JPH05203291A - Refrigeration cycle - Google Patents

Refrigeration cycle

Info

Publication number
JPH05203291A
JPH05203291A JP4014364A JP1436492A JPH05203291A JP H05203291 A JPH05203291 A JP H05203291A JP 4014364 A JP4014364 A JP 4014364A JP 1436492 A JP1436492 A JP 1436492A JP H05203291 A JPH05203291 A JP H05203291A
Authority
JP
Japan
Prior art keywords
pressure
refrigerant
dryness
temperature
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4014364A
Other languages
Japanese (ja)
Inventor
Shigeo Numazawa
成男 沼澤
Yasushi Yamanaka
康司 山中
Takahisa Suzuki
隆久 鈴木
Keita Honda
桂太 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP4014364A priority Critical patent/JPH05203291A/en
Publication of JPH05203291A publication Critical patent/JPH05203291A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/153Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with subsequent heating, i.e. with the air, given the required humidity in the central station, passing a heating element to achieve the required temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

PURPOSE:To operate a vaporizer effectively and enhance its cycle efficiency by controlling the dryness of refrigerant at the inlet of the vaporizer so as to minimize the dryness. CONSTITUTION:In a dryness control valve 16 installed on the down stream side of an indoor vaporizer the opening of a throttling section 16a of the valve in controlled by the balance between the pressure (pressure corresponding to the temperature of refrigerant at the outlet of the indoor vaporizer) inside a heat sensing bulb 16h acting on the upper side of a diaphragm 16c, the pressure on the lower pressure side on the down stream of the throttling section 16a acting on the lower side of the diaphragm 16c and a spring force of an adjustable spring 16g. More specifically, the refrigerant condensed and liquefied in the indoor vaporizer is cooled in a subcooled state to a saturated temperature corresponding to the total pressure of the lower pressure on the down stream side of the throttling section 16a of the dryness control valve 16 and the spring force of the adjustable spring 16g.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は車両用空気調和装置等に
用いられる冷凍サイクルに関し、特に蒸発器入口の冷媒
の乾き度制御に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating cycle used for an air conditioner for a vehicle and the like, and more particularly to controlling the dryness of a refrigerant at an evaporator inlet.

【0002】[0002]

【従来の技術】冷凍サイクルでは、蒸発器入口の冷媒の
乾き度を小さくすることで蒸発器の効率を高め、冷房能
力を向上させることができる。この蒸発器入口の冷媒乾
き度を、図4および図5に示すレシーバサイクルで説明
する。図4は、圧縮機100、凝縮器101、レシーバ
102、膨張弁103、蒸発器104を環状に接続して
なる周知の冷凍サイクルであり、サイクル上の冷媒の状
態点(a〜d)を図5のモリエル線図に示す。この場
合、蒸発器入口の乾き度xは、ある高圧(Pb)および
低圧(Pc)において、膨張弁で減圧された点cの気液
重量流量比であり、凝縮後の点b(サブクール=0)の
状態で決定される。
2. Description of the Related Art In a refrigeration cycle, the efficiency of the evaporator can be improved and the cooling capacity can be improved by reducing the dryness of the refrigerant at the inlet of the evaporator. The dryness of the refrigerant at the inlet of the evaporator will be described with reference to the receiver cycle shown in FIGS. 4 and 5. FIG. 4 is a known refrigeration cycle in which a compressor 100, a condenser 101, a receiver 102, an expansion valve 103, and an evaporator 104 are annularly connected, and the state points (a to d) of the refrigerant on the cycle are shown. 5 is shown in the Mollier diagram. In this case, the dryness x at the evaporator inlet is the gas-liquid weight flow rate ratio at the point c depressurized by the expansion valve at a certain high pressure (Pb) and low pressure (Pc), and the point b after condensation (subcool = 0. ) Is determined by the state.

【0003】そこで、従来では、点cの乾き度を変える
方法として、以下のように点bのサブクールを変えるこ
とで行なっていた。 レシーバの下流にサブクール用熱交換器を設けてサブ
クールを得る。 レシーバの上流に絞りを設けて、凝縮器内でサブクー
ルを持たせる。 アキュムレータサイクルの減圧手段としてキャピラリ
チューブ等の絞りを設けて、凝縮器内でサブクールを持
たせる。 上記のキャピラリチューブの代わりに、図6に示す
サブクール制御弁200(特開昭56−151858号
公報参照)を設けてサブクールを得る。 なお、サブクール制御弁200は、ダイアフラム201
と連動して絞り部202を開閉する弁体203を備え、
この弁体203の変位が、ダイアフラム201の上側に
作用する感温筒204内の圧力と、ダイアフラム201
の下側に作用する高圧圧力および調節バネ205のバネ
力とのバランスによって調整され、この弁体203の変
位により絞り部202の開度が決定されるものである。
Therefore, conventionally, as a method of changing the dryness at the point c, the subcool at the point b is changed as follows. A subcool heat exchanger is installed downstream of the receiver to obtain a subcool. A throttle is provided upstream of the receiver to give a subcool inside the condenser. A throttle such as a capillary tube is provided as a depressurizing means of the accumulator cycle so that a subcool is provided in the condenser. A subcool is obtained by providing a subcool control valve 200 (see Japanese Patent Laid-Open No. 56-151858) shown in FIG. 6 in place of the above capillary tube. In addition, the subcool control valve 200 is installed in the diaphragm 201.
A valve body 203 that opens and closes the throttle portion 202 in conjunction with
This displacement of the valve element 203 is caused by the pressure inside the temperature sensing cylinder 204 acting on the upper side of the diaphragm 201 and the diaphragm 201.
It is adjusted by the balance between the high pressure acting on the lower side and the spring force of the adjustment spring 205, and the opening of the throttle portion 202 is determined by the displacement of the valve body 203.

【0004】[0004]

【発明が解決しようとする課題】ところが、上述の方法
では、蒸発器入口の乾き度は変化するが、これらはすべ
てサブクールを制御した成り行きの結果である。例え
ば、上記のサブクール制御弁200は、弁入口(高圧
側)の冷媒温度と圧力を検知し、調節バネ205のバネ
力に相当する圧力の飽和温度分のサブクールを持つよう
に、絞り部202の開度が制御される。従って、図7に
示すモリエル線図(サブクール制御弁200を用いたア
キュムレータサイクル)において、高圧圧力がPbから
Pb1へ上昇した場合に、サイクルは、abcdからa1
b1 c1 dとなり、乾き度はxからx1 へと変化してし
まう。
In the above method, however, the dryness of the evaporator inlet changes, but these are all the consequences of controlling the subcool. For example, the subcool control valve 200 detects the refrigerant temperature and pressure at the valve inlet (high pressure side), and has the subcool for the saturation temperature of the pressure corresponding to the spring force of the adjusting spring 205 so as to have the subcool. The opening is controlled. Therefore, in the Mollier diagram shown in FIG. 7 (accumulator cycle using the subcool control valve 200), when the high pressure rises from Pb to Pb1, the cycle is from abcd to a1.
b1 c1 d, and the dryness changes from x to x1.

【0005】また、図8に示すように、低圧圧力がPc
からPc2へと変化した場合に、サイクルは、abcdか
らa2 bc2 d2 となり、乾き度はxからx2 へと変化
してしまう。このように、高圧圧力あるいは低圧圧力の
変化に伴って、乾き度xが変化(大きくなる)してしま
う。特に、ヒートポンプサイクルでは、吸熱側の熱交換
器である蒸発器の入口冷媒乾き度を常に小さく制御する
必要があり、上述のように乾き度が大きいと、蒸発器の
効率を低下させるとともに、圧力損失も大きくなり、サ
イクル効率(COP)が著しく悪化することになる。本
発明は、上記事情に基づいて成されたもので、その目的
は、蒸発器入口の冷媒乾き度を小さく制御することによ
り、蒸発器を有効に働かせて、サイクル効率の向上を図
ることにある。
Further, as shown in FIG. 8, the low pressure is Pc.
When changing from Pc2 to Pc2, the cycle changes from abcd to a2 bc2 d2, and the dryness changes from x to x2. In this way, the dryness x changes (increases) as the high pressure or the low pressure changes. In particular, in the heat pump cycle, it is necessary to control the inlet refrigerant dryness of the evaporator, which is the heat exchanger on the heat absorption side, to be constantly small.If the dryness is large as described above, the efficiency of the evaporator is reduced and the pressure is reduced. The loss also increases, and the cycle efficiency (COP) deteriorates significantly. The present invention has been made based on the above circumstances, and an object thereof is to control the dryness of the refrigerant at the inlet of the evaporator to be small, thereby effectively operating the evaporator and improving cycle efficiency. ..

【0006】[0006]

【課題を解決するための手段】本発明は、上記目的を達
成するために、冷媒凝縮器の下流に設けられて、前記冷
媒凝縮器より流出する冷媒流量を制御して減圧膨張させ
る減圧手段を備えた冷凍サイクルにおいて、前記減圧手
段は、冷媒流量を絞る絞り部と、この絞り部を開閉する
弁体と、前記絞り部の開度を大きくする方向へ前記弁体
を付勢する付勢手段と、前記冷媒凝縮器より流出する冷
媒の温度変化を圧力変化に変換する感温部とを備え、こ
の感温部の圧力が前記絞り部下流の低圧側圧力および前
記付勢手段の付勢力の合計圧力と釣り合うように前記弁
体を変位させて前記絞り部の開度を調整するように構成
されていることを技術的手段として採用する。
In order to achieve the above object, the present invention provides a pressure reducing means provided downstream of a refrigerant condenser for controlling the flow rate of the refrigerant flowing out from the refrigerant condenser to expand the pressure reduction. In the provided refrigeration cycle, the decompression means includes a throttle portion that throttles a refrigerant flow rate, a valve body that opens and closes the throttle portion, and a biasing means that biases the valve body in a direction of increasing the opening degree of the throttle portion. And a temperature sensitive portion for converting a temperature change of the refrigerant flowing out of the refrigerant condenser into a pressure change, the pressure of the temperature sensitive portion being a low pressure side pressure downstream of the throttle portion and a biasing force of the biasing means. It is adopted as a technical means that the valve body is displaced so as to be balanced with the total pressure to adjust the opening degree of the throttle portion.

【0007】[0007]

【作用】上記構成より成る本発明の冷凍サイクルは、感
温部の圧力と、低圧側圧力および付勢手段の付勢力の合
計圧力とが釣り合う位置まで弁体が変位する。そして、
その弁体の位置に応じて絞り部の開度が調節されて、絞
り部を通過する冷媒流量が制御される。従って、冷媒凝
縮器で凝縮液化された冷媒は、絞り部より下流の低圧側
圧力と付勢手段の付勢力の合計圧力に相当する飽和温度
まで過冷却度を持つことになり、絞り部より下流の冷媒
乾き度は、付勢手段の付勢力に基づいて定まる所定値に
調整される。
In the refrigeration cycle of the present invention having the above structure, the valve body is displaced to a position where the pressure of the temperature sensing portion and the total pressure of the low pressure side pressure and the biasing force of the biasing means are balanced. And
The opening degree of the throttle portion is adjusted according to the position of the valve body, and the flow rate of the refrigerant passing through the throttle portion is controlled. Therefore, the refrigerant condensed and liquefied in the refrigerant condenser has a supercooling degree up to the saturation temperature corresponding to the total pressure of the low-pressure side pressure downstream of the throttle portion and the urging force of the urging means, and the downstream of the throttle portion. The degree of dryness of the refrigerant is adjusted to a predetermined value determined based on the urging force of the urging means.

【0008】[0008]

【実施例】次に、本発明の冷凍サイクルを用いた車両用
空気調和装置の一実施例を、図1ないし図3を基に説明
する。図1は車両用空気調和装置の概略構成図である。
この車両用空気調和装置は、電気自動車に搭載されるも
ので、車室内に送風空気を導くためのダクト1と、この
ダクト1内で車室内に向かう空気流を生じさせる送風機
2、およびアキュムレータ式冷凍サイクル3を備える。
ダクト1は、その上流端に、ダクト1内に空気を取り入
れるための内気導入口4および外気導入口5が設けら
れ、それぞれの導入口4、5の導入量が内外気切替ダン
パ6によって調整される。ダクト1の下流端は、車両の
窓ガラスに向かって送風空気を吐出するDEF吹出口
7、乗員の上半身に向かって送風空気を吐出するVEN
T吹出口8、乗員の足元付近に向かって送風空気を吐出
するFOOT吹出口9に連通され、各吹出口7〜9は、
選択された吹出口モードに応じて作動する吹出口切替ダ
ンパ10、11、12によって切り替えられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an embodiment of a vehicle air conditioner using the refrigeration cycle of the present invention will be described with reference to FIGS. FIG. 1 is a schematic configuration diagram of a vehicle air conditioner.
This vehicle air conditioner is installed in an electric vehicle, and includes a duct 1 for guiding blown air into the vehicle compartment, a blower 2 for generating an air flow toward the vehicle interior in the duct 1, and an accumulator type. A refrigeration cycle 3 is provided.
The duct 1 is provided with an inside air introduction port 4 and an outside air introduction port 5 for introducing air into the duct 1 at the upstream end thereof, and the introduction amounts of the respective introduction ports 4 and 5 are adjusted by the inside / outside air switching damper 6. It The downstream end of the duct 1 is a DEF outlet 7 that discharges blast air toward the window glass of the vehicle, and a VEN that discharges blast air toward the upper body of the occupant.
The T outlet 8 and the FOOT outlet 9 that discharges the blast air toward the vicinity of the feet of the occupant are communicated with each other, and the respective outlets 7 to 9 are
It is switched by the blower outlet switching dampers 10, 11, 12 which operate according to the selected blower outlet mode.

【0009】冷凍サイクル3は、電動モータ13によっ
て駆動される冷媒圧縮機14、ダクト1内に配されて、
冷媒圧縮機14で圧縮された高温、高圧の冷媒を凝縮液
化する室内凝縮器15(本発明の冷媒凝縮器)、本発明
の減圧手段である乾き度制御弁16(下述する)、この
乾き度制御弁16により減圧膨張された冷媒を蒸発させ
る室内蒸発器17と室外蒸発器18、気相冷媒のみを冷
媒圧縮機14に導くアキュムレータ19を備え、これら
の機器は、それぞれ冷媒配管20によって環状に接続さ
れている。なお、室内蒸発器17は、ダクト1内で室内
凝縮器15の空気上流側に配され、乾き度制御弁16で
減圧膨張された冷媒とダクト1内を流れる送風空気との
熱交換を行なう。また、室外蒸発器18は、ダクト1の
外部に配されて、室内蒸発器17より導かれた冷媒と室
外空気との熱交換を行なう。
The refrigeration cycle 3 is arranged in the refrigerant compressor 14 driven by the electric motor 13 and the duct 1.
An indoor condenser 15 (refrigerant condenser of the present invention) that condenses and liquefies the high-temperature and high-pressure refrigerant compressed by the refrigerant compressor 14, a dryness control valve 16 (described below) that is a decompression means of the present invention, and this dryness The indoor evaporator 17 and the outdoor evaporator 18 that evaporate the refrigerant decompressed and expanded by the temperature control valve 16 and the accumulator 19 that guides only the gas-phase refrigerant to the refrigerant compressor 14 are provided with the refrigerant pipe 20 to form an annular shape. It is connected to the. The indoor evaporator 17 is arranged in the duct 1 on the upstream side of the indoor condenser 15 in the air direction, and performs heat exchange between the refrigerant decompressed and expanded by the dryness control valve 16 and the blast air flowing in the duct 1. The outdoor evaporator 18 is arranged outside the duct 1 and exchanges heat between the refrigerant introduced from the indoor evaporator 17 and the outdoor air.

【0010】上記の乾き度制御弁16は、図2に示すよ
うに、絞り部16aが形成された弁本体16b、弁本体
16bの上部に設けられたダイアフラム16c、このダ
イアフラム16cの変位に伴って絞り部16aを開閉す
る弁体16d、ピン16eおよびバネガイド16fを介
して、絞り部16aの開度が大きくなる方向(図2上方
向)へ弁体16dを付勢する調節バネ16g(本発明の
付勢手段)、絞り部16aより上流の冷媒温度(室内凝
縮器15の出口冷媒温度)を検知して、その温度変化を
圧力変化に変換する感温筒16h(本発明の感温部)等
より構成されている。弁本体16bには、室内凝縮器1
5の出口と接続される入口ポート16iおよび室内蒸発
器17の入口に接続される出口ポート16jが取り付け
られて、この両ポート16i、16jは、絞り部16a
を介して連通されている。
As shown in FIG. 2, the dryness control valve 16 has a valve body 16b having a throttle portion 16a, a diaphragm 16c provided on the valve body 16b, and a displacement of the diaphragm 16c. An adjustment spring 16g (of the present invention) that biases the valve body 16d in a direction in which the opening degree of the throttle portion 16a increases (upward in FIG. 2) via the valve body 16d that opens and closes the throttle portion 16a, the pin 16e, and the spring guide 16f. Urging means), a temperature sensing cylinder 16h (temperature sensing part of the present invention) that detects the temperature of the refrigerant upstream of the throttle part 16a (the temperature of the refrigerant exiting the indoor condenser 15) and converts the temperature change into a pressure change. It is composed of The valve body 16b includes an indoor condenser 1
5, an inlet port 16i connected to the outlet of 5 and an outlet port 16j connected to the inlet of the indoor evaporator 17 are attached.
It is communicated through.

【0011】感温筒16hは、内部にガス冷媒が封入さ
れて、室内凝縮器15の出口側冷媒配管20に接触され
ており、その冷媒配管20を流れる冷媒の温度変化を圧
力変化に変換し、キャピラリチューブ16kを介してダ
イアフラム16cの上側に伝える。また、ダイアフラム
16cの下側には、弁本体16bに設けられた連通穴1
6lを通して、絞り部16a下流の圧力が加わるように
なっている。弁体16dは、ダイアフラム16cの上側
に作用する感温筒16h内の圧力と、ダイアフラム16
cの下側に作用する絞り部16aより下流の低圧側圧力
および調節バネ16gのバネ力とがバランスする位置に
変位し、この弁体16dの変位により絞り部16aの開
度が決定される。調節バネ16gは、弁本体16bの下
部に取り付けられたヒッチング16mに螺着される調節
ネジ16nによってバネ力が調節される。なお、上記の
バネガイド16fには連通孔16oが設けられており、
この連通孔16oを介してバネ収容室16pに高圧側圧
力を導入して、バネガイド16fに加わる高圧側圧力の
影響を相殺するようにしてある。
The temperature sensitive cylinder 16h is filled with a gas refrigerant and is in contact with the outlet side refrigerant pipe 20 of the indoor condenser 15. The temperature sensitive cylinder 16h converts a temperature change of the refrigerant flowing through the refrigerant pipe 20 into a pressure change. , To the upper side of the diaphragm 16c via the capillary tube 16k. The communication hole 1 provided in the valve body 16b is provided below the diaphragm 16c.
The pressure downstream of the throttle portion 16a is applied through 6l. The valve element 16d has a structure in which the pressure inside the temperature sensitive tube 16h acting on the upper side of the diaphragm 16c and the diaphragm 16
The pressure on the low pressure side downstream of the throttle portion 16a acting on the lower side of c is displaced to a position where the spring force of the adjusting spring 16g is balanced, and the opening of the throttle portion 16a is determined by the displacement of the valve body 16d. The spring force of the adjusting spring 16g is adjusted by the adjusting screw 16n screwed to the hitching 16m attached to the lower portion of the valve body 16b. The spring guide 16f is provided with a communication hole 16o,
High-pressure side pressure is introduced into the spring accommodating chamber 16p through the communication hole 16o to cancel the influence of the high-pressure side pressure applied to the spring guide 16f.

【0012】次に、本実施例の作動を、図3に示すモリ
エル線図を基に説明する。なお、図3のモリエル線図
は、図1の冷凍サイクル3における冷媒の状態点を示す
ものである。冷媒圧縮機14より吐出された高温、高圧
の気相冷媒(図3a点)は、室内凝縮器15で凝縮液化
(図3b点)された後、乾き度制御弁16を通過する際
に減圧膨張される(図3c点)。減圧された冷媒は、室
内蒸発器17および室外蒸発器18で空気との熱交換に
よって蒸発(図3d点)し、アキュムレータ19を介し
て冷媒圧縮機14に吸引される。一方、送風機2の作動
によってダクト1内に導入された空気は、室内蒸発器1
7で冷却されて除湿された後、室内凝縮器15を通過す
る際に加熱されて、選択された吹出口7〜9より車室内
に吐出されることにより、車室内の除湿暖房が行なわれ
る。
Next, the operation of this embodiment will be described with reference to the Mollier diagram shown in FIG. The Mollier diagram of FIG. 3 shows the state points of the refrigerant in the refrigeration cycle 3 of FIG. The high-temperature, high-pressure gas-phase refrigerant (point in FIG. 3a) discharged from the refrigerant compressor 14 is condensed and liquefied in the indoor condenser 15 (point in FIG. 3b) and then decompressed when passing through the dryness control valve 16. (Fig. 3c point). The depressurized refrigerant is evaporated by heat exchange with air in the indoor evaporator 17 and the outdoor evaporator 18 (point in FIG. 3d), and is sucked into the refrigerant compressor 14 via the accumulator 19. On the other hand, the air introduced into the duct 1 by the operation of the blower 2 is
After being cooled by 7 and dehumidified, it is heated when passing through the indoor condenser 15 and is discharged into the vehicle interior from the selected outlets 7 to 9, thereby performing dehumidification heating of the vehicle interior.

【0013】この作動において、乾き度制御弁16は、
感温筒16h内の圧力が絞り部16aより下流の低圧側
圧力に調節バネ16gのバネ力Fkを加えた圧力と釣り
合うように流量制御を行なう。つまり、乾き度制御弁1
6上流側の冷媒温度が、乾き度制御弁16下流側の圧力
にバネ力Fkを加えた圧力に相当する飽和温度までサブ
クールを持つまで弁体16dを閉じ、それ以上に乾き度
制御弁16上流の冷媒が冷えたら弁体16dを開く。こ
れにより、室内凝縮器15で凝縮液化された冷媒は、乾
き度制御弁16の絞り部16aより下流の低圧側圧力と
調節バネ16gのバネ力Fkとの合計圧力に相当する飽
和温度までサブクールを持つことになる。従って、今、
高圧圧力がPbからPb1へ上昇した場合を考えると、従
来では過冷却度を一定に制御しようとすることから室内
蒸発器17入口の冷媒乾き度が変化する(図7参照)
が、本実施例では、サイクルabcdがサイクルa1 b
1 cdとなり、過冷却度が大きくなって、室内蒸発器1
7入口の冷媒乾き度xは変化しない。
In this operation, the dryness control valve 16 is
The flow rate is controlled so that the pressure in the temperature sensitive cylinder 16h balances with the pressure obtained by adding the spring force Fk of the adjusting spring 16g to the pressure on the low pressure side downstream of the throttle portion 16a. That is, the dryness control valve 1
6 The valve body 16d is closed until the temperature of the refrigerant on the upstream side has a sub-cooling up to the saturation temperature corresponding to the pressure obtained by adding the spring force Fk to the pressure on the downstream side of the dryness control valve 16, and further upstream of the dryness control valve 16 When the refrigerant is cooled, the valve body 16d is opened. As a result, the refrigerant condensed and liquefied in the indoor condenser 15 subcools to a saturation temperature corresponding to the total pressure of the pressure on the low pressure side downstream of the throttle portion 16a of the dryness control valve 16 and the spring force Fk of the adjusting spring 16g. I will have. Therefore, now
Considering the case where the high pressure rises from Pb to Pb1, the degree of refrigerant dryness at the inlet of the indoor evaporator 17 changes because the degree of supercooling is conventionally controlled to be constant (see FIG. 7).
However, in this embodiment, the cycle abcd is the cycle a1 b
1 cd, the degree of supercooling becomes large, and the indoor evaporator 1
The dryness x of the refrigerant at the 7th inlet does not change.

【0014】また、低圧圧力がPcからPc2へ低下した
場合は、室内凝縮器15で凝縮液化された冷媒が、低圧
圧力Pc2とバネ力Fkとの合計圧力に相当する飽和温度
まで過冷却度を持つため、サイクルabcdはサイクル
a2 b2 c2 d2 となり、室内蒸発器17入口の冷媒乾
き度はx2 となる。この低圧領域(Pc〜Pc2)では、
図3に示すように、モリエル線図上において乾き度線が
圧力に対してほぼ比例する。従って、室内蒸発器17入
口の冷媒乾き度は、実用上x=x2 と考えることができ
る。この結果、本実施例の乾き度制御弁16を使用する
ことにより、高圧圧力あるいは低圧圧力の変化に係わら
ず、室内蒸発器17入口の冷媒乾き度を所定値に制御す
ることが可能となる。
When the low pressure decreases from Pc to Pc2, the refrigerant condensed and liquefied in the indoor condenser 15 is supercooled to a saturation temperature corresponding to the total pressure of the low pressure Pc2 and the spring force Fk. Therefore, the cycle abcd becomes the cycle a2 b2 c2 d2, and the dryness of the refrigerant at the inlet of the indoor evaporator 17 becomes x2. In this low pressure region (Pc to Pc2),
As shown in FIG. 3, the dryness line is almost proportional to the pressure on the Mollier diagram. Therefore, the dryness of the refrigerant at the inlet of the indoor evaporator 17 can be practically considered to be x = x2. As a result, by using the dryness control valve 16 of the present embodiment, the dryness of the refrigerant at the inlet of the indoor evaporator 17 can be controlled to a predetermined value regardless of the change in the high pressure or the low pressure.

【0015】[0015]

【発明の効果】本発明の冷凍サイクルは、高圧圧力ある
いは低圧圧力の変化に係わらず、蒸発器入口の冷媒乾き
度を常に小さく制御することが可能であり、蒸発器を有
効に働かせてサイクル効率の向上を図ることができる。
According to the refrigeration cycle of the present invention, the dryness of the refrigerant at the evaporator inlet can be controlled to be small at all times regardless of the change in the high pressure or the low pressure. Can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】車両用空気調和装置の概略構成図である。FIG. 1 is a schematic configuration diagram of a vehicle air conditioner.

【図2】乾き度制御弁の断面図である。FIG. 2 is a sectional view of a dryness control valve.

【図3】冷凍サイクルの状態点を示すモリエル線図であ
る。
FIG. 3 is a Mollier diagram showing the state points of the refrigeration cycle.

【図4】従来技術によるレシーバサイクル図である。FIG. 4 is a receiver cycle diagram according to the prior art.

【図5】図4に示すサイクル上の冷媒の状態点を示すモ
リエル線図である。
5 is a Mollier diagram showing the state points of the refrigerant on the cycle shown in FIG.

【図6】サブクール制御弁の構成図である。FIG. 6 is a configuration diagram of a subcool control valve.

【図7】従来技術を説明するモリエル線図である。FIG. 7 is a Mollier diagram for explaining the conventional technique.

【図8】従来技術を説明するモリエル線図である。FIG. 8 is a Mollier diagram illustrating a conventional technique.

【符号の説明】[Explanation of symbols]

3 冷凍サイクル 15 室内凝縮器(冷媒凝縮器) 16 乾き度制御弁(減圧手段) 16h 感温筒(感温部) 16a 絞り部 16d 弁体 16g 調節バネ(付勢手段) 3 Refrigeration cycle 15 Indoor condenser (refrigerant condenser) 16 Dryness control valve (pressure reducing means) 16h Temperature sensing tube (temperature sensing portion) 16a Throttling portion 16d Valve body 16g Adjustment spring (biasing means)

フロントページの続き (72)発明者 本多 桂太 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内Front page continuation (72) Inventor Keita Honda 1-1, Showa-cho, Kariya city, Aichi prefecture

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】冷媒凝縮器の下流に設けられて、前記冷媒
凝縮器より流出する冷媒流量を制御して減圧膨張させる
減圧手段を備えた冷凍サイクルにおいて、 前記減圧手段は、冷媒流量を絞る絞り部と、この絞り部
を開閉する弁体と、前記絞り部の開度を大きくする方向
へ前記弁体を付勢する付勢手段と、前記冷媒凝縮器より
流出する冷媒の温度変化を圧力変化に変換する感温部と
を備え、 この感温部の圧力が前記絞り部下流の低圧側圧力および
前記付勢手段の付勢力の合計圧力と釣り合うように前記
弁体を変位させて前記絞り部の開度を調整するように構
成されていることを特徴とする冷凍サイクル。
1. A refrigeration cycle comprising a decompression means provided downstream of a refrigerant condenser for controlling and decompressing and expanding a refrigerant flow rate flowing out from the refrigerant condenser, wherein the decompression means restricts a refrigerant flow rate. Section, a valve body that opens and closes the throttle section, an urging means that urges the valve element in a direction of increasing the opening degree of the throttle section, and a pressure change that changes the temperature of the refrigerant flowing out from the refrigerant condenser. A temperature-sensing section for converting the valve body to a pressure-sensing section so that the pressure of the temperature-sensing section is balanced with the total pressure of the low pressure side downstream of the throttle section and the biasing force of the biasing means. A refrigeration cycle characterized by being configured to adjust the opening degree of the refrigeration cycle.
JP4014364A 1992-01-29 1992-01-29 Refrigeration cycle Pending JPH05203291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4014364A JPH05203291A (en) 1992-01-29 1992-01-29 Refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4014364A JPH05203291A (en) 1992-01-29 1992-01-29 Refrigeration cycle

Publications (1)

Publication Number Publication Date
JPH05203291A true JPH05203291A (en) 1993-08-10

Family

ID=11859007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4014364A Pending JPH05203291A (en) 1992-01-29 1992-01-29 Refrigeration cycle

Country Status (1)

Country Link
JP (1) JPH05203291A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0971184A2 (en) 1998-07-07 2000-01-12 Denso Corporation Pressure control valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0971184A2 (en) 1998-07-07 2000-01-12 Denso Corporation Pressure control valve

Similar Documents

Publication Publication Date Title
JP3428516B2 (en) Aperture device
JP3413943B2 (en) Refrigeration cycle
US6712281B2 (en) Expansion valve
JP2014231948A (en) Heat pump cycle
JPH05203291A (en) Refrigeration cycle
JPH07332807A (en) Suprecooling control valve and refrigeration cycle
JPH01169277A (en) Heat pump type air conditioner
JP3924935B2 (en) Thermal expansion valve
JP4752146B2 (en) Air conditioner
JP3932621B2 (en) Thermal expansion valve
JPH11344264A (en) Freezing cycle device
JP2005201484A (en) Refrigerating cycle
JP4752145B2 (en) Air conditioner
JPH06185829A (en) Air conditioner for vehicle
JP3208889B2 (en) Refrigeration cycle
JPH10185336A (en) Refrigerating cycle equipment
JPH07198215A (en) Freezer
KR100206788B1 (en) Expansion apparatus of airconditioner
JPH05223358A (en) Freezing cycle control device
JPS6346348B2 (en)
KR100697675B1 (en) Expansion device
JPS6185218A (en) Automotive air conditioner
KR100308374B1 (en) Compressor protection device of air conditioner
JPH10220888A (en) Refrigerating cycle
JP2003004341A (en) Expansion valve