JPH05202750A - Evaporative cooling type internal combustion engine - Google Patents

Evaporative cooling type internal combustion engine

Info

Publication number
JPH05202750A
JPH05202750A JP26854492A JP26854492A JPH05202750A JP H05202750 A JPH05202750 A JP H05202750A JP 26854492 A JP26854492 A JP 26854492A JP 26854492 A JP26854492 A JP 26854492A JP H05202750 A JPH05202750 A JP H05202750A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
cooling
cooling liquid
condensate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26854492A
Other languages
Japanese (ja)
Inventor
Andreas Sausner
アンドレアス・ザウスナー
Klaus Mertens
クラウス・マーテンス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Freudenberg KG
Original Assignee
Carl Freudenberg KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Freudenberg KG filed Critical Carl Freudenberg KG
Publication of JPH05202750A publication Critical patent/JPH05202750A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/02Liquid-coolant filling, overflow, venting, or draining devices
    • F01P11/029Expansion reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/22Liquid cooling characterised by evaporation and condensation of coolant in closed cycles; characterised by the coolant reaching higher temperatures than normal atmospheric boiling-point
    • F01P3/2271Closed cycles with separator and liquid return
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/04Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control

Abstract

PURPOSE: To obtain an evaporative cooling-type internal combustion engine wherein a cooling liquid temperature and a pressure in a cooling system can be individually controlled. CONSTITUTION: An internal combustion engine according to the present invention is an evaporative cooling-type internal combustion engine comprising a cooling system allowing loading of a pressure and passing of a cooling liquid. This engine further comprises at least a condensate cooler, at least a cooling liquid pump and at least an expansion tank. The expansion tank is connected to a cooling circulation path via a connecting pipe. The expansion tank 4 is arranged just before the cooling liquid pump 11 in a main flow direction 9, and a convection cooler 7, which is attached to the condensate cooler 3 and capable of input via a thermostat 6, is provided. Then, the cooling liquid from a convection cooler and the condensate from the condensate cooler are integrated with each other at a node in a delivery pipe reaching the internal combustion engine 1. A pumping device for sending the cooling liquid in a main flow direction 9 is arranged in the node region, and a pressure adjusting valve 10 is arranged between the pumping device and an outlet of the condensate cooler in the main flow direction 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、圧力を負荷可能且つ冷
却液を流過可能な冷却系統を含む蒸発冷却式内燃機関で
あって、少なくとも1つの復水冷却器と少なくとも1つ
の冷却液ポンプと1つの膨張タンクとを備え、膨張タン
クが連絡管により冷却回路に接続してあるものに関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an evaporative cooling type internal combustion engine including a cooling system capable of applying a pressure and allowing a cooling liquid to flow therethrough, wherein at least one condensate cooler and at least one cooling liquid pump are provided. And one expansion tank, the expansion tank being connected to the cooling circuit by a connecting pipe.

【0002】[0002]

【従来の技術】かかる内燃機関が米国特許第4648356 号
により知られている。そこでは冷却系統が実質的に内燃
機関のウォータジャケットと、復水冷却器として構成し
たラジエータと、復水タンクと、仕切壁により2つの部
分室に仕切られたタンクとで構成してあり、冷却系統と
は離れた方の室が大気に向かって開口している。この装
置の役目は密閉系内にある空気を一時的に系から抽出
し、復水器から遠ざけて装置の効率を向上することにあ
る。系の機能にとって不利な混入空気は内燃機関が運転
時温まるとタンク内に蓄積され、機関が冷えると系に送
り戻されて負圧の発生を防止する。
Such an internal combustion engine is known from US Pat. No. 4,648,356. There, the cooling system is essentially composed of a water jacket of an internal combustion engine, a radiator configured as a condensate cooler, a condensate tank, and a tank divided into two partial chambers by a partition wall. The room away from the system is open to the atmosphere. The role of this device is to temporarily extract the air in the closed system from the system and keep it away from the condenser to improve the efficiency of the device. The mixed air, which is detrimental to the function of the system, accumulates in the tank when the internal combustion engine warms during operation, and is sent back to the system when the engine cools to prevent the generation of negative pressure.

【0003】[0003]

【発明が解決しようとする課題】しかしその際注意すべ
き点として最適な復水器冷却性能を達成するため復水器
を流過する質量流量と復水器前の蒸気含量とを制御しな
ければならない。周知の内燃機関ではこのことが不可能
である。
However, it should be noted that the mass flow rate passing through the condenser and the steam content before the condenser should be controlled in order to achieve optimum condenser cooling performance. I have to. This is not possible with known internal combustion engines.

【0004】更にここでは欠点として冷却液温度と冷却
系統の系圧力を個々に制御することができない。復水器
冷却装置の冷却性能を機関のヒータ性能に適合すること
は周知の内燃機関では不可能である。
Further, here, as a drawback, it is not possible to individually control the coolant temperature and the system pressure of the cooling system. It is not possible with known internal combustion engines to match the cooling performance of the condenser cooling device with the heater performance of the engine.

【0005】本発明の目的は、冒頭指摘した種類の蒸発
冷却式内燃機関を改良し、冷却液温度と冷却系統内部の
系圧力とを個々に制御できるようにすることである。更
に、冷却系統及びそれに接続した内燃機関を流れる冷却
液の循環を、特に内燃機関のヒータ性能が高い場合及び
それに伴い流れ損失が高い場合最適化しなければならな
い。
The object of the present invention is to improve an evaporatively cooled internal combustion engine of the kind mentioned at the outset, so that the coolant temperature and the system pressure inside the cooling system can be controlled individually. Furthermore, the circulation of the cooling fluid flowing through the cooling system and the internal combustion engine connected to it must be optimized, especially when the heater performance of the internal combustion engine is high and the associated flow losses are high.

【0006】[0006]

【課題を解決するための手段】この目的が本発明によれ
ば圧力を負荷可能且つ冷却液を流過可能な冷却系統を含
む蒸発冷却式内燃機関であって、少なくとも1つの復水
冷却器と少なくとも1つの冷却液ポンプと1つの膨張タ
ンクとを備え、膨張タンクが連絡管により冷却循環路に
接続してあるものにおいて、膨張タンクを主流れ方向で
冷却液ポンプの直前に配置し、復水冷却器に付属してサ
ーモスタットを介し投入可能な対流冷却器を設け、対流
冷却器出口からの冷却液と復水冷却器出口からの復水と
を内燃機関に至る送り管中の結節点で一つにまとめ、主
流れ方向で冷却液を送るポンピング装置を結節点範囲に
配置し、主流れ方向で復水冷却器出口とポンピング装置
との間に圧力調整弁を配置したことを特徴とする内燃機
関で達成される。従属請求項は有利な諸構成に関係して
いる。
According to the invention, an object of the invention is an evaporative cooling type internal combustion engine including a cooling system which can be loaded with pressure and can flow a cooling liquid, and at least one condensate cooler. In the case where at least one cooling liquid pump and one expansion tank are provided, and the expansion tank is connected to the cooling circuit by a connecting pipe, the expansion tank is arranged immediately before the cooling liquid pump in the main flow direction, and A convection cooler that can be charged via a thermostat is attached to the cooler, and the cooling liquid from the convection cooler outlet and the condensate from the condensate cooler outlet are connected at a node in the feed pipe to the internal combustion engine. In general, a pumping device for sending the cooling liquid in the main flow direction is arranged in the nodal point range, and a pressure regulating valve is arranged between the condensate cooler outlet and the pumping device in the main flow direction. Achieved by the institution. The dependent claims relate to advantageous configurations.

【0007】本発明による内燃機関は膨張タンクを有
し、これが主流れ方向で冷却液ポンプの直前に配置して
あり、復水冷却器に付属してサーモスタットを介し投入
可能な対流冷却器が設けてあり、対流冷却器出口からの
冷却液と復水冷却器出口からの復水は内燃機関に至る送
り管中の結節点で一つにまとめてあり、主流れ方向で冷
却液を送るポンピング装置が結節点範囲に配置してあ
る。1冷却系統内部に復水冷却器と対流冷却器とを用い
ることにより、主流れ方向で復水冷却器出口の背後に配
置した圧力調整弁を利用して系圧力の調整を達成するこ
とができ、系圧力は走行速度、周囲温度及び機関動作点
に応じて調整することができる。冷却液温度と系圧力は
この系の場合個々に調整することができる。
The internal combustion engine according to the invention has an expansion tank, which is arranged immediately before the coolant pump in the main flow direction and is provided with a convection cooler which is attached to the condensate cooler and which can be turned on via a thermostat. The condensate from the outlet of the convection cooler and the condensate from the outlet of the condensate cooler are combined at a node in the feed pipe leading to the internal combustion engine, and a pumping device that sends the coolant in the main flow direction. Are placed in the nodal point range. 1 By using a condensate cooler and a convection cooler inside the cooling system, it is possible to achieve system pressure adjustment using a pressure regulating valve arranged behind the condensate cooler outlet in the main flow direction. The system pressure can be adjusted according to the traveling speed, ambient temperature and engine operating point. The coolant temperature and system pressure can be adjusted individually for this system.

【0008】系圧力の調整は復水器出口の制御弁で行わ
れる。この弁は例えば機関内の圧力に依存して復水器の
流量を、従ってその冷却性能を制御する。冷却性能を機
関のヒータ性能に適合することによって、冷却系統内部
の圧力を一定に保つことができる。系圧力と冷却液温度
とを個々に調整することにより、部材温度の制御に対し
格別良好な影響を与えることができ、その際特にシリン
ダヘッド範囲の部材温度が重要となる。圧力調整弁は例
えばシリンダヘッド内又は復水器出口の圧力センサと信
号伝送的に接続しておくことができる。弁は、所要の冷
却性能及び好ましい部材温度が保証されるよう復水器を
流れる復水流量を制御する。冷却液の沸騰温度は冷却系
統内の圧力に応じて決まり、この圧力はこの弁により調
整することができる。
The system pressure is adjusted by the control valve at the condenser outlet. This valve controls the flow rate of the condenser and thus its cooling performance, depending for example on the pressure in the engine. By matching the cooling performance with the heater performance of the engine, the pressure inside the cooling system can be kept constant. By individually adjusting the system pressure and the coolant temperature, it is possible to exert a particularly good influence on the control of the member temperature, in which case the member temperature in the cylinder head range is particularly important. The pressure regulating valve can be connected, for example, in signal transmission with a pressure sensor in the cylinder head or at the condenser outlet. The valve controls the condensate flow rate through the condenser to ensure the required cooling performance and the preferred component temperature. The boiling temperature of the cooling liquid depends on the pressure in the cooling system, and this pressure can be adjusted by this valve.

【0009】有利な1構成によれば、ポンピング装置が
ベンチュリ管により形成してあり、ベンチュリ管内の最
も狭い流路断面の範囲に復水を供給可能である。ベンチ
ュリ管をポンピング装置として用いると、特に冷却系統
が簡単な構造となり又例えば電気駆動式の第二冷却液ポ
ンプが回避されるので有利であり、このことは経済的観
点からきわめて重要である。
According to one advantageous configuration, the pumping device is formed by a Venturi tube and is capable of supplying condensate in the region of the narrowest flow passage cross section in the Venturi tube. The use of a Venturi tube as a pumping device is advantageous, in particular because the cooling system has a simple structure and avoids, for example, an electrically driven second cooling liquid pump, which is very important from an economic point of view.

【0010】対流冷却器からの冷却液と復水冷却器から
の復水とを一つにまとめる結節点を形成するベンチュリ
管は更に、内燃機関と復水冷却器との間の流れ損失に基
づき復水が復水冷却器に押し戻されるのでなく、主流れ
方向に連行され、内燃機関に供給されるようにする。こ
の構成により、1つの冷却液ポンプを有するだけの冷却
系統を流れる容積流が高いことによりきわめて好適な効
率が得られ、このことは経済的観点でも特に有利であ
る。蒸発冷却式内燃機関の冷却系統内にベンチュリ管を
用いることにより、冷却液ポンプは寸法の点で、格別緻
密に選定することができる。この場合にも吐出し性能は
全く十分である。サーモスタットは冷却液の温度又は温
度センサにより突き止めた部材温度に応じて各種冷却循
環路の進路を解放する。内燃機関の暖機段階の間対流冷
却機を介した進路が遮断してあり、このことで内燃機関
の加熱が迅速に行われる。温度の上昇に伴いサーモスタ
ットは対流冷却器を介した進路を徐々に開き、過熱によ
る内燃機関の破損が確実に防止される。更に利点として
復水冷却器と対流冷却器とを並列に配置することにより
冷却液は殆ど一定した入口温度で内燃機関内に送られ
る。例えば比較的冷たい復水によって比較的熱い内燃機
関内に熱応力の生じる危険がこの構成によって本質的に
低減する。
The Venturi tube, which forms a node that brings together the coolant from the convection cooler and the condensate from the condensate cooler, is further based on the flow loss between the internal combustion engine and the condensate cooler. The condensate is not pushed back into the condensate cooler, but rather is entrained in the main flow direction and fed to the internal combustion engine. This configuration results in a very favorable efficiency due to the high volumetric flow through the cooling system with only one coolant pump, which is also particularly advantageous from an economic point of view. By using the Venturi tube in the cooling system of the evaporative cooling type internal combustion engine, the cooling liquid pump can be selected extremely precisely in terms of size. Also in this case, the ejection performance is quite sufficient. The thermostat releases the paths of the various cooling circulation paths according to the temperature of the cooling liquid or the member temperature determined by the temperature sensor. During the warm-up phase of the internal combustion engine, the path through the convection cooler is blocked, which results in rapid heating of the internal combustion engine. As the temperature rises, the thermostat gradually opens its path through the convection cooler, and the internal combustion engine is reliably prevented from being damaged by overheating. A further advantage is that by placing the condensate cooler and the convection cooler in parallel, the cooling liquid is fed into the internal combustion engine at an almost constant inlet temperature. This configuration essentially reduces the risk of thermal stresses in the relatively hot internal combustion engine, for example due to the relatively cold condensate.

【0011】有利な1構成によればベンチュリ管はT形
配管結合要素により形成しておくことができる。このよ
うに構成した配管結合要素は経済的観点で格別好適に製
造可能であり、配管結合のさまざまな造形を可能とす
る。その際ベンチュリノズルの形の狭窄部は主流れ方向
にあり、最も小さな流路断面の範囲に分岐部が設けてあ
り、この分岐部は復水冷却器出口と液伝導式に結合して
おくことができる。
According to an advantageous configuration, the Venturi tube can be formed by a T-shaped pipe coupling element. The pipe connecting element configured in this manner can be manufactured particularly favorably from an economical point of view, and enables various shapes of pipe connecting. At that time, the constriction in the shape of the venturi nozzle is in the main flow direction, and the branch is provided in the area of the smallest flow passage cross section, and this branch should be connected to the outlet of the condensate cooler in a liquid conduction manner. You can

【0012】膨張タンクと、通気部を備えた補給口は構
造ユニットにまとめ、連絡管を介し液伝導式に互いに固
定しておくことができる。この構成により、冷却系統の
簡単で明快な構造が保証してある。多くの場合水と不凍
液分とからなる冷却液はこれにより格別簡単に注入する
ことができる。これにより、場合によって発生する漏れ
に関し冷却系統の保守及び監視も簡素化できる。
The expansion tank and the supply port provided with the ventilation portion can be integrated into a structural unit and fixed to each other in a liquid-conducting manner via a connecting pipe. This configuration ensures a simple and clear structure of the cooling system. The cooling liquid, which in most cases consists of water and the antifreeze, can be injected very easily in this way. This also simplifies the maintenance and monitoring of the cooling system regarding possible leaks.

【0013】冷却系統に容易に正しく注入するため、補
強口と膨張タンクとの間の連絡管中に、導管を流れる液
体を制限する絞りを配置しておくことができる。膨張タ
ンクは分離隔膜により冷却液含有室と膨張室とに仕切っ
ておくことができ、膨張室は通気穴を介し大気と接続し
てあり、分離隔膜は大気圧によってのみ負荷可能であ
る。別の1構成によれば、膨張室の内部にばね要素を配
置し、ばね要素を例えば圧縮コイルばねとして構成し、
一端を膨張タンクのハウジング、他端を分離隔膜の膨張
室に対向した側面で支える可能性もある。機能様式は基
本的に同じである。冷却液ポンプを適宜に設計したな
ら、絞りとあわせてこのポンプにより、冷却系統に冷却
液を注入する間分離隔膜を膨張タンクの下死点に当接可
能とすることができる。このことにより例えばばねを膨
張室内に用いることが不要となる。
For easy and correct injection into the cooling system, a restrictor can be arranged in the connecting pipe between the stiffening port and the expansion tank, which restricts the liquid flowing through the conduit. The expansion tank can be divided into a cooling liquid containing chamber and an expansion chamber by a separation diaphragm, the expansion chamber is connected to the atmosphere through a ventilation hole, and the separation diaphragm can be loaded only by the atmospheric pressure. According to another configuration, a spring element is arranged inside the expansion chamber and the spring element is configured, for example, as a compression coil spring,
It is possible that one end is supported by the housing of the expansion tank and the other end is supported by the side surface of the separation diaphragm facing the expansion chamber. The functional style is basically the same. If the cooling liquid pump is appropriately designed, this pump together with the throttle can make it possible to bring the separation diaphragm into contact with the bottom dead center of the expansion tank while injecting the cooling liquid into the cooling system. This makes it unnecessary to use, for example, a spring in the expansion chamber.

【0014】冷却系統中に車内ヒータを配置しておくこ
とができ、この場合車内ヒータは冷却系統のうち内燃機
関を規定どおり使用する間蒸気のみ充填される帯域内に
配置してある。この場合利点として内燃機関が特に迅速
に加熱され、最適動作温度が素早く達成され、燃料消費
量が少なくなり又有害物質の放出が少なくなる。
An in-vehicle heater may be arranged in the cooling system, in which case the in-vehicle heater is arranged in a zone of the cooling system in which only the steam is filled while the internal combustion engine is used as specified. The advantages here are that the internal combustion engine is heated particularly quickly, the optimum operating temperature is reached quickly, the fuel consumption is low and the emission of harmful substances is low.

【0015】動作温度に達し、冷却液の一部が気化する
と、ヒータは運転開始することができ、水循環路中に配
置された車内ヒータのヒータ性能をはるかに超えるヒー
タ性能を提供する。更に利点として一層均一な、回転数
に依存しないヒータ性能が保証される。冷却液の一部が
気化してはじめてヒータを運転開始することができる事
実は実用上何ら重大な欠点ではない。なぜなら水循環路
中に配置してあるヒータも冷却液が一定温度に達しては
じめて室内を暖房する熱を放出するからである。
When the operating temperature is reached and some of the cooling liquid is vaporized, the heater can be activated, providing heater performance far exceeding that of in-vehicle heaters located in the water circuit. As a further advantage, a more uniform, speed-independent heater performance is guaranteed. The fact that the heater can be started only after a part of the cooling liquid is vaporized is not a serious drawback in practical use. This is because the heater arranged in the water circulation path also releases heat for heating the room only when the cooling liquid reaches a certain temperature.

【0016】冷却系統の効率を更に向上するため、内燃
機関の冷却液出口範囲に水分離器を設けておくことがで
き、この分離器は冷却液容積が大きい場合でも対流冷却
器が水のみを、そして復水冷却器が蒸気のみを流過させ
るようにする。格別有利な1構成は、冷却液がシリンダ
ヘッドの範囲で内燃機関内に供給可能であり、内燃機関
が分離器として機能するとき達成可能である。この点に
関し強調すべき利点として特にシリンダヘッド内で機関
の最低掃気によって有害な蒸気巣が生成することはな
い。この場合最低掃気は復水器を流れる性能上最適な質
量流より大きい。良好な冷却効率は水と蒸気を効率的に
制御下に分離してのみ可能である。更に、機関内部で水
と蒸気を分離すると付加的絞り抵抗や、外部分離器用の
付加的膨張容積、そしてパイピング付き付加的部材が生
じない。この場合、冷えた冷却液がシリンダヘッドの範
囲で内燃機関内に供給され、蒸気が上方に復水器の方向
に逃げ、冷却液が下方に内燃機関内に流れる形で機関の
貫流が行われる。従って内燃機関は分離器として働く。
In order to further improve the efficiency of the cooling system, a water separator can be provided in the cooling liquid outlet region of the internal combustion engine, the separator having only a large amount of water in the convection cooler even if the cooling liquid volume is large. , And allow the condensate cooler to pass only steam. One particularly advantageous configuration is achievable when the cooling liquid can be fed into the internal combustion engine in the region of the cylinder head and the internal combustion engine acts as a separator. The advantage to be emphasized in this respect is that no harmful vapor nests are produced, in particular in the cylinder head by the minimum scavenging of the engine. In this case, the minimum scavenging is greater than the optimum mass flow for performance through the condenser. Good cooling efficiency is possible only with efficient and controlled separation of water and steam. Furthermore, the separation of water and steam inside the engine does not create additional throttling resistance, additional expansion volume for external separators, and additional components with piping. In this case, cold cooling liquid is supplied into the internal combustion engine within the range of the cylinder head, steam escapes upward in the direction of the condenser, and cooling liquid flows downward into the internal combustion engine to allow the engine to flow through the engine. .. The internal combustion engine thus acts as a separator.

【0017】別の1構成によれば補償タンクに付属して
相対移動する液密仕切壁を設けておくことができ、この
壁が補償タンクを冷却液含有室とばね室とに仕切り、ば
ね室は負圧管によって内燃機関の吸込装置と接続してあ
り、負圧管は少なくとも1個の締切弁により閉鎖可能で
ある。この場合前提条件として吸込装置が設けてあり、
これが仕切壁を正しく操作するための負圧をも提供す
る。内燃機関がディーデル機関であるなら負圧管は有利
にはブレーキ系統の負圧ポンプに接続することができ
る。蒸発冷却では冷却液の沸騰温度が冷却系統内の圧力
に応じて決まる。冷却系統内の系圧力の高さ及びそれと
結び付いたさまざまな冷却液沸騰温度に依存して内燃機
関の部材温度はその都度の負荷状態に最適に適合するこ
とができる。補償タンク内の仕切壁を転向させることに
より冷却系統の総容積、従って系圧力が内燃機関の動作
点に依存して調節される。希望する系圧力は例えば以下
のパラメータから突き止めることができる:冷却液温
度、部材温度、吸込管内の負圧、絞り弁の位置、内燃機
関の回転数、燃料噴射量、周囲温度及び/又は車速。電
子制御式内燃機関の場合多数の上記補助量がいずれにし
ても用意してあり、従って付加的センサが必要でなく、
このことから冷却系統のきわめて優れた信頼性が得られ
る。負圧管に付属して付加的に負圧溜めを設けておくこ
とができる。このことが特に有意義であるのは内燃機関
の吸込装置がいずれの負荷状態のときにも冷却系統内の
系圧力をその都度の負荷状態に適合させるのに十分な負
圧を用意しないときである。無負荷運転のとき、つまり
比較的高い系圧力が必要で、これが高い沸騰温度を、従
って内燃機関の迅速な加熱を要求するとき吸込装置は負
圧溜めなしに高い負圧を用意し、他方全負荷範囲のと
き、つまり内燃機関の過熱を避けるため低い系圧力と低
い冷却液沸騰温度が必要とされるときには吸込装置は僅
かな負圧を生成するだけである。この比較的低い負圧は
場合によっては冷却系統内の系圧力を、過熱の危険なし
に内燃機関の運転を可能とするほどに下げるのに十分で
ないことがある。これらの欠点を防止するため、内燃機
関の各動作点で補償タンク内のばね室に負圧を十分提供
するよう配慮する負圧溜めを設けておくことができる。
According to another configuration, a liquid-tight partition wall which is attached to the compensating tank and which moves relatively can be provided, and this wall partitions the compensating tank into a cooling liquid containing chamber and a spring chamber, and the spring chamber. Is connected to the suction device of the internal combustion engine by means of a vacuum line, which can be closed by at least one shut-off valve. In this case, a suction device is provided as a prerequisite,
This also provides the negative pressure for proper operation of the partition. If the internal combustion engine is a diesel engine, the vacuum line can advantageously be connected to the vacuum pump of the braking system. In evaporative cooling, the boiling temperature of the cooling liquid is determined according to the pressure in the cooling system. Depending on the high system pressure in the cooling system and the various coolant boiling temperatures associated with it, the component temperatures of the internal combustion engine can be optimally adapted to the respective load conditions. By diverting the partition walls in the compensation tank, the total volume of the cooling system and thus the system pressure is adjusted depending on the operating point of the internal combustion engine. The desired system pressure can be determined, for example, from the following parameters: coolant temperature, component temperature, negative pressure in the suction pipe, throttle valve position, internal combustion engine speed, fuel injection quantity, ambient temperature and / or vehicle speed. In the case of electronically controlled internal combustion engines, a large number of the abovementioned auxiliary quantities are provided in any case, so that no additional sensor is required,
This gives a very good reliability of the cooling system. A negative pressure reservoir can be additionally provided in association with the negative pressure pipe. This is particularly significant when the suction device of the internal combustion engine does not provide sufficient negative pressure to adapt the system pressure in the cooling system to the respective load condition under any load condition. .. When operating at no load, i.e. when a relatively high system pressure is required, which requires a high boiling temperature and thus a rapid heating of the internal combustion engine, the suction device provides a high negative pressure without a negative pressure reservoir, while In the load range, i.e. when low system pressure and low coolant boiling temperature are required to avoid overheating of the internal combustion engine, the suction device produces only a slight negative pressure. This relatively low negative pressure may in some cases not be sufficient to reduce the system pressure in the cooling system to allow operation of the internal combustion engine without the risk of overheating. To prevent these drawbacks, a negative pressure reservoir can be provided which ensures that at each operating point of the internal combustion engine a sufficient negative pressure is provided to the spring chamber in the compensation tank.

【0018】[0018]

【実施例】本発明による蒸発冷却式内燃機関の実施諸例
が添付した図面に概略示してあり、以下詳しく説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of an evaporative cooling type internal combustion engine according to the present invention are schematically shown in the accompanying drawings and will be described in detail below.

【0019】図1、図2、図3、図4、図5、図6にそ
れぞれ蒸発冷却式内燃機関1が示してあり、そこでは圧
力を負荷可能な冷却系統2に冷却液を流過可能である。
冷却液は多くの場合不凍液を含有した水である。補償乃
至は膨張タンク4は連絡管5により冷却系統2のうち内
燃機関1の運転中常に冷却液が充填してある帯域に接続
してある。冷却系統2は実質的に復水冷却器3、流れ方
向で復水冷却器3の後方に配置した圧力調整弁10、そし
て互いに並列回路内に設けた対流冷却器7とからなる。
対流冷却器7の冷却液出口と復水冷却器3の復水出口は
結節点で一つにまとめてあり、この結節点が図1〜図5
ではベンチュリ管8により形成してある。冷却液はベン
チュリ管8内を主流れ方向9で最小流路断面範囲では比
較的高速で流過し、復水冷却器3内に発生する復水を連
行し、必要なら補償タンク4から冷却液を、この箇所で
の圧力降下に基づき連行する。内燃機関1のヒータ性能
が高く又冷却系統2を流れる容積流が高い場合、冷却液
及び復水が復水冷却器3内に逆流することはベンチュリ
管8の配置によって排除してある。これにより冷却系統
2内に絞り効果が現れず、これにより冷却系統2の冷却
性能及び効率がかなり向上する。
1, FIG. 2, FIG. 3, FIG. 4, FIG. 5, and FIG. 6 respectively show an evaporative cooling type internal combustion engine 1, in which a cooling liquid can flow into a cooling system 2 which can be loaded with pressure. Is.
The cooling liquid is often water containing antifreeze. The compensation or expansion tank 4 is connected by a connecting pipe 5 to a zone of the cooling system 2 which is always filled with the cooling liquid during the operation of the internal combustion engine 1. The cooling system 2 essentially comprises a condensate cooler 3, a pressure regulating valve 10 arranged behind the condensate cooler 3 in the flow direction, and a convection cooler 7 arranged in parallel with each other.
The cooling liquid outlet of the convection cooler 7 and the condensate outlet of the condensate cooler 3 are combined into one node, and this node is shown in FIGS.
Is formed by the Venturi tube 8. The cooling liquid flows through the venturi pipe 8 in the main flow direction 9 at a relatively high speed in the minimum flow passage cross-sectional range, and carries the condensate generated in the condensate cooler 3, and if necessary, the cooling liquid from the compensation tank 4. Is carried based on the pressure drop at this point. When the heater performance of the internal combustion engine 1 is high and the volume flow through the cooling system 2 is high, backflow of the cooling liquid and the condensate into the condensate cooler 3 is eliminated by the arrangement of the venturi pipe 8. As a result, the throttling effect does not appear in the cooling system 2, so that the cooling performance and efficiency of the cooling system 2 are considerably improved.

【0020】対流冷却器7は内燃機関1内に供給される
冷却液をほぼ均一な温度にする。この温度はベンチュリ
管8及び冷却液ポンプ11の範囲で蒸気泡の発生が効果
的に防止されるよう設計してある。これにより冷却系統
2の機能信頼性も耐用期間も著しく高まる。
The convection cooler 7 brings the cooling liquid supplied into the internal combustion engine 1 to a substantially uniform temperature. This temperature is designed so that the generation of vapor bubbles is effectively prevented in the range of the venturi pipe 8 and the cooling liquid pump 11. As a result, the functional reliability and service life of the cooling system 2 are significantly increased.

【0021】補償タンク4の圧力負荷によって冷却系統
2の系圧力を調節することができる。系圧力が高いと冷
却系統2を流過する冷却液の沸騰温度が高くなり、系圧
力を相対的に下げると沸騰温度が低下する。内燃機関1
が冷えた状態のとき、つまり運転開始前や始動直後、冷
却系統には冷却液が完全に充填してあり、蒸気はない。
補償タンク4の冷却液含有室16はその容積が最小であ
る。
The system pressure of the cooling system 2 can be adjusted by the pressure load of the compensation tank 4. When the system pressure is high, the boiling temperature of the cooling liquid flowing through the cooling system 2 is high, and when the system pressure is relatively low, the boiling temperature is low. Internal combustion engine 1
In the cold state, that is, before or immediately after the start of operation, the cooling system is completely filled with the cooling liquid and there is no steam.
The volume of the cooling liquid containing chamber 16 of the compensation tank 4 is the smallest.

【0022】図1に示す本発明による蒸発冷却式内燃機
関1は冷却系統2に蒸気がなく、その最適動作温度にま
だ達していない始動直後である。対流冷却器7にも復水
冷却器3にも冷却液が完全に充填してある。こうして外
気温度がきわめて低い場合でもラジエータが凍結によっ
て破損する危険は生じない。この運転状態のとき蒸気管
20にも冷却液が充填してある。系圧力の特性はばね室
17内にあるばねのばね特性に依存する。補償タンク4
は冷却液から離れた側に穴を備えており、該穴がこの室
を大気と連絡する。細部”X”としてベンチュリ管8の
一部が示してある。しかしここに図示した実施例から離
れ、補償タンク4内部で分離隔膜をばねで負荷するので
なく大気圧のみ負荷する可能性もある。
The evaporative cooling type internal combustion engine 1 according to the present invention shown in FIG. 1 has just started after the cooling system 2 is free of steam and has not yet reached its optimum operating temperature. Both the convection cooler 7 and the condensate cooler 3 are completely filled with the cooling liquid. Thus, the risk of damage to the radiator by freezing does not occur even when the outside air temperature is extremely low. In this operating state, the steam pipe 20 is also filled with the cooling liquid. The characteristic of the system pressure depends on the spring characteristic of the spring in the spring chamber 17. Compensation tank 4
Has a hole on the side remote from the cooling liquid, which hole communicates this chamber with the atmosphere. A portion of the Venturi tube 8 is shown as detail "X". However, apart from the embodiment shown here, it is also possible to load only the atmospheric pressure inside the compensation tank 4 instead of loading the separating diaphragm with a spring.

【0023】図2に示す冷却系統は図1の冷却系統と同
じであり、この場合内燃機関1の動作温度が高まって冷
却液の一部が既に気化している。蒸気管20内には気化
した冷却液のみ存在する。蒸気によって押しのけられた
容積は冷却液含有室16によって補償される。その際こ
の系に適合した補償タンク4の寸法に当然留意しなけれ
ばならない。水循環路中に、この場合対流冷却器7の前
に車内ヒータ12がある。油熱交換器13がやはり冷却
液管中に配置してある。水循環路中に車内ヒータ12を
配置するとその操作時室内が早く暖房され、内燃機関の
暖機段階が比較的長くなる。補償タンク4の仕切壁4.3
はばね室17の方向に変位しており、蒸気により押しの
けられた液体成分は冷却液含有室16内に受容すること
ができる。図1に示した系を補足してばね室17は締切
弁19を介し負圧管18と接続してあり、負圧管は内燃
機関の吸込装置と接続してある。この場合冷却系統2の
圧力負荷は図1の場合よりも一層敏感に制御可能であ
る。内燃機関1の全負荷運転のとき十分に高い負圧を用
意して系圧力を下げ又沸騰温度を低下させるため、負圧
管18中に場合によっては負圧溜めを配置しておくこと
ができる。
The cooling system shown in FIG. 2 is the same as the cooling system shown in FIG. 1. In this case, the operating temperature of the internal combustion engine 1 rises and a part of the cooling liquid is already vaporized. Only the vaporized cooling liquid exists in the steam pipe 20. The volume displaced by the steam is compensated by the cooling liquid containing chamber 16. In doing so, it is of course necessary to pay attention to the dimensions of the compensating tank 4 adapted to this system. In the water circuit, in this case there is an in-vehicle heater 12 in front of the convection cooler 7. The oil heat exchanger 13 is also arranged in the cooling liquid pipe. If the in-vehicle heater 12 is arranged in the water circulation path, the interior of the vehicle is heated quickly during its operation, and the warm-up stage of the internal combustion engine becomes relatively long. Compensation tank 4 partition wall 4.3
Is displaced in the direction of the spring chamber 17, and the liquid component displaced by the vapor can be received in the cooling liquid containing chamber 16. In addition to the system shown in FIG. 1, the spring chamber 17 is connected to a negative pressure pipe 18 via a shutoff valve 19, and the negative pressure pipe is connected to a suction device of an internal combustion engine. In this case, the pressure load of the cooling system 2 can be controlled more sensitively than in the case of FIG. In order to lower the system pressure and lower the boiling temperature by preparing a sufficiently high negative pressure during full load operation of the internal combustion engine 1, a negative pressure reservoir may be arranged in the negative pressure pipe 18 in some cases.

【0024】図3に示す図2と同様の内燃機関では車内
ヒータ12が冷却系統2の液流循環路中に配置してある
のでなく、蒸気のみ流過可能である。この構成では利点
として内燃機関1が一層早くその動作温度に達し、この
ことは低摩耗、低燃費及びより好ましい有害物質放出の
点で有利である。車内ヒータ12は冷却液の一部が既に
気化してのみ有効となり、そしてこの場合著しく向上し
たヒータ性能を特徴としている。冷却系統の圧力負荷は
この実施例でもやはり補償タンク4のばね室17内のば
ねによって行われ、ばね室17と大気は穴を通して連絡
してある。補償タンク4内部で分離隔膜にばね力を負荷
しない実施も考えられる。
In an internal combustion engine similar to that shown in FIG. 2 shown in FIG. 3, the in-vehicle heater 12 is not arranged in the liquid flow circulation path of the cooling system 2, but only steam can flow through. This configuration has the advantage that the internal combustion engine 1 reaches its operating temperature sooner, which is advantageous in terms of low wear, low fuel consumption and more favorable emission of harmful substances. The in-vehicle heater 12 is effective only when some of the cooling liquid has already vaporized, and is characterized by a significantly improved heater performance in this case. The pressure loading of the cooling system is again effected by the spring in the spring chamber 17 of the compensation tank 4 in this embodiment, the spring chamber 17 and the atmosphere being in communication through a hole. It is also conceivable that the separation diaphragm is not loaded with a spring force inside the compensation tank 4.

【0025】効率を向上するため、図4に示したように
水分離器14を設けておくことができ、これは専ら水が
対流冷却器、そして専ら蒸気が復水冷却器内を送られる
ようにする。
To improve efficiency, a water separator 14 can be provided, as shown in FIG. 4, so that water is exclusively sent to the convection cooler and steam exclusively to the condensate cooler. To

【0026】作用様式の点でこの図に示す蒸発冷却式内
燃機関1は上述のものと相違しない。
In terms of the mode of operation, the evaporative cooling type internal combustion engine 1 shown in this figure does not differ from that described above.

【0027】図5に示す蒸発冷却式内燃機関1は補償タ
ンク4が補給口15と一体に構成してある。冷却液の加
熱が高まって蒸気が発生しはじめると補償タンク4内の
液面は最低値から許容最高値へと上昇する。許容最高値
の範囲にフロート弁4.2 が配置してあり、この弁は許容
最高液面を超えると大気の方向に開口を閉鎖する。暖機
段階の間液面は蒸気発生が増すのに伴いその最高値にま
で上昇する。更に、冷却系統の注入が特に簡単に可能で
ある点もきわめて重要である。補給口15の最高目印に
至るまで冷却液が充填されても、それにも拘らず補償タ
ンク4内部で所要の膨張容積が保証してある。かかる冷
却系統2の取扱は特に簡単である。
In the evaporative cooling type internal combustion engine 1 shown in FIG. 5, the compensation tank 4 is formed integrally with the replenishment port 15. When the heating of the cooling liquid is increased and steam is generated, the liquid level in the compensation tank 4 rises from the minimum value to the maximum allowable value. A float valve 4.2 is placed in the maximum permissible range, which closes the opening towards the atmosphere when the maximum permissible liquid level is exceeded. During the warm-up phase, the liquid level rises to its maximum as steam generation increases. Furthermore, it is also very important that the injection of the cooling system is particularly easy. Even if the coolant is filled up to the highest mark of the supply port 15, the required expansion volume is guaranteed inside the compensation tank 4 nevertheless. Handling such a cooling system 2 is particularly simple.

【0028】図6に示す実施例は上述のものと同様であ
る。膨張タンク4、補給口15及び負圧絞り22がこの
実施例では1つの構造ユニットにまとめてあり、ベンチ
ュリ管に代え第2冷却液ポンプ11.2が膨張タンク4の範
囲に直接使用してある。この実施例の場合車内ヒータ1
2を流れる冷却液は内燃機関1から別のサーモスタット
弁24を介し車内ヒータ12に至る直接的進路を流れ
る。
The embodiment shown in FIG. 6 is similar to that described above. The expansion tank 4, the supply port 15 and the negative pressure throttle 22 are combined in this embodiment into one structural unit, and a second cooling liquid pump 11.2 is used directly in the range of the expansion tank 4 instead of the Venturi tube. In the case of this embodiment, the in-vehicle heater 1
The coolant flowing in 2 flows in a direct path from the internal combustion engine 1 to the in-vehicle heater 12 via another thermostat valve 24.

【0029】[0029]

【発明の効果】総括するなら、圧力を負荷可能な冷却系
統を有するこの蒸発冷却式内燃機関は使用特性が特に良
好であることが明らかとなる。系圧力と冷却液温度は、
復水冷却器に付属して対流冷却器を設け、対流冷却器出
口からの冷却液と復水冷却器出口からの復水とを内燃機
関に至る送り管中の結節点で一つにまとめ、主流れ方向
で冷却液を送るポンピング装置を結節点範囲に配置する
ことにより、そして好適にはポンピング装置としてベン
チュリ管を使用して個々に調整可能であり、第2ポンピ
ング装置として例えば電気駆動式冷却液ポンプを、使用
特性に関し欠点を生じることなく、小型、緻密且つ安価
に実施しておくことができる。
In summary, it becomes clear that this evaporative cooling type internal combustion engine having a cooling system capable of loading pressure has particularly good operating characteristics. System pressure and coolant temperature are
A convection cooler is attached to the condensate cooler, and the condensate from the convection cooler outlet and the condensate from the condensate cooler outlet are combined at a node in the feed pipe to the internal combustion engine, Individually adjustable by arranging a pumping device for delivering the cooling liquid in the main flow direction in the region of the nodes and preferably using a Venturi tube as the pumping device, for example as an electrically driven cooling device as the second pumping device. The liquid pump can be implemented in a compact size, a compact size, and at a low cost without causing a defect in use characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による蒸発冷却式内燃機関の構成図で始
動直後の様子を示す。
FIG. 1 is a block diagram of an evaporative cooling type internal combustion engine according to the present invention, showing a state immediately after starting.

【図2】同内燃機関の構成図で冷却液の一部が既に気化
しているときの様子を示す。
FIG. 2 is a configuration diagram of the internal combustion engine showing a state where a part of the cooling liquid is already vaporized.

【図3】車内ヒータを備える図1と同様の蒸発冷却式内
燃機関の構成図。
FIG. 3 is a configuration diagram of an evaporative cooling type internal combustion engine similar to FIG. 1 including an in-vehicle heater.

【図4】水分離器を備える図1と同様の蒸発冷却式内燃
機関の構成図。
FIG. 4 is a configuration diagram of an evaporative cooling type internal combustion engine similar to FIG. 1 including a water separator.

【図5】補償タンクと補給口を一体に構成した本発明に
よる蒸発冷却式内燃機関の構成図。
FIG. 5 is a configuration diagram of an evaporative cooling type internal combustion engine according to the present invention in which a compensation tank and a supply port are integrally configured.

【図6】本発明の別の実施例を示す蒸発冷却式内燃機関
の構成図。
FIG. 6 is a configuration diagram of an evaporative cooling type internal combustion engine showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…内燃機関 2…冷却系統 3…復水冷却器 4…膨張タンク 5…連絡管 11…冷却液ポンプ DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine 2 ... Cooling system 3 ... Condensate cooler 4 ... Expansion tank 5 ... Communication pipe 11 ... Coolant pump

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 圧力を負荷可能且つ冷却液を流過可能な
冷却系統を含む蒸発冷却式内燃機関であって、少なくと
も1つの復水冷却器と少なくとも1つの冷却液ポンプと
1つの膨張タンクとを備え、膨張タンクが連絡管により
冷却循環路に接続してあるものにおいて、膨張タンク
(4)を主流れ方向(9)で冷却液ポンプ(11)の直
前に配置し、復水冷却器(3)に付属してサーモスタッ
ト(6)を介し投入可能な対流冷却器(7)を設け、対
流冷却器出口からの冷却液と復水冷却器出口からの復水
とを内燃機関(1)に至る送り管中の結節点で一つにま
とめ、主流れ方向(9)で冷却液を送るポンピング装置
を結節点範囲に配置し、主流れ方向(9)で復水冷却器
出口とポンピング装置との間に圧力調整弁(10)を配
置したことを特徴とする内燃機関。
1. An evaporative cooling internal combustion engine including a cooling system capable of applying a pressure and allowing a cooling liquid to flow therethrough, comprising at least one condensate cooler, at least one cooling liquid pump and one expansion tank. In which the expansion tank is connected to the cooling circuit by a connecting pipe, the expansion tank (4) is arranged immediately before the cooling liquid pump (11) in the main flow direction (9), and the condensate cooler ( A convection cooler (7) that can be input via a thermostat (6) is provided as an accessory to 3), and the cooling liquid from the convection cooler outlet and the condensate from the condensate cooler outlet are supplied to the internal combustion engine (1). The pumping devices that bring together the cooling water in the main flow direction (9) are arranged in the nodal point range, and the condensate cooler outlet and the pumping device are connected in the main flow direction (9). A pressure regulating valve (10) is arranged between Internal combustion engine.
【請求項2】 ポンピング装置をベンチュリ管(8)に
より形成し、ベンチュリ管(8)内の最も狭い流路断面
の範囲に復水を供給可能であることを特徴とする請求項
1記載の内燃機関。
2. Internal combustion according to claim 1, characterized in that the pumping device is formed by a Venturi tube (8) and is capable of supplying condensate in the region of the narrowest flow passage cross section in the Venturi tube (8). organ.
【請求項3】 ベンチュリ管(8)をT形配管結合要素
により形成したことを特徴とする請求項2記載の内燃機
関。
3. Internal combustion engine according to claim 2, characterized in that the venturi pipe (8) is formed by a T-shaped pipe connecting element.
【請求項4】 膨張タンク(4)と、通気部を備えた補
給口(15)が1つの構造ユニットにまとめてあり且つ
連絡管(21)を介し互いに液伝導式に固定してあるこ
とを特徴とする請求項1〜3の一記載の内燃機関。
4. An expansion tank (4) and a supply port (15) having a ventilation part are integrated into one structural unit and are fixed to each other in a liquid-conducting manner via a connecting pipe (21). The internal combustion engine according to any one of claims 1 to 3, which is characterized in that.
【請求項5】 連絡管(21)中に絞り(22)が配置
してあり、該絞りが補給口(15)から膨張タンク
(4)方向への液体通過を制限することを特徴とする請
求項4記載の内燃機関。
5. A throttle (22) is arranged in the connecting pipe (21), which throttle restricts the passage of liquid from the supply port (15) in the direction of the expansion tank (4). Item 4. The internal combustion engine according to item 4.
【請求項6】 膨張タンク(4)が分離隔膜(23)に
より冷却液含有室(16)と膨張室とに仕切ってあり、
膨張室が通気穴を介し大気と連通し、分離隔膜(23)
が大気圧によってのみ負荷可能であることを特徴とする
請求項1〜5の一記載の内燃機関。
6. An expansion tank (4) is partitioned by a separation diaphragm (23) into a cooling liquid containing chamber (16) and an expansion chamber,
The expansion chamber communicates with the atmosphere through the ventilation hole, and the separation diaphragm (23)
6. The internal combustion engine according to claim 1, wherein the engine can be loaded only by the atmospheric pressure.
【請求項7】 分離隔膜(23)が冷却系統(2)に注
入中冷却液でもって膨張タンク(4)の下死点に当接可
能であることを特徴とする請求項4〜6の一記載の内燃
機関。
7. Separating diaphragm (23) is capable of contacting the bottom dead center of the expansion tank (4) with the cooling liquid during injection into the cooling system (2). Internal combustion engine described.
【請求項8】 冷却系統(2)中に車内ヒータ(12)
が配置してあり、車内ヒータが冷却系統(2)のうち内
燃機関を規定どおり使用する間蒸気のみ充填される帯域
内に配置してあることを特徴とする請求項1〜7の一記
載の内燃機関。
8. An in-vehicle heater (12) in the cooling system (2).
8. The in-vehicle heater is arranged in a zone of the cooling system (2) in which only the steam is filled while the internal combustion engine is used as stipulated, according to one of claims 1 to 7. Internal combustion engine.
【請求項9】 冷却液が内燃機関のシリンダヘッド(2
4)の範囲に供給可能であり、内燃機関が分離器として
構成してあることを特徴とする請求項1〜8の一記載の
内燃機関。
9. A cylinder head (2) for a cooling fluid of an internal combustion engine.
Internal combustion engine according to one of the preceding claims, characterized in that it can be supplied in the range 4) and the internal combustion engine is configured as a separator.
JP26854492A 1991-10-08 1992-10-07 Evaporative cooling type internal combustion engine Pending JPH05202750A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4133287.3 1991-10-08
DE19914133287 DE4133287A1 (en) 1991-10-08 1991-10-08 EVAPORATION COOLED INTERNAL COMBUSTION ENGINE

Publications (1)

Publication Number Publication Date
JPH05202750A true JPH05202750A (en) 1993-08-10

Family

ID=6442253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26854492A Pending JPH05202750A (en) 1991-10-08 1992-10-07 Evaporative cooling type internal combustion engine

Country Status (3)

Country Link
EP (1) EP0536470A1 (en)
JP (1) JPH05202750A (en)
DE (1) DE4133287A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008291675A (en) * 2007-05-22 2008-12-04 Toyota Motor Corp Gas circulation promoting mechanism
JP2009544885A (en) * 2006-07-20 2009-12-17 ボルボ ラストバグナー アーベー Cooling system

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4342292A1 (en) * 1993-12-11 1995-06-14 Bayerische Motoren Werke Ag Partly flooded vaporised cooling system for IC engine
DE4342295A1 (en) * 1993-12-11 1995-06-14 Bayerische Motoren Werke Ag Vaporising cooling system for IC engine
FR2721655B1 (en) * 1994-06-24 1996-08-02 Renault Evaporative cooling device for internal combustion engine.
DE4428208B4 (en) * 1994-08-09 2007-03-22 Bayerische Motoren Werke Ag Device for detecting lack of fluid
FR2829069B1 (en) * 2001-09-03 2005-03-18 Renault EJECTOR COOLING SYSTEM FOR ELECTRIC VEHICLE
DE102017123385A1 (en) 2017-10-09 2019-04-11 Volkswagen Aktiengesellschaft Cooling system for a vehicle
DE102021102107A1 (en) * 2021-01-29 2022-08-04 Airbus Operations Gmbh System for providing a pressurized liquid
DE102022113564B3 (en) 2022-05-30 2023-11-09 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Drive unit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50128023A (en) * 1974-03-29 1975-10-08
JPS6228027B2 (en) * 1979-08-23 1987-06-18 Kawasaki Heavy Ind Ltd

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB328664A (en) * 1929-01-04 1930-05-05 Clinton Root Foutz Improvements in or relating to cooling system for internal combustion engines
DE696350C (en) * 1935-07-13 1940-09-19 E H Dr Phil H C Ernst Heinkel cooling systems for internal combustion engines in aircraft
DE753423C (en) * 1939-08-16 1952-09-22 Daimler Benz Ag Evaporative cooling device for internal combustion engines
US2417591A (en) * 1941-07-16 1947-03-18 Citroen Sa Andre Cooling device of internalcombustion engines
DE2033960A1 (en) * 1970-07-08 1972-01-20 Teledyne Industries, Ine , Los Ange les,Cahf (VStA) Multi-stage stratified steam cooling system with closed circuit for internal combustion engines
FR2137091B1 (en) * 1971-05-13 1973-05-11 Gratzmuller Jean Louis
US4550694A (en) * 1984-05-11 1985-11-05 Evans Cooling Associates Process and apparatus for cooling internal combustion engines
JPS611818A (en) * 1984-06-12 1986-01-07 Nissan Motor Co Ltd Boiling and cooling apparatus for engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50128023A (en) * 1974-03-29 1975-10-08
JPS6228027B2 (en) * 1979-08-23 1987-06-18 Kawasaki Heavy Ind Ltd

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009544885A (en) * 2006-07-20 2009-12-17 ボルボ ラストバグナー アーベー Cooling system
JP2008291675A (en) * 2007-05-22 2008-12-04 Toyota Motor Corp Gas circulation promoting mechanism
JP4670836B2 (en) * 2007-05-22 2011-04-13 トヨタ自動車株式会社 Gas flow promotion mechanism

Also Published As

Publication number Publication date
DE4133287A1 (en) 1993-04-15
EP0536470A1 (en) 1993-04-14

Similar Documents

Publication Publication Date Title
US5896847A (en) Liquefied fuel vaporizing apparatus and gas engine provided with the same
US5964206A (en) Fuel supply cooling system for an internal combustion engine
JPH071005B2 (en) Refrigerant circuit for internal combustion engine
US4932365A (en) System for evaporation cooling of an internal combustion engine and for operation of a heating heat exchanger by the coolant
JP2003515695A (en) Fuel supply system for internal combustion engines
JPH0544462A (en) Evaporative cooling type internal combustion engine
JPH05202750A (en) Evaporative cooling type internal combustion engine
US4545335A (en) Cooling system for automotive engine or the like
US20050229873A1 (en) Method and apparatus for moderating the temperature of an internal combustion engine of a motor vehicle
US3963013A (en) Air and fuel charge forming device
US5118451A (en) Fuel vaporization device
US4027639A (en) Isothermal fuel supply system
EP0141363A2 (en) Intercooler for supercharged internal combustion engine or the like
US2369937A (en) Carburetor intake air heater
US4622925A (en) Cooling system for automotive engine or the like
JPH073172B2 (en) Boiling cooling device for internal combustion engine
US4722304A (en) Cooling system for automotive engine or the like
US3384304A (en) Ebullient cooling system for automotive gasoline engines with constant temperature passenger space heater
JP3100094B2 (en) Liquefied petroleum fuel supply system for internal combustion engine
JP2827208B2 (en) Hot water heating system for vehicles
US4380987A (en) Circulating fuel heating system for internal combustion engines
US1424664A (en) Cooling system for internal-combustion engines
JP4566473B2 (en) Fuel cooling method in internal combustion engine
US4604973A (en) Evaporative cooled engine having manual control for service facilitation
US4572115A (en) Parts-arrangement in boiling liquid cooling system