin
対する信号光Pcross の光強度透過度Tcross の周波数
依存性(透過特性)の一例を図9に実線で、また、信号
光Pinに対する信号光Pthrough の光強度透過度T
through の周波数依存性(透過特性)の一例を図9に破
線でそれぞれ示す。この例では、2つの光強度透過度T
through,Tcrossは周波数に対して正弦関数的に変化
し、その周期の間隔は10GHzである。したがって、
マッハツェンダ光干渉計型光合分波器100 を用いること
により、第1の方向性結合部103aと第2の方向性結合部
103bとの間の導波路長差ΔLを利用して、周波数の異な
る信号光を分波することができる。
Mach-Zehnder optical interferometer type optical multiplexer / demultiplexer 100
Then, the first directional coupling portion 103a and the second directional coupling portion 10
The waveguide length L + ΔL of the second optical waveguide 102b between 3b and
Between the first directional coupling portion 103a and the second directional coupling portion 103b
The waveguide length difference is greater than the waveguide length L of the first optical waveguide 102a between
Since it is longer by ΔL, the second optical waveguide 102b is inserted.
Signal light of the first frequency f input from the input port 104b
Pthrough And the signal light P of the second frequency f + Δfcross When
Signal light P multiplexed withinIs the first directional coupling portion 103a or
And by passing through the second directional coupler 103b, etc.
The signal light P of the first frequency f is divided into powerthrough 
Is output from the output port 105b of the second optical waveguide 102b,
Signal light P of the second frequency f + Δfcross Is the first optical waveguide
It is output from the output port 105a of the path 102a. Signal light PinTo
Signal light P forcross Light intensity transmission Tcross Frequency
An example of the dependency (transmission characteristic) is shown by the solid line in FIG.
Light PinSignal light P forthrough Light intensity transmission T
through Fig. 9 shows an example of the frequency dependence (transmission characteristics) of
Each is indicated by a line. In this example, two light intensity transmittances T
through, TcrossChanges sinusoidally with frequency
However, the interval of the period is 10 GHz. Therefore,
Use of Mach-Zehnder optical interferometer type optical multiplexer / demultiplexer 100
Thus, the first directional coupling portion 103a and the second directional coupling portion 103a
By using the waveguide length difference ΔL with 103b,
It is possible to demultiplex the signal light that generates

【0006】一般に、周波数多重通信の場合、信号は、
キャリア周波数の両側の側帯周波数を利用して伝搬され
る。このため、キャリア周波数を中心にして一定の周波
数帯において透過特性が一定であることが望ましい。し
かし、図8に示したマッハツェンダ光干渉計型光合分波
器100 では、2つの光強度透過度Tthrough,Tcross
周波数に対して正弦関数的に変化するため、側帯周波数
領域全体にわたって一定の透過特性をもたせることがで
きず、信号光Pthrough および信号光Pcrossが歪んで
しまうという問題がある。
In general, in frequency multiplex communication, the signal is
Propagation is performed using sideband frequencies on both sides of the carrier frequency. Therefore, it is desirable that the transmission characteristics be constant in a constant frequency band centered on the carrier frequency. However, in the Mach-Zehnder interferometer type optical multiplexer / demultiplexer 100 shown in FIG. 8, since the two light intensity transmissivities T through and T cross change sinusoidally with respect to the frequency, they are constant over the entire sideband frequency region. There is a problem that the transmission characteristics cannot be provided, and the signal light P through and the signal light P cross are distorted.

【0007】この問題の解決が図れる導波型光合分波器
の一つとして、図10に示すマッハツェンダ光干渉計型
光合分波器200 が提案されている。
A Mach-Zehnder optical interferometer type optical multiplexer / demultiplexer 200 shown in FIG. 10 has been proposed as one of the guided wave type optical multiplexer / demultiplexers capable of solving this problem.

【0008】マッハツェンダ光干渉計型光合分波器200
は、以下に示す点で、図8に示したマッハツェンダ光干
渉計型光合分波器100 と異なる。 (1)第1の方向性結合部203aと第2の方向性結合部20
3bとの間の第1の光導波路202aの図示下側にリング路20
6 が設けられており、第1の方向性結合部203aと第2の
方向性結合部203bとの間の第1の光導波路202aとリング
路206 とが互いに近接されることにより、第3の方向性
結合部203cが形成されている。 (2)第1の薄膜ヒータ208aが、第1の方向性結合部20
3aと第2の方向性結合部203bとの間の第1の光導波路20
2aの上方に形成される代わりに、図示下側のリング路20
6 の上方に形成されている。
Mach-Zehnder optical interferometer type optical multiplexer / demultiplexer 200
Is different from the Mach-Zehnder interferometer type optical multiplexer / demultiplexer 100 shown in FIG. 8 in the following points. (1) First directional coupling portion 203a and second directional coupling portion 20
The ring path 20 is provided on the lower side of the first optical waveguide 202a in FIG.
6 is provided, and the first optical waveguide 202a and the ring path 206 between the first directional coupling portion 203a and the second directional coupling portion 203b are brought close to each other, thereby The directional coupling portion 203c is formed. (2) The first thin film heater 208a is connected to the first directional coupling portion 20.
First optical waveguide 20 between 3a and second directional coupling portion 203b
Instead of being formed above 2a, the lower ring path 20 in the figure
It is formed above 6.

【0009】すなわち、マッハツェンダ光干渉計型光合
分波器200 は、透過特性の改善を図るため、リング路20
6 と第3の方向性結合部203cとをリング共振器として機
能させて周期的な遅延を与えるものである。図11に、
信号光Pinに対する信号光P cross の光強度透過度T
cross の周波数依存性(透過特性)の一例を示す。図1
1に示すように、マッハツェンダ光干渉計型光合分波器
200 では、光強度透過度Tcross は周波数に対して矩形
的に変化し、透過特性の改善が図られている。
That is, the Mach-Zehnder interferometer type optical combiner
The duplexer 200 uses the ring path 20 to improve the transmission characteristics.
6 and the third directional coupling portion 203c as a ring resonator.
It is activated to give a periodic delay. In Figure 11,
Signal light PinSignal light P for cross Light intensity transmission T
cross An example of the frequency dependence (transmission characteristic) of is shown. Figure 1
As shown in 1, the Mach-Zehnder optical interferometer type optical multiplexer / demultiplexer
At 200, the light intensity transmittance Tcross Is rectangular to frequency
And the transmission characteristics are improved.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、上述し
た従来のマッハツェンダ光干渉計型光合分波器200 で
は、周期的な遅延を与えて透過特性の改善を図るため、
第2の導波路202bの入力ポート204bから入力された信号
光Pinがリング路206 に長く留まる結果、時間応答が著
しく劣化して、高速な光通信の分野には適用できないと
いう問題がある。
However, in the above-mentioned conventional Mach-Zehnder interferometer type optical multiplexer / demultiplexer 200, in order to improve the transmission characteristics by giving a periodic delay,
As a result of the signal light Pin input from the input port 204b of the second waveguide 202b staying in the ring path 206 for a long time, the time response is significantly deteriorated, and there is a problem that it cannot be applied to the field of high-speed optical communication.

【0011】本発明の目的は、高速性を損なうことなく
透過特性の改善が図れる導波路型光合分波器を提供する
ことにある。
An object of the present invention is to provide a waveguide type optical multiplexer / demultiplexer capable of improving transmission characteristics without impairing high speed.

【0012】[0012]

【課題を解決するための手段】本発明の導波路型光合分
波器は、基板と、該基板上に形成された第1の光導波路
および第2の光導波路とを含み、該第1および第2の光
導波路のいずれか一方の光導波路から入射された2つの
信号光を分波して、該2つの信号光のいずれか一方の信
号光を前記一方の光導波路から出射させるとともに、前
記2つの信号光の他方の信号光を前記第1および第2の
光導波路の他方の光導波路から出射させ、前記第1の光
導波路から入射された信号光と前記第2の光導波路から
入射された信号光とを合波して、前記第1および第2の
光導波路のいずれか一方の光導波路から出射させる導波
路型光合分波器において、前記第1の光導波路と前記第
2の光導波路との中間部が5箇所互いに近接されて順次
形成された第1乃至第5の方向性結合部を含み、前記第
1の方向性結合部と前記第2の方向性結合部との間で
は、前記第2の光導波路の方が前記第1の光導波路より
も第1の光路長差だけ長く、前記第2の方向性結合部と
前記第3の方向性結合部との間では、前記第1の光導波
路の方が前記第2の光導波路よりも第2の光路長差だけ
長く、前記第3の方向性結合部と前記第4の方向性結合
部との間では、前記第2の光導波路の方が前記第1の光
導波路よりも第3の光路長差だけ長く、前記第4の方向
性結合部と前記第5の方向性結合部との間では、前記第
1の光導波路の方が前記第2の光導波路よりも第4の光
路長差だけ長く、前記第1乃至第4の光路長差が、等し
いかほぼ等しく、前記第1の方向性結合部の結合率と前
記第5の方向性結合部の結合率とが、等しいかほぼ等し
く、前記第2の方向性結合部の結合率と前記第4の方向
性結合部の結合率とが、等しいかほぼ等しい。
A waveguide type optical multiplexer / demultiplexer according to the present invention includes a substrate and a first optical waveguide and a second optical waveguide formed on the substrate. The two signal lights that are incident from one of the second optical waveguides are demultiplexed, and one of the two signal lights is emitted from the one optical waveguide, and The other signal light of the two signal lights is emitted from the other optical waveguide of the first and second optical waveguides, and the signal light incident from the first optical waveguide and the signal light incident from the second optical waveguide are incident. In the waveguide type optical multiplexer / demultiplexer which combines the signal light with the optical signal and outputs the optical signal from either one of the first and second optical waveguides, the first optical waveguide and the second optical waveguide The first part, in which the middle part with the waveguide is formed in close proximity to each other at five positions, is formed in sequence. A fifth directional coupling portion is included, and between the first directional coupling portion and the second directional coupling portion, the second optical waveguide is closer to the first optical waveguide than the first optical waveguide. The first optical waveguide is longer than the second optical waveguide between the second directional coupling portion and the third directional coupling portion by a difference of 1 optical path length. The third optical path length is longer in the second optical waveguide than in the first optical waveguide between the third directional coupling portion and the fourth directional coupling portion by an optical path length difference. The difference is longer, and between the fourth directional coupling portion and the fifth directional coupling portion, the first optical waveguide is larger than the second optical waveguide by the fourth optical path length difference. Long, the first to fourth optical path length differences are equal or substantially equal, and the coupling rate of the first directional coupling section and the coupling rate of the fifth directional coupling section are Poetry substantially equal, the second and the coupling ratio of the directional coupler section and said fourth directional coupling portion coupling ratio is approximately equal or equal.

【0013】ここで、前記第1の方向性結合部と前記第
2の方向性結合部との間では、前記第1の光導波路の方
が前記第2の光導波路よりも第1の光路長差だけ長く、
前記第2の方向性結合部と前記第3の方向性結合部との
間では、前記第2の光導波路の方が前記第1の光導波路
よりも第2の光路長差だけ長く、前記第3の方向性結合
部と前記第4の方向性結合部との間では、前記第1の光
導波路の方が前記第2の光導波路よりも第3の光路長差
だけ長く、前記第4の方向性結合部と前記第5の方向性
結合部との間では、前記第2の光導波路の方が前記第1
の光導波路よりも第4の光路長差だけ長くてもよい。
Here, between the first directional coupling portion and the second directional coupling portion, the first optical waveguide is longer than the second optical waveguide in the first optical path length. The difference is long,
Between the second directional coupling portion and the third directional coupling portion, the second optical waveguide is longer than the first optical waveguide by a second optical path length difference, and Between the third directional coupling portion and the fourth directional coupling portion, the first optical waveguide is longer than the second optical waveguide by a third optical path length difference, Between the directional coupling portion and the fifth directional coupling portion, the second optical waveguide is the first optical waveguide.
It may be longer than the optical waveguide by the fourth optical path length difference.

【0014】また、前記第3の方向性結合部の代わり
に、該第3の方向性結合部の結合率の半分の結合率を有
する第6の方向性結合部および前記第3の方向性結合部
の結合率の半分の結合率を有する第7の方向性結合部を
含み、前記第6の方向性結合部と前記第7の方向性結合
部との間では、前記第1の光導波路731 の光路長と前
記第2の光導波路の光路長とが等しいかほぼ等しくても
よい。
Further, instead of the third directional coupling portion, a sixth directional coupling portion and a third directional coupling portion each having a coupling rate of half the coupling rate of the third directional coupling portion. A seventh directional coupling section having a coupling rate that is half the coupling rate of the section, and between the sixth directional coupling section and the seventh directional coupling section, the first optical waveguide 73 The optical path length of 1 and the optical path length of the second optical waveguide may be equal or substantially equal.

【0015】さらに、前記第1の光導波路と前記第2の
光導波路とがそれぞれ、平面基板上に形成された石英系
ガラス層に埋設された、石英系ガラスからなるコア部よ
り構成された石英系単一モード光導波路であってもよ
い。
Further, the first optical waveguide and the second optical waveguide are each composed of a quartz glass core embedded in a silica glass layer formed on a flat substrate. It may be a system single mode optical waveguide.

【0016】[0016]

【作用】本発明の導波路型光合分波器は、第1の光導波
路と第2の光導波路との中間部が5箇所互いに近接され
て順次形成された第1乃至第5の方向性結合部を含み、
後述するように、第1の基本構成回路と第2の基本構成
回路とが回路の中心点(第3の方向性結合部143 )に
対して光学的にほぼ点対称に配置されるよう構成されて
いることにより、後述する理由によって、光強度透過度
が”1”となる周波数帯および”0”となる周波数帯を
平坦化することができる。
In the waveguide type optical multiplexer / demultiplexer according to the present invention, the first to fifth directional couplings are formed in such a manner that the intermediate portions of the first optical waveguide and the second optical waveguide are arranged in close proximity to each other at five positions. Including parts,
As will be described later, the first basic constituent circuit and the second basic constituent circuit are arranged such that they are arranged substantially optically in point symmetry with respect to the center point of the circuit (the third directional coupling portion 14 3 ). By doing so, the frequency band in which the light intensity transmittance is “1” and the frequency band in which the light intensity transmittance is “0” can be flattened for the reason described later.

【0017】[0017]

【実施例】次に、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will now be described with reference to the drawings.

【0018】図1は、本発明の導波路型光合分波器の第
1の実施例を示す平面図である。
FIG. 1 is a plan view showing a first embodiment of a waveguide type optical multiplexer / demultiplexer according to the present invention.

【0019】導波路型光合分波器10は、シリコン基板
11と、シリコン基板11上に形成された、膜厚50μ
m程度のSi2系ガラスからなるガラス層(不図示)
と、該ガラス層内に形成された第1の光導波路131
よび第2の光導波路132 と、各光導波路131,132
の中間部が5箇所互いに近接されて順次形成された第1
乃至第5の方向性結合部141〜145と、第1の方向性
結合部141 と第2の方向性結合部142 との間の第1
および第2の光導波路131,132の上方でかつ前記ガ
ラス層上にそれぞれ形成された第1および第2の薄膜ヒ
ータ151,152と、第2の方向性結合部142 と第3
の方向性結合部143 との間の第1および第2の光導波
路131,132の上方でかつ前記ガラス層上にそれぞれ
形成された第3および第4の薄膜ヒータ153,15
4と、第3の方向性結合部143 と第4の方向性結合部
144 との間の第1および第2の光導波路131,132
の上方でかつ前記ガラス層上にそれぞれ形成された第5
および第6の薄膜ヒータ155,156 と、第4の方向
性結合部144 と第5の方向性結合部145 との間の第
1および第2の光導波路131,132の上方でかつ前記
ガラス層上にそれぞれ形成された第7および第8の薄膜
ヒータ157,158とを含む。
The waveguide type optical multiplexer / demultiplexer 10 has a silicon substrate 11 and a film thickness of 50 μm formed on the silicon substrate 11.
glass layer consisting of S i O 2 -based glass of about m (not shown)
When the first optical waveguide 13 1 and the second optical waveguide 13 2 formed on the glass layer, the optical waveguides 13 1, 13 2
The first part of which the middle parts of the two are formed in close proximity to each other
To the fifth directional coupling portions 14 1 to 14 5 and the first directional coupling portion 14 1 and the first directional coupling portion 14 2 between the first directional coupling portion 14 1 and the second directional coupling portion 14 2 .
And the first and second thin film heaters 15 1 and 15 2 formed above the glass layers and above the second optical waveguides 13 1 and 13 2 , respectively, and the second directional coupling portion 14 2 and Three
Third and fourth thin film heaters 15 3 and 15 formed above the glass layer and above the first and second optical waveguides 13 1 and 13 2 with the directional coupling portion 14 3 of
4 and the first and second optical waveguides 13 1 , 13 2 between the third directional coupling portion 14 3 and the fourth directional coupling portion 14 4.
A fifth layer formed above the glass layer and on the glass layer, respectively.
And between the sixth thin film heaters 15 5 and 15 6 and the first and second optical waveguides 13 1 and 13 2 between the fourth directional coupling portion 14 4 and the fifth directional coupling portion 14 5 . 7th and 8th thin film heaters 15 7 and 15 8 formed above and on the glass layer, respectively.

【0020】次に、各光導波路131,132,各方向性
結合部141〜145および各薄膜ヒータ151〜158
ついて詳しく説明する。
Next, the optical waveguides 13 1 and 13 2 , the directional coupling portions 14 1 to 14 5 and the thin film heaters 15 1 to 15 8 will be described in detail.

【0021】(1)各光導波路131,132 第1の光導波路131 および第2の光導波路132 はそ
れぞれ、Si2−GeO2 系ガラスからなるコア部より
構成された石英系単一モード光導波路であり、コア部が
8μm角程度の断面形状を有するものである。
[0021] (1) optical waveguides 13 1, 13 2 each of the first optical waveguide 13 1 and the second optical waveguide 13 2, constructed from a core portion consisting of S i O 2 -GeO 2 glass quartz It is a system single mode optical waveguide in which the core has a cross-sectional shape of about 8 μm square.

【0022】また、第1の方向性結合部141 と第2の
方向性結合部142 との間では、第2の光導波路132
の方が第1の光導波路131 よりも第1の導波路長差Δ
1(=第1の光路長差)だけ長く、第2の方向性結合
部142 と第3の方向性結合部143 との間では、第1
の光導波路131 の方が第2の光導波路132 よりも第
2の導波路長差ΔL2 (=第2の光路長差)だけ長く、
第3の方向性結合部143 と第4の方向性結合部144
との間では、第2の光導波路132 の方が第1の光導波
路131 よりも第3の導波路長差ΔL3 (=第3の光路
長差)だけ長く、第4の方向性結合部144 と第5の方
向性結合部145 との間では、第1の光導波路131
方が第2の光導波路132 よりも第4の導波路長差ΔL
4 (=第4の光路長差)だけ長くなっている。ここで、
第1乃至第4の導波路長差ΔL1〜ΔL4はそれぞれ、等
しいかほぼ等しくなるように設定されている。
Further, first directional coupling portion 14 1 and the between the second directional coupler 14 2, the second optical waveguide 13 2
Is shorter than the first optical waveguide 13 1 by the first waveguide length difference Δ.
It is long by L 1 (= first optical path length difference), and is the first between the second directional coupling portion 14 2 and the third directional coupling portion 14 3 .
Of the optical waveguide 13 1 is longer than the second optical waveguide 13 2 by the second waveguide length difference ΔL 2 (= the second optical path length difference),
Third directional coupling portion 14 3 and fourth directional coupling portion 14 4
Between the second optical waveguide 13 2 and the first optical waveguide 13 1 , the second optical waveguide 13 2 is longer than the first optical waveguide 13 1 by the third waveguide length difference ΔL 3 (= the third optical path length difference), and the fourth directionality Between the coupling portion 14 4 and the fifth directional coupling portion 14 5 , the first optical waveguide 13 1 has a fourth waveguide length difference ΔL more than the second optical waveguide 13 2.
4 (= the fourth optical path length difference). here,
The first to fourth waveguide length differences ΔL 1 to ΔL 4 are set to be equal or substantially equal to each other.

【0023】なお、前記各導波路長差ΔL1〜ΔL4は、
その値を適宜選ぶことにより、各種の周波数帯の光合分
波が可能となる。
The waveguide length differences ΔL 1 to ΔL 4 are
By appropriately selecting the value, optical multiplexing / demultiplexing in various frequency bands becomes possible.

【0024】(2)各方向性結合部141〜145 第1乃至第4の方向性結合部141〜145は、第1の光
導波路131 と第2の光導波路132 とを数μm程度の
間隔に保ちながら、数100μmの距離にわたって互い
に平行に配置することによりそれぞれ構成されている。
また、第1の方向性結合部141 の結合率と第5の方向
性結合部145 の結合率とはほぼ等しくなるように設定
されており、第2の方向性結合部142 の結合率と第4
の方向性結合部144 の結合率とはほぼ等しくなるよう
に設定されている。
(2) Each of the directional coupling portions 14 1 to 14 5 The first to the fourth directional coupling portions 14 1 to 14 5 connect the first optical waveguide 13 1 and the second optical waveguide 13 2 . They are arranged by being arranged in parallel with each other over a distance of several hundreds of μm while maintaining an interval of several μm.
The coupling ratio of the first directional coupling portion 14 1 and the coupling ratio of the fifth directional coupling portion 14 5 are set to be substantially equal to each other, and the coupling ratio of the second directional coupling portion 14 2 is set. Rate and fourth
It is set so as to be substantially equal to the coupling rate of the directional coupling section 14 4 .

【0025】(3)各薄膜ヒータ151〜158 第1乃至第8の薄膜ヒータ151〜158はそれぞれ、石
英系光導波路の熱光学効果を利用して光路長差を微調す
るための位相制御器として機能するものである。なお、
他の手段により、導波路型光合分波器10自体の温度の
安定化が図れる場合には、第1乃至第8の薄膜ヒータ1
1〜158は不要である。
[0025] (3) the thin-film heaters 15 1-15 8 of the first to eighth respective thin film heater 15 1-15 8, the silica-based optical waveguide by utilizing the thermo-optic effect for fine tuning the optical path length difference It functions as a phase controller. In addition,
When the temperature of the waveguide type optical multiplexer / demultiplexer 10 itself can be stabilized by other means, the first to eighth thin film heaters 1
5 1 to 15 8 are unnecessary.

【0026】次に、導波路型光合分波器10の構成につ
いて、図2乃至図4を参照して説明する。
Next, the structure of the waveguide type optical multiplexer / demultiplexer 10 will be described with reference to FIGS.

【0027】導波路型光合分波器10は、図2に等価的
に示すように、第1の基本構成回路201 と第2の基本
構成回路202 とが回路の中心点(第3の方向性結合部
14 3 )に対して光学的にほぼ点対称に配置されるよう
構成されている。ここで、第1の基本構成回路201
第2の基本構成回路202 とはそれぞれ、3個の方向性
結合部341〜343からなる図3に示すような非対称マ
ッハツェンダ光干渉計型光合分波器30と光学的に等価
なものであるため、第1の基本構成回路201と第2の
基本構成回路202 もまたそれぞれ、図4に示すような
非対称マッハツェンダ光干渉計型光合分波器40を2個
光学的にほぼ点対称に配置した構成を有するものである
といえる。
The waveguide type optical multiplexer / demultiplexer 10 is equivalent to that shown in FIG.
As shown in FIG.1 And the second basic
Configuration circuit 202 And are the center points of the circuit (the third directional coupling part).
14 3 ), So that they are arranged almost point-symmetrically with respect to
It is configured. Here, the first basic configuration circuit 201 When
Second basic configuration circuit 202 And three directions, respectively
Coupling part 341~ 343The asymmetric matrix as shown in Figure 3
Optically equivalent to the Bach-Zehnder interferometer type optical multiplexer / demultiplexer 30.
Therefore, the first basic configuration circuit 201And the second
Basic configuration circuit 202 Also as shown in Figure 4, respectively
Two asymmetric Mach-Zehnder optical interferometer type optical multiplexer / demultiplexers 40
It has a configuration in which it is optically arranged substantially in point symmetry.
Can be said.

【0028】したがって、図1に示した導波路型光合分
波器10は、図4に示した非対称マッハツェンダ光干渉
計型光合分波器40を2回だけ光学的にほぼ点対称に配
置して合成した構成を有するものであるといえるため、
以下の関係が成り立つ。 (1)第1乃至第4の導波路長差ΔL1〜ΔL4はそれぞ
れ、等しいかほぼ等しい。 (2)図4に示した第1の方向性結合部441 の結合率
をsとし、第2の方向性結合部442 の結合率をtとす
ると、図1に示した第1の方向性結合部141 の結合率
はs、第2の方向性結合部142 の結合率は2t、第3
の方向性結合部443 の結合率は2s、第4の方向性結
合部444 の結合率は2t、第5の方向性結合部145
の結合率はsとなる。
Therefore, in the waveguide type optical multiplexer / demultiplexer 10 shown in FIG. 1, the asymmetric Mach-Zehnder optical interferometer type optical multiplexer / demultiplexer 40 shown in FIG. Since it can be said that it has a combined configuration,
The following relationship holds. (1) The first to fourth waveguide length differences ΔL 1 to ΔL 4 are equal or almost equal to each other. (2) Assuming that the coupling ratio of the first directional coupling portion 44 1 shown in FIG. 4 is s and the coupling ratio of the second directional coupling portion 44 2 is t, the first direction shown in FIG. The coupling ratio of the sexual coupling portion 14 1 is s, the coupling ratio of the second directional coupling portion 14 2 is 2t, the third
The directional coupling portion 44 3 has a coupling ratio of 2 s, the fourth directional coupling portion 44 4 has a coupling ratio of 2 t, and the fifth directional coupling portion 14 5
The coupling ratio of is s.

【0029】一般に、光学的に点対称配置を有する光回
路は、基本構成回路の回路特性より全体の回路の透過特
性が決定される。いま、第1の光導波路131 の図1図
示左端を信号光Pinの入力ポート16とし、第1の光導
波路131 の同図図示右端を出力ポート(以下、「スル
ーポート」と称する。)171 とし、第2の光導波路1
2 の同図図示右端を出力ポート(以下、「クロスーポ
ート」と称する。)172 とし、図2に示した第1の基
本構成回路201 の入力ポート16から第2の光導波路
132 への光強度透過度をT2 とすると、導波路型光合
分波器10全体の入力ポート16からクロスーポート1
2 への光強度透過度Tcross は、 Tcross =1−(1−2×T22 (1) と表される。(1)式より、以下のことがわかる。
Generally, in an optical circuit having an optically point-symmetrical arrangement, the transmission characteristics of the entire circuit are determined by the circuit characteristics of the basic constituent circuit. The left end of the first optical waveguide 13 1 in FIG. 1 is the input port 16 for the signal light P in , and the right end of the first optical waveguide 13 1 is the output port (hereinafter, referred to as “through port”). ) 17 1 and the second optical waveguide 1
An output port (hereinafter, referred to as a “cross-port”) 17 2 of 3 2 in the figure is used as an output port 17 2 from the input port 16 of the first basic constituent circuit 20 1 shown in FIG. 2 to the second optical waveguide 13 2 . Let T 2 be the light intensity transmittance of the waveguide-type optical multiplexer / demultiplexer 10 from the input port 16 to the cross-port 1
The light intensity transmittance T cross to 7 2 is expressed as T cross = 1- (1-2 × T 2 ) 2 (1). The following can be understood from the equation (1).

【0030】T2=0のとき、Tcross =0 T2=1のとき、Tcross =0 T2=0.5のとき、Tcross =1 また、T2 ≒0.5のとき、(1)式の右辺のかっこ内
は、”0”に近い値となるが、かっこ式に二乗がかかっ
ているために、光強度透過度T2 が”0.5”より若干
離れたところでもほとんど”0”に近い値となる。すな
わち、この二乗項のために、光強度透過度T2 が”0.
5”付近の周波数帯において、導波路型光合分波器10
全体の入力ポート16からクロスーポート172 への光
強度透過度Tcross はほぼ”1”となる。本発明による
導波路型光合分波器は、この原理を利用して平坦特性を
実現するものである。
When T 2 = 0, T cross = 0 T 2 = 1, T cross = 0 T 2 = 0.5, T cross = 1 Also, when T 2 ≈0.5, ( The value in parentheses on the right side of equation 1) is a value close to "0", but because the squared parentheses affect the light intensity transmittance T 2 almost at a distance from "0.5". The value is close to "0". That is, because of this square term, the light intensity transmittance T 2 is "0.
In the frequency band near 5 ", the waveguide type optical multiplexer / demultiplexer 10
The light intensity transmission T cross from the entire input port 16 to the cross-port 17 2 is almost “1”. The waveguide type optical multiplexer / demultiplexer according to the present invention realizes flat characteristics by utilizing this principle.

【0031】図5(A),(B),(C)はそれぞれ、
図4に示した非対称マッハツェンダ光干渉計型光合分波
器40,図3に示した非対称マッハツェンダ光干渉計型
光合分波器30および図1に示した導波路型光合分波器
10における光強度透過度T cross の周波数依存性を示
すグラフである。このグラフより、以下に示すことがわ
かる。 (1)図5(A)に示すように、図4に示した非対称マ
ッハツェンダ光干渉計型光合分波器40では、光強度透
過度Tcross は周波数に対して正弦関数的に変化し、光
強度透過度Tcross の最小値はほぼ”0.5”である。 (2)図5(B)に示すように、図3に示した非対称マ
ッハツェンダ光干渉計型光合分波器30では、光強度透
過度Tcross は、光強度透過度Tcross が”1”となる
付近で平坦領域が得られている。これは、上記(1)式
で説明したように、光学的に点対称配置を有する光回路
では、T2 ≒0.5のときに光強度透過度Tcross がほ
ぼ”1”となる性質からである。また、図3に示した非
対称マッハツェンダ光干渉計型光合分波器30での光強
度透過度Tcross の最小値もまたほぼ”0.5”であ
る。 (3)図5(C)に示すように、図1に示した導波路型
光合分波器10では、光強度透過度Tcross は、”0”
および”1”となる付近で平坦領域が得られている。こ
れは、上記(1)式で説明したように、光学的に点対称
配置を有する光回路では、T2 =1のときに光強度透過
度Tcross が”0”となり、T2 ≒0.5のときに光強
度透過度Tcross がほぼ”1”となる性質からである。
FIGS. 5A, 5B and 5C respectively show
Asymmetric Mach-Zehnder optical interferometer type optical multiplexing / demultiplexing shown in FIG.
40, asymmetric Mach-Zehnder optical interferometer type shown in FIG.
Optical multiplexer / demultiplexer 30 and waveguide type optical multiplexer / demultiplexer shown in FIG.
Light intensity transmittance T at 10 cross Shows the frequency dependence of
It is a graph. From this graph, we can see that
Karu (1) As shown in FIG. 5 (A), the asymmetric matrix shown in FIG.
In the Bach-Zehnder optical interferometer type optical multiplexer / demultiplexer 40,
Transient Tcross Changes sinusoidally with frequency,
Intensity transparency Tcross The minimum value of is about "0.5". (2) As shown in FIG. 5B, the asymmetric matrix shown in FIG.
In the Bach-Zehnder optical interferometer type optical multiplexer / demultiplexer 30, the optical intensity transmission is
Transient Tcross Is the light intensity transmission Tcross Becomes "1"
A flat area is obtained in the vicinity. This is the above formula (1)
An optical circuit having an optically point-symmetrical arrangement as described in 1.
Then T2 Light intensity transmittance T when ≈0.5cross Gaho
This is due to the property of becoming "1". In addition, the non-
Light intensity at the symmetric Mach-Zehnder interferometer type optical multiplexer / demultiplexer 30
Transparency Tcross The minimum value of is also about "0.5"
It (3) As shown in FIG. 5C, the waveguide type shown in FIG.
In the optical multiplexer / demultiplexer 10, the light intensity transmittance Tcross Is "0"
A flat region is obtained in the vicinity of and "1". This
This is an optical point symmetry, as explained in equation (1) above.
In an optical circuit having an arrangement, T2 Transmits light intensity when = 1
Degree Tcross Becomes "0" and T2 Light intensity when ≈0.5
Transparency Tcross This is due to the property that is almost "1".

【0032】次に、図1に示した導波路型光合分波器1
0を試作した一例について説明する。
Next, the waveguide type optical multiplexer / demultiplexer 1 shown in FIG.
An example of prototype 0 will be described.

【0033】本試作例においては、火炎加水分解反応に
よる公知のガラス膜堆積技術と反応性イオンエッチング
による公知の微細加工技術との組み合せにより、導波路
型光合分波器10を試作した。この作成手法では、フォ
トリソグラフィ技術が利用可能であるため、第1の光導
波路131 および第2の光導波路132 の導波路長を
0.1μm以下の精度で作成することができる。
In this prototype, a waveguide type optical multiplexer / demultiplexer 10 was prototyped by a combination of a known glass film deposition technique by flame hydrolysis reaction and a known fine processing technique by reactive ion etching. Since photolithography technology can be used in this fabrication method, the waveguide lengths of the first optical waveguide 13 1 and the second optical waveguide 13 2 can be fabricated with an accuracy of 0.1 μm or less.

【0034】図6に、導波路型光合分波器10全体の入
力ポート16からスルーポート17 1 への光強度透過度
through および入力ポート16からクロスーポート1
2への光強度透過度Tcross の周波数依存性の実測結
果を示す。
FIG. 6 shows the entire waveguide type optical multiplexer / demultiplexer 10.
Force port 16 to through port 17 1 Light intensity transmission to
Tthrough And input port 16 to cross port 1
72Intensity Tcross Frequency-dependent measurement result of
Show the result.

【0035】この実測結果では、入力ポート16からス
ルーポート171 への光強度透過度Tthrough と入力ポ
ート16からクロスーポート172 への光強度透過度T
cros s とにおいて若干特性が異なるが、ともに平均2G
Hzの周波数領域で平坦領域が得られている。
In this measurement result, the light intensity transmittance T through from the input port 16 to the through port 17 1 and the light intensity transmittance T from the input port 16 to the cross-port 17 2 are shown.
The characteristics are slightly different from cros s , but both are average 2G
A flat region is obtained in the frequency region of Hz.

【0036】なお、本実施例の導波路型光合分波器10
では、第1の方向性結合部141 と第2の方向性結合部
142 との間では、第2の光導波路132 の方が第1の
光導波路131 よりも第1の導波路長差ΔL1 だけ長
く、第2の方向性結合部142と第3の方向性結合部1
3 との間では、第1の光導波路131 の方が第2の光
導波路132 よりも第2の導波路長差ΔL2 だけ長く、
第3の方向性結合部14 3 と第4の方向性結合部144
との間では、第2の光導波路132 の方が第1の光導波
路131 よりも第3の導波路長差ΔL3 だけ長く、第4
の方向性結合部144 と第5の方向性結合部145 との
間では、第1の光導波路131 の方が第2の光導波路1
2 よりも第4の導波路長差ΔL4 だけ長くした。しか
し、逆に、第1の方向性結合部141 と第2の方向性結
合部142 との間では、第1の光導波路131 の方が第
2の光導波路132 よりも第1の導波路長差ΔL1 だけ
長く、第2の方向性結合部142 と第3の方向性結合部
143 との間では、第2の光導波路132 の方が第1の
光導波路131 よりも第2の導波路長差ΔL2 だけ長
く、第3の方向性結合部143 と第4の方向性結合部1
4 との間では、第1の光導波路131 の方が第2の光
導波路132 よりも第3の導波路長差ΔL3 だけ長く、
第4の方向性結合部144 と第5の方向性結合部145
との間では、第2の光導波路132 の方が第2の光導波
路131 よりも第4の導波路長差ΔL4 だけ長くして
も、同様の特性が得られる。
The waveguide type optical multiplexer / demultiplexer 10 of this embodiment is used.
Then, the first directional coupling portion 141 And the second directional coupler
142 Between the second optical waveguide 13 and2 Is the first
Optical waveguide 131 First waveguide length difference ΔL1 Only long
The second directional coupling portion 142And the third directional coupler 1
Four3 Between the first optical waveguide 13 and1 Is the second light
Waveguide 132 Than the second waveguide length difference ΔL2 Only long
Third directional coupling portion 14 3 And the fourth directional coupler 14Four 
Between the second optical waveguide 13 and2 Is the first optical waveguide
Road 131 Than the third waveguide length difference ΔL3 Only long, 4th
Directional coupling portion 14Four And the fifth directional coupler 14Five With
In between, the first optical waveguide 131 Is the second optical waveguide 1
Three2 Than the fourth waveguide length difference ΔLFour Made it longer. Only
On the contrary, the first directional coupling portion 141 And the second direction
Joint part 142 Between the first optical waveguide 13 and1 Is the first
2 optical waveguide 132 First waveguide length difference ΔL1 Only
Long, second directional coupling 142 And the third directional coupler
143 Between the second optical waveguide 13 and2 Is the first
Optical waveguide 131 Than the second waveguide length difference ΔL2 Only long
The third directional coupling portion 143 And the fourth directional coupler 1
FourFour Between the first optical waveguide 13 and1 Is the second light
Waveguide 132 Than the third waveguide length difference ΔL3 Only long
Fourth directional coupling portion 14Four And the fifth directional coupler 14Five 
Between the second optical waveguide 13 and2 Is the second optical waveguide
Road 131 Than the fourth waveguide length difference ΔLFour Just make it longer
Also has similar characteristics.

【0037】図7は、本発明の導波路型光合分波器の第
2の実施例を示す平面図である。
FIG. 7 is a plan view showing a second embodiment of the waveguide type optical multiplexer / demultiplexer of the present invention.

【0038】本実施例の導波路型光合分波器70は、図
1に示した第3の方向性結合部14 3 の代わりに、第3
の方向性結合部143 の結合率の半分の結合率を有する
第6の方向性結合部746 と、第3の方向性結合部14
3 の結合率の半分の結合率を有する第7の方向性結合部
747 とを含み、かつ、第6の方向性結合部746 と第
7の方向性結合部747 との間では、第1の光導波路7
1 の導波路長と第2の光導波路732 の導波路長とが
等しいかほぼ等しい点で、図1に示した第1の実施例の
導波路型光合分波器10と異なる。
The waveguide type optical multiplexer / demultiplexer 70 of this embodiment is shown in FIG.
The third directional coupling portion 14 shown in FIG. 3 Instead of the third
Directional coupling portion 143 Has a binding rate of half the binding rate of
Sixth directional coupling portion 746 And the third directional coupling portion 14
3 Seventh directional coupling portion having a coupling rate of half the coupling rate of
747 And a sixth directional coupling portion 74 including6 And the
7 directional coupler 747 Between the first optical waveguide 7 and
Three1 Waveguide length and second optical waveguide 732 The waveguide length of
In terms of equality or near equality, in the first embodiment shown in FIG.
Different from the waveguide type optical multiplexer / demultiplexer 10.

【0039】すなわち、等しい光路長(導波路長)を有
する2本の光導波路をそれぞれ伝搬する2つの光波を考
えたとき、各光波の位相差は、一般に、伝搬距離に関係
なく一定に保たれる。光の干渉現象は2つの光波の位相
差を利用して生じる現象であるため、2本の光導波路の
光路長(導波路長)をどのような長さにとっても、光路
長差(導波路長差)が一定であれば、全体の干渉現象す
なわち光合分波特性は変わらない。したがって、図1に
示した第3の方向性結合部143 を第6の方向性結合部
746 と第7の方向性結合部747 とに分け、第6の方
向性結合部74 6 と第7の方向性結合部747 との間の
第1の光導波路731 の導波路長と第2の光導波路73
2 の導波路長とを等しくまたはほぼ等しくしても、光合
分波特性は変わらない。
That is, if the equal optical path length (waveguide length) is present,
Consider two light waves propagating in two optical waveguides
, The phase difference of each light wave is generally related to the propagation distance.
It is kept constant without. The interference phenomenon of light is the phase of two light waves
Since it is a phenomenon that takes advantage of the difference,
Regardless of the optical path length (waveguide length), the optical path
If the length difference (waveguide length difference) is constant, the total interference phenomenon
That is, the optical multiplexing / demultiplexing characteristics do not change. Therefore, in FIG.
The third directional coupling portion 14 shown3 To the sixth directional coupler
746 And the seventh directional coupler 747 Divided into and 6th
Directional coupling 74 6 And the seventh directional coupler 747 Between
First optical waveguide 731 Waveguide length and second optical waveguide 73
2 Even if the waveguide lengths of
The demultiplexing characteristics do not change.

【0040】以上の理由により、本実施例の導波路型光
合分波器70においても、図1に示した第1の実施例の
導波路型光合分波器10と同様の光合分波特性が得られ
る。実際に、導波路型光合分波器70全体の入力ポート
76からクロスーポート77 2 への光強度透過度T
cross の周波数依存性を実測した結果、図6とほぼ同じ
透過特性が得られた。
For the above reasons, the waveguide type light of this embodiment is
Also in the multiplexer / demultiplexer 70 of the first embodiment shown in FIG.
Optical multiplexing / demultiplexing characteristics similar to those of the waveguide type optical multiplexer / demultiplexer 10 can be obtained.
It Actually, the input port of the entire waveguide type optical multiplexer / demultiplexer 70
From 76 to Crossport 77 2 Intensity T
cross As a result of actually measuring the frequency dependence of
Transmission characteristics were obtained.

【0041】以上の説明において、光学的に点対称配置
とは、幾何学的に点対称であるという意味ではない。す
なわち、光学的には、光波が同様な干渉効果をもつよう
な回路は同一とみなされるため、トポロジカルに同一で
あり、対応する光導波路の光路長差および対応する方向
性結合部の結合率が同じである2つの回路は、光学的に
同一回路とみなされる。
In the above description, the optical point symmetry arrangement does not mean that the point symmetry is geometrically symmetric. That is, optically, circuits in which light waves have similar interference effects are considered to be the same, and therefore they are topologically the same, and the optical path length difference of the corresponding optical waveguide and the coupling rate of the corresponding directional coupling portion are the same. Two circuits that are the same are considered optically identical circuits.

【0042】光導波路として、シリコン基板上に形成し
た石英系単一モード光導波路を用いたが、本発明の導波
路型光合分波器はこれに限定されるものではなく、他の
材料系の光導波路でも適用対象となる。たとえば、多成
分ガラス基板やニオブ酸リチウム結晶基板上に金属イオ
ン拡散技術により形成したイオン拡散光導波路でもよ
い。
Although the silica type single mode optical waveguide formed on the silicon substrate is used as the optical waveguide, the waveguide type optical multiplexer / demultiplexer of the present invention is not limited to this, and other material type optical waveguides can be used. It is also applicable to optical waveguides. For example, it may be an ion diffusion optical waveguide formed by a metal ion diffusion technique on a multi-component glass substrate or a lithium niobate crystal substrate.

【0043】シリコン基板上に個別に光合分波器が形成
されている例を示したが、同一基板上に多数個の光合分
波器がアレイ状に形成されている場合や、基板上や基板
端部に受発光阻止を直接搭載するハイブリッド光集積回
路の要素として、本発明の光合分波器を適用することが
できることはいうまでもない。
An example in which optical multiplexers / demultiplexers are individually formed on a silicon substrate has been shown. However, when a large number of optical multiplexers / demultiplexers are formed in an array on the same substrate, or on a substrate or a substrate. It goes without saying that the optical multiplexer / demultiplexer of the present invention can be applied as an element of a hybrid optical integrated circuit in which light reception / emission prevention is directly mounted on the end portion.

【0044】[0044]

【発明の効果】本発明は、上述したとおり構成されてい
るため、次に示す効果を奏する。
Since the present invention is configured as described above, it has the following effects.

【0045】第1の光導波路と第2の光導波路との中間
部が5箇所互いに近接されて順次形成された第1乃至第
5の方向性結合部を含み、第1の基本構成回路と第2の
基本構成回路とが回路の中心点(第3の方向性結合部1
3 )に対して光学的にほぼ点対称に配置されるよう構
成されていることにより、リング路を用いることなく、
光強度透過度が”1”となる周波数帯および”0”とな
る周波数帯を平坦化することができるため、高速性を損
なうことなく透過特性の改善が図れる。
An intermediate portion between the first optical waveguide and the second optical waveguide includes first to fifth directional coupling portions which are sequentially formed in close proximity to each other at five places, and include a first basic component circuit and a first basic configuration circuit. 2 is the center point of the circuit (third directional coupling section 1
4 3 ) is arranged so as to be optically substantially point-symmetrical with respect to 4 3 ), so that a ring path is not used.
Since the frequency band where the light intensity transmittance is “1” and the frequency band where the light intensity transmittance is “0” can be flattened, the transmission characteristics can be improved without impairing the high speed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の導波路型光合分波器の第1の実施例を
示す平面図である。
FIG. 1 is a plan view showing a first embodiment of a waveguide type optical multiplexer / demultiplexer according to the present invention.

【図2】図1に示した導波路型光合分波器を光学的に等
価に表した図である。
FIG. 2 is a diagram optically equivalent to the waveguide type optical multiplexer / demultiplexer shown in FIG.

【図3】図2に示した基本構成回路と光学的に等価な非
対称マッハツェンダ光干渉計型光合分波器を示す平面図
である。
FIG. 3 is a plan view showing an asymmetric Mach-Zehnder interferometer type optical multiplexer / demultiplexer that is optically equivalent to the basic configuration circuit shown in FIG.

【図4】図3に示した非対称マッハツェンダ光干渉計型
光合分波器の構成を説明するための非対称マッハツェン
ダ光干渉計型光合分波器を示す平面図である。
4 is a plan view showing an asymmetric Mach-Zehnder interferometer type optical multiplexer / demultiplexer for explaining the configuration of the asymmetric Mach-Zehnder interferometer type optical multiplexer / demultiplexer shown in FIG.

【図5】入力ポートからクロスポートへの光強度透過度
の周波数依存性を示すグラフであり、(A)は図4に示
した非対称マッハツェンダ光干渉計型光合分波器の場合
のグラフ、(B)は図3に示した非対称マッハツェンダ
光干渉計型光合分波器の場合のグラフ、(C)は図1に
示した導波路型光合分波器の場合のグラフである。
5 is a graph showing frequency dependence of light intensity transmittance from an input port to a cross port, FIG. 5A is a graph in the case of the asymmetric Mach-Zehnder interferometer type optical multiplexer / demultiplexer shown in FIG. 3B is a graph in the case of the asymmetric Mach-Zehnder interferometer type optical multiplexer / demultiplexer shown in FIG. 3, and FIG. 7C is a graph in the case of the waveguide type optical multiplexer / demultiplexer shown in FIG.

【図6】図1に示した導波路型光合分波器の一試作例に
おける入力ポートからクロスーポートへの光強度透過度
の周波数依存性の実測結果を示すグラフである。
6 is a graph showing a measurement result of frequency dependence of light intensity transmittance from an input port to a cross-port in a prototype example of the waveguide type optical multiplexer / demultiplexer shown in FIG.

【図7】本発明の導波路型光合分波器の第2の実施例を
示す平面図である。
FIG. 7 is a plan view showing a second embodiment of the waveguide type optical multiplexer / demultiplexer of the present invention.

【図8】従来の代表的な導波型光合分波器の一つである
マッハツェンダ光干渉計型光合分波器の一例を示す平面
図である。
FIG. 8 is a plan view showing an example of a Mach-Zehnder interferometer type optical multiplexer / demultiplexer, which is one of typical conventional guided wave type optical multiplexer / demultiplexers.

【図9】図8に示したマッハツェンダ光干渉計型光合分
波器における信号光Pinに対する信号光Pcross の光強
度透過度および信号光Pinに対する信号光Pthrough
光強度透過度の周波数依存性の一例を示すグラフであ
る。
[9] the frequency of the Mach-Zehnder interferometer type optical coupler-signal light P through the light intensity transmittance with respect to light intensity transmittance and the signal light P in the signal light P cross with respect to the signal light P in the filter shown in FIG. 8 It is a graph which shows an example of dependency.

【図10】図8に示したマッハツェンダ光干渉計型光合
分波器における問題の解決が図れる導波型光合分波器の
一つとして提案されているマッハツェンダ光干渉計型光
合分波器を示す平面図である。
10 shows a Mach-Zehnder optical interferometer type optical multiplexer / demultiplexer proposed as one of guided wave type optical multiplexer / demultiplexers capable of solving the problem in the Mach-Zehnder optical interferometer type optical multiplexer / demultiplexer shown in FIG. It is a top view.

【図11】図10に示したマッハツェンダ光干渉計型光
合分波器における信号光Pinに対する信号光Pcross
光強度透過度の周波数依存性の一例を示すグラフであ
る。
11 is a graph showing an example of the frequency dependence of the light intensity transmittance of the signal light P cross with respect to the signal light P in in the Mach-Zehnder interferometer type optical multiplexer / demultiplexer shown in FIG.

【符号の説明】[Explanation of symbols]

10,70 導波路型光合分波器 11,71 シリコン基板 131,331,431,731 第1の光導波路 132,332,432,732 第2の光導波路 141,341,441,741 第1の方向性結合部 142,342,442,742 第2の方向性結合部 143,343 第3の方向性結合部 144,744 第4の方向性結合部 145,745 第5の方向性結合部 151,351,451,751 第1の薄膜ヒータ 152,352,452,752 第2の薄膜ヒータ 153,353,753 第3の薄膜ヒータ 154,354,754 第4の薄膜ヒータ 155,755 第5の薄膜ヒータ 156,756 第6の薄膜ヒータ 157,757 第7の薄膜ヒータ 158,758 第8の薄膜ヒータ 16,76 入力ポート 171,771 スルーポート 172,772 クロスポート 201 第1の基本構成回路 202 第2の基本構成回路 30,40 非対称マッハツェンダ光干渉計型光合分
波器 746 第6の方向性結合部 747 第7の方向性結合部 Pin 信号光 Tthrouh,Tcross,T2 光強度透過度 s,t, 2t 結合率
10 , 70 Waveguide type optical multiplexer / demultiplexer 11, 71 Silicon substrate 13 1 , 33 1 , 43 1 , 73 1 First optical waveguide 13 2 , 33 2 , 43 2 , 73 2 Second optical waveguide 14 1 , 34 1 , 44 1 , 74 1 1st directional coupling part 14 2 , 34 2 , 44 2 , 74 2 2nd directional coupling part 14 3 , 34 3 3rd directional coupling part 14 4 , 74 4 Fourth directional coupling portion 14 5 , 74 5 Fifth directional coupling portion 15 1 , 35 1 , 45 1 , 75 1 First thin film heater 15 2 , 35 2 , 45 2 , 75 2 Second thin film Heater 15 3 , 35 3 , 75 3 Third thin film heater 15 4 , 35 4 , 75 4 Fourth thin film heater 15 5 , 75 5 Fifth thin film heater 15 6 , 75 6 Sixth thin film heater 15 7 , 75 7 seventh thin film heater 15 8, 75 8 8 thin film heater 16,76 input port 17 1 of 77 1 Surupo 17 2, 77 2 crossport 20 1 first basic configuration circuit 20 2 second basic configuration circuit 30 and 40 asymmetrical Mach-Zehnder interferometer type optical demultiplexer 74 6 sixth directional coupling portion 74 7 seventh Directional coupling part P in Signal light T throuh , T cross , T 2 Light intensity transmittance s, t, 2t Coupling rate

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基板と、該基板上に形成された第1の光
導波路および第2の光導波路とを含み、 該第1および第2の光導波路のいずれか一方の光導波路
から入射された2つの信号光を分波して、該2つの信号
光のいずれか一方の信号光を前記一方の光導波路から出
射させるとともに、前記2つの信号光の他方の信号光を
前記第1および第2の光導波路の他方の光導波路から出
射させ、 前記第1の光導波路から入射された信号光と前記第2の
光導波路から入射された信号光とを合波して、前記第1
および第2の光導波路のいずれか一方の光導波路から出
射させる導波路型光合分波器において、 前記第1の光導波路と前記第2の光導波路との中間部が
5箇所互いに近接されて順次形成された第1乃至第5の
方向性結合部を含み、 前記第1の方向性結合部と前記第2の方向性結合部との
間では、前記第2の光導波路の方が前記第1の光導波路
よりも第1の光路長差だけ長く、 前記第2の方向性結合部と前記第3の方向性結合部との
間では、前記第1の光導波路の方が前記第2の光導波路
よりも第2の光路長差だけ長く、 前記第3の方向性結合部と前記第4の方向性結合部との
間では、前記第2の光導波路の方が前記第1の光導波路
よりも第3の光路長差だけ長く、 前記第4の方向性結合部と前記第5の方向性結合部との
間では、前記第1の光導波路の方が前記第2の光導波路
よりも第4の光路長差だけ長く、 前記第1乃至第4の光路長差が、等しいかほぼ等しく、 前記第1の方向性結合部の結合率と前記第5の方向性結
合部の結合率とが、等しいかほぼ等しく、 前記第2の方向性結合部の結合率と前記第4の方向性結
合部の結合率とが、等しいかほぼ等しいことを特徴とす
る導波路型光合分波器。
1. A substrate, and a first optical waveguide and a second optical waveguide formed on the substrate, wherein light is incident from one of the first and second optical waveguides. The two signal lights are demultiplexed, one of the two signal lights is emitted from the one optical waveguide, and the other signal light of the two signal lights is divided into the first and second signal lights. Of the first optical waveguide, the signal light incident from the first optical waveguide and the signal light incident from the second optical waveguide are combined to generate the first optical waveguide.
In a waveguide type optical multiplexer / demultiplexer that emits light from either one of the second optical waveguide and the second optical waveguide, the intermediate portions of the first optical waveguide and the second optical waveguide are arranged in close proximity to each other at five positions and are sequentially arranged. A first to a fifth directional coupling portion formed, wherein the second optical waveguide is the first between the first directional coupling portion and the second directional coupling portion. Is longer than the optical waveguide by the first optical path length difference, and the first optical waveguide is the second optical waveguide between the second directional coupling portion and the third directional coupling portion. The second optical waveguide is longer than the first optical waveguide between the third directional coupling portion and the fourth directional coupling portion, the second optical waveguide being longer than the waveguide by the second optical path length difference. Is also longer by the third optical path length difference, and the first directional coupling section and the fifth directional coupling section are provided with the first directional coupling section. The optical waveguide is longer than the second optical waveguide by a fourth optical path length difference, the first to fourth optical path length differences are equal or substantially equal, and the coupling ratio of the first directional coupling portion is And the coupling rate of the fifth directional coupling section are equal or substantially equal to each other, and the coupling rate of the second directional coupling section and the coupling rate of the fourth directional coupling section are equal to or substantially equal to each other. A waveguide type optical multiplexer / demultiplexer characterized by the above.
【請求項2】 前記第1の方向性結合部と前記第2の方
向性結合部との間では、前記第1の光導波路の方が前記
第2の光導波路よりも第1の光路長差だけ長く、 前記第2の方向性結合部と前記第3の方向性結合部との
間では、前記第2の光導波路の方が前記第1の光導波路
よりも第2の光路長差だけ長く、 前記第3の方向性結合部と前記第4の方向性結合部との
間では、前記第1の光導波路の方が前記第2の光導波路
よりも第3の光路長差だけ長く、 前記第4の方向性結合部と前記第5の方向性結合部との
間では、前記第2の光導波路の方が前記第1の光導波路
よりも第4の光路長差だけ長いことを特徴とする請求項
1記載の導波路型光合分波器。
2. A first optical path length difference between the first optical waveguide and the second optical waveguide between the first directional coupling portion and the second directional coupling portion. Between the second directional coupling portion and the third directional coupling portion, the second optical waveguide is longer than the first optical waveguide by a second optical path length difference. Between the third directional coupling portion and the fourth directional coupling portion, the first optical waveguide is longer than the second optical waveguide by a third optical path length difference, Between the fourth directional coupling portion and the fifth directional coupling portion, the second optical waveguide is longer than the first optical waveguide by a fourth optical path length difference. The waveguide type optical multiplexer / demultiplexer according to claim 1.
【請求項3】 前記第3の方向性結合部の代わりに、該
第3の方向性結合部の結合率の半分の結合率を有する第
6の方向性結合部および前記第3の方向性結合部の結合
率の半分の結合率を有する第7の方向性結合部を含み、 前記第6の方向性結合部と前記第7の方向性結合部との
間では、前記第1の光導波路731 の光路長と前記第2
の光導波路の光路長とが等しいかほぼ等しいことを特徴
とする請求項1または請求項2記載の導波路型光合分波
器。
3. A sixth directional coupling section and a third directional coupling having a coupling rate of half the coupling rate of the third directional coupling section instead of the third directional coupling section. A seventh directional coupling section having a coupling rate that is half the coupling rate of the section, and between the sixth directional coupling section and the seventh directional coupling section, the first optical waveguide 73. 1 optical path length and the second
The waveguide type optical multiplexer / demultiplexer according to claim 1 or 2, wherein the optical path lengths of the optical waveguides are equal or substantially equal to each other.
【請求項4】 前記第1の光導波路と前記第2の光導波
路とがそれぞれ、平面基板上に形成された石英系ガラス
層に埋設された、石英系ガラスからなるコア部より構成
された石英系単一モード光導波路であることを特徴とす
る請求項1乃至請求項3いずれか1項記載の光合分波
器。
4. Quartz composed of a core portion made of silica-based glass in which the first optical waveguide and the second optical waveguide are embedded in a silica-based glass layer formed on a flat substrate, respectively. An optical multiplexer / demultiplexer according to any one of claims 1 to 3, wherein the optical multiplexer / demultiplexer is a system single mode optical waveguide.
JP3658492A 1992-02-24 1992-02-24 Waveguide type optical multiplexer / demultiplexer Expired - Lifetime JP2567175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3658492A JP2567175B2 (en) 1992-02-24 1992-02-24 Waveguide type optical multiplexer / demultiplexer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3658492A JP2567175B2 (en) 1992-02-24 1992-02-24 Waveguide type optical multiplexer / demultiplexer

Publications (2)

Publication Number Publication Date
JPH05232333A true JPH05232333A (en) 1993-09-10
JP2567175B2 JP2567175B2 (en) 1996-12-25

Family

ID=12473826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3658492A Expired - Lifetime JP2567175B2 (en) 1992-02-24 1992-02-24 Waveguide type optical multiplexer / demultiplexer

Country Status (1)

Country Link
JP (1) JP2567175B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022983A (en) * 2000-05-17 2002-01-23 Lucent Technol Inc Tuning type all pass optical filter enlargen in free spectrum range
JP2002040493A (en) * 2000-05-17 2002-02-06 Lucent Technol Inc Optical filter
JP2003149472A (en) * 2001-11-09 2003-05-21 Furukawa Electric Co Ltd:The Optical wavelength multiplexer-demultiplexer
WO2005124412A1 (en) * 2004-06-21 2005-12-29 Pirelli & C. S.P.A. Optical band splitter/combiner and apparatus comprising the same
JP2006011062A (en) * 2004-06-25 2006-01-12 Furukawa Electric Co Ltd:The Broadband wavelength multiplexing and demultiplexing filter
US7469079B2 (en) 2004-01-26 2008-12-23 The Furukawa Electric Co., Ltd. Broadband wavelength multiplexing and demultiplexing filter and optical splitter with optical signal multiplexing and demultiplexing function
JP2009157114A (en) * 2007-12-26 2009-07-16 Nippon Telegr & Teleph Corp <Ntt> Waveguide type optical interferometer circuit
JP2010134224A (en) * 2008-12-05 2010-06-17 Oki Electric Ind Co Ltd Optical multiplexing/demultiplexing device
JP2013186358A (en) * 2012-03-09 2013-09-19 Fujitsu Ltd Wavelength multiplexing/demultiplexing element and optical device using the same
JP2016014836A (en) * 2014-07-03 2016-01-28 富士通株式会社 Optical element, optical transmitter and optical receiver

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002040493A (en) * 2000-05-17 2002-02-06 Lucent Technol Inc Optical filter
JP2002022983A (en) * 2000-05-17 2002-01-23 Lucent Technol Inc Tuning type all pass optical filter enlargen in free spectrum range
JP2003149472A (en) * 2001-11-09 2003-05-21 Furukawa Electric Co Ltd:The Optical wavelength multiplexer-demultiplexer
US7885493B2 (en) 2004-01-26 2011-02-08 The Furukawa Electric Co., Ltd. Broadband wavelength multiplexing and demultiplexing filter and optical splitter with optical signal multiplexing and demultiplexing function
US8023781B2 (en) 2004-01-26 2011-09-20 The Furukawa Electric Co., Ltd. Broadband wavelength multiplexing and demultiplexing filter and optical splitter with optical signal multiplexing and demultiplexing function
US7469079B2 (en) 2004-01-26 2008-12-23 The Furukawa Electric Co., Ltd. Broadband wavelength multiplexing and demultiplexing filter and optical splitter with optical signal multiplexing and demultiplexing function
WO2005124412A1 (en) * 2004-06-21 2005-12-29 Pirelli & C. S.P.A. Optical band splitter/combiner and apparatus comprising the same
US7860359B2 (en) 2004-06-21 2010-12-28 Pgt Photonics S.P.A. Optical band splitter/combiner and apparatus comprising the same
JP2006011062A (en) * 2004-06-25 2006-01-12 Furukawa Electric Co Ltd:The Broadband wavelength multiplexing and demultiplexing filter
JP2009157114A (en) * 2007-12-26 2009-07-16 Nippon Telegr & Teleph Corp <Ntt> Waveguide type optical interferometer circuit
JP2010134224A (en) * 2008-12-05 2010-06-17 Oki Electric Ind Co Ltd Optical multiplexing/demultiplexing device
JP2013186358A (en) * 2012-03-09 2013-09-19 Fujitsu Ltd Wavelength multiplexing/demultiplexing element and optical device using the same
JP2016014836A (en) * 2014-07-03 2016-01-28 富士通株式会社 Optical element, optical transmitter and optical receiver

Also Published As

Publication number Publication date
JP2567175B2 (en) 1996-12-25

Similar Documents

Publication Publication Date Title
US6389203B1 (en) Tunable all-pass optical filters with large free spectral ranges
JP2005010805A6 (en) Waveguide type optical interferometer
JP2005010805A (en) Waveguide optical interferometer
JP2003057457A (en) Optical filter
JP2567175B2 (en) Waveguide type optical multiplexer / demultiplexer
JPH05323246A (en) Optical multiplexer/demultiplexer
US10142032B2 (en) Temperature insensitive delay line interferometer
JPS62183406A (en) Waveguide type optical interferometer
US6904204B2 (en) Array waveguide diffraction grating type optical multiplexer/demultiplexer
US5790720A (en) Acoustic-optic silica optical circuit switch
US20030169964A1 (en) Power splitter/combiner with parameter tolerance and design process therefor
US6728446B2 (en) Compact wavelength routing device having substantially flat passband
CN111752016B (en) Broadband integrated three-way wavelength division multiplexer
JPH05323390A (en) Frequency multiplex type optical switch and frequency multiplex type optical switch matrix
JPH0660982B2 (en) Waveguide-type Matsuha-Tsender optical interferometer
JP3175499B2 (en) Waveguide type optical multiplexer / demultiplexer
US6819859B2 (en) Planar lightwave circuit type variable optical attenuator
JP2848144B2 (en) Tunable optical filter
JP2691097B2 (en) Waveguide type optical multiplexer / demultiplexer
US6134361A (en) Optical multiplexer/demultiplexer
JPH0660803B2 (en) Matsu Ha Tsuender-type optical interferometer
JPH06313868A (en) Waveguide type optical pulse multiple circuit
JPH05181172A (en) Optical multiplexer/demultiplexer
JPH0743484B2 (en) Waveguide optical switch
JPH01277806A (en) Optical multiplexer/demultiplexer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101003

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 16