JPH0520162B2 - - Google Patents

Info

Publication number
JPH0520162B2
JPH0520162B2 JP12490484A JP12490484A JPH0520162B2 JP H0520162 B2 JPH0520162 B2 JP H0520162B2 JP 12490484 A JP12490484 A JP 12490484A JP 12490484 A JP12490484 A JP 12490484A JP H0520162 B2 JPH0520162 B2 JP H0520162B2
Authority
JP
Japan
Prior art keywords
steel pipe
rolls
roll
outer diameter
numbered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12490484A
Other languages
Japanese (ja)
Other versions
JPS613604A (en
Inventor
Tsutomu Kimura
Daigo Sumimoto
Hirohisa Ichihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12490484A priority Critical patent/JPS613604A/en
Publication of JPS613604A publication Critical patent/JPS613604A/en
Publication of JPH0520162B2 publication Critical patent/JPH0520162B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B17/00Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling
    • B21B17/14Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling without mandrel, e.g. stretch-reducing mills

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)
  • Metal Extraction Processes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は断面において肉厚差を有する異厚断面
鋼管の製造方法に関する。 (従来技術) 鋼管は強度部材として用いられる例が多く、例
えば自動車用部品では燃費節減のため強度部材と
しての鋼管の使用が増している。自動車用鋼管部
材には一方向応力のみ作用する部材があり、この
様な部材においては鋼管の円周上において応力方
向に対応した部分のみ所定の肉厚を有し他の部分
はより薄肉厚で良い場合が多い。即ち第1図に示
すように管断面において不用な部分の肉厚を薄く
し、管内面形状を楕円にすることができれば部材
が軽量化され燃費が節減されることになる。 しかし従来この様な肉厚差を有する異厚断面鋼
管を工業製品として供給する生産手段はなかつ
た。このため自動車の性能上不利とは知りつつ
も、全周が応力方向に対し必要な肉厚、即ち一様
に厚い肉厚の通常の鋼管を用いていたのである。 (発明が解決しようとする問題点) 一方加熱した母鋼管をストレツチレデユーサに
より絞り圧延して所定寸法の鋼管を製造する方法
があるが、この方法では絞り圧延過程で円周方向
肉厚不均一(以下内面角張りという)が生じやす
いことは例えば「日本機械学会誌 第83巻 第
740号」に報告されている。内面角張りが生じる
と当然ながら寸法精度が悪化し、2ロールタイプ
のストレツチレデユーサで絞り圧延した場合には
成品鋼管は断面一様な肉厚とならずに第3図に示
すように管内面形状が四角形に近い形状(以下四
角張りという)となる場合がある。従つて第1図
に示すような管形状を得るためには、2ロールタ
イプのストレツチレデユーサで、管周方向の肉厚
分布を管内面形状が楕円をなすようにコントロー
ルする必要がある。 (発明の目的) 本発明は管断面において肉厚差のある異厚断面
鋼管をストレツチレデユーサを用いて安価に製造
する手段を提供することを目的とする。 (問題を解決するための手段) 本発明の要旨とする構成は次の通りである。 (1) 加熱された母鋼管をストレツチレデユーサで
絞り圧延する際に楕円率1.03〜1.30で外径絞り率
3〜10%のロール孔型の絞りロールと楕円率0.99
〜1.01で外径絞り率0〜1%のロール孔型の絞り
ロールを交互に配設したストレツチレデユーサを
用いることを特徴とする異厚断面鋼管の製造方
法。 以下第2図のストレツチレデユーサの平面図に
より本発明の方法を詳細に説明する。 加熱炉1中で所定温度に加熱された母鋼管2は
図には示していない搬送ロールにて2ロールタイ
プのストレツチレデユーサ3に供給され絞り圧延
されて成品鋼管4となる。ストレツチレデユーサ
3は第4図に示す楕円率α=W/2Hで表される
ロール孔型をもつ一対ずつの絞りロール31,3
,33,……,3oで構成されている。またスト
レツチレデユーサ3の絞りロール3i(iは1〜
nのロール番号を表わす整数)は母鋼管2を絞り
圧延するために(1)式で表わされる外径絞り率Rを
与えられている。 R=di-1−di/di-1×100(%) ……(1) di:i番目の絞りロールの平均孔型径 本発明において変形抵抗を低下させ、変形能を
向上させるために加熱炉1中にて加熱された母鋼
管2はストレツチレデユーサ3の奇数番絞りロー
ル即ち大きな楕円率と大きな外径絞り率を与えら
れたロール孔型の絞りロールと、偶数番絞りロー
ル即ち小さな楕円率の小さな外径絞り率を与えら
れた絞りロールとで交互に圧延される。奇数番絞
りロールにおいては外径絞り率に応じて管肉厚は
増加するが応力の集中するフランジ部の増肉率が
最も大きく、溝底部においては管肉厚の増加は極
めて少ない。一方偶数番絞りロールにおいては外
径絞り率が極めて小さいため増肉は殆んど生じな
い。従つて奇数番絞りロールのフランジ部におい
てのみ増肉が進行し結果として周方向で肉厚差を
生じ管内面形状が楕円をなす異厚断面鋼管が得ら
れるのである。すなわち本発明法は奇数番ロール
と偶数番ロールの孔型を概略交互に楕円、円とな
るように配設してなる方法である。この絞り圧延
においては、ロール孔型の楕円率は奇数番絞りロ
ールにおいては1.03〜1.30、偶数番絞りロールに
おいては0.99〜1.01の範囲の値をとり、外径絞り
率は奇数番絞りロールでは3〜10%、偶数番絞り
ロールでは0〜1%の値をとる。奇数番絞りロー
ルにおける楕円率、外径絞り率の下限値はいずれ
もその値以下では効果が少なくなるからであり、
楕円率の上限値はこれを越えると次の絞りロール
へ入る際捩れて入る場合があるからであり外径絞
り率の上限値は楕円率上限値との兼合いからこれ
を越えると絞りロールによる疵が成品鋼管に発生
するためである。なお最終絞りロールとなる偶数
番絞りロールの外径絞り率は成品鋼管の外径形状
の精度を良くするために1%程度の値をとる場合
がある。 次に奇数番絞りロールに管の変形抵抗の0.5倍
以上の大きな張力をかけると比較的大きな外径絞
り率を与えていても管肉厚が減少するが、特に溝
底部分の減肉率が最も大きく、フランジ部では少
ない。一方偶数番絞りロールにおいては肉厚変化
が殆んどないため奇数番絞りロールの溝底部分に
おいて減肉が進行し結果として周方向で肉厚差を
生じ管内面形状が楕円をなす異厚鋼管が得られる
のである。この絞り圧延においては奇数番絞りロ
ールにおいて管の変形抵抗の0.6倍の張力を与え
たが、与える張力は絞り圧延成品鋼管の製造条件
に合わせて任意に選択すれば良い。即ちこの絞り
圧延においては母鋼管の寸法と奇数番絞りロール
のロール孔型即に楕円率、外径絞り率を更に好ま
しくは張力を選択することにより所定形状の成品
鋼管が容易に得られるものである。 なお母鋼管の加熱温度はストレツチレデユーサ
の剛性や生成するスケール量などを考慮して適当
に選べば良い。 (実施例) 本実施例においては絞り圧延によつて外径76.3
mm、厚肉部肉厚6mm、薄肉部肉厚4mmの成品鋼管
を得るために、外径114.3mm、肉厚3.7mmの母鋼管
を900℃に加熱し第1表に示すロール孔型の絞り
ロールのストレツチレデユーサで絞り圧延した。
(Industrial Application Field) The present invention relates to a method of manufacturing a steel pipe with different thickness sections having different wall thicknesses in the cross section. (Prior Art) Steel pipes are often used as strength members, and for example, steel pipes are increasingly used as strength members in automobile parts to save fuel consumption. Some steel pipe members for automobiles are subjected to stress in only one direction, and in such members, only the part on the circumference of the steel pipe that corresponds to the stress direction has a predetermined wall thickness, and the other parts have a thinner wall thickness. Often good. That is, as shown in FIG. 1, if the wall thickness of unnecessary portions in the tube cross section can be made thinner and the inner surface shape of the tube can be made oval, the weight of the members can be reduced and fuel consumption can be reduced. However, conventionally, there has been no production means for supplying steel pipes with different thickness cross-sections as industrial products. For this reason, although they were aware that this was disadvantageous in terms of the performance of the automobile, they used an ordinary steel pipe whose entire circumference had the necessary wall thickness in the stress direction, that is, a uniformly thick wall. (Problems to be Solved by the Invention) On the other hand, there is a method in which a heated base steel pipe is reduced and rolled using a stretch reducer to produce a steel pipe of a predetermined size. For example, ``Journal of the Japan Society of Mechanical Engineers, Vol. 83,
740”. Naturally, when internal angularity occurs, dimensional accuracy deteriorates, and when reduced rolling is performed using a two-roll type stretch reducer, the finished steel pipe does not have a uniform wall thickness in cross section, and as shown in Fig. 3, the dimensional accuracy deteriorates. The surface shape may be close to a square (hereinafter referred to as a square). Therefore, in order to obtain the tube shape as shown in FIG. 1, it is necessary to use a two-roll type stretch reducer and control the wall thickness distribution in the tube circumferential direction so that the tube inner surface shape forms an ellipse. (Objective of the Invention) An object of the present invention is to provide a means for inexpensively manufacturing steel pipes with different wall thicknesses using a stretch reducer. (Means for solving the problem) The gist of the present invention is as follows. (1) When the heated base steel pipe is reduced and rolled using a stretch reducer, the ellipticity is 1.03 to 1.30 and the outer diameter reduction ratio is 3 to 10%, and the ellipticity is 0.99.
1. A method for manufacturing a steel pipe with different thickness cross sections, characterized by using a stretch reducer in which roll hole type drawing rolls with an outer diameter reduction ratio of 0 to 1% are alternately arranged. The method of the present invention will be explained in detail below with reference to the plan view of the stretch reducer shown in FIG. A base steel pipe 2 heated to a predetermined temperature in a heating furnace 1 is supplied to a two-roll type stretch reducer 3 by conveyor rolls (not shown), and is reduced and rolled into a finished steel pipe 4. The stretch reducer 3 consists of a pair of squeezing rolls 3 1 , 3 each having a roll hole shape expressed by the ellipticity α=W/2H shown in FIG.
It is composed of 2 , 3 3 , ..., 3 o . Also, the squeezing roll 3 i of the stretch reducer 3 (i is 1 to
n (an integer representing the roll number) is given an outer diameter reduction ratio R expressed by equation (1) in order to reduce and roll the base steel pipe 2. R=d i-1 −d i /d i-1 ×100 (%) ...(1) d i : Average hole diameter of the i-th squeeze roll In the present invention, deformation resistance is reduced and deformability is improved. The base steel pipe 2 is heated in a heating furnace 1 in order to make the steel tube 2. The material is alternately rolled with squeeze rolls, that is, squeeze rolls that have a small ellipticity and a small outer diameter reduction ratio. In odd-numbered drawing rolls, the tube wall thickness increases according to the outer diameter drawing ratio, but the wall thickness increase rate is greatest at the flange portion where stress is concentrated, and the tube wall thickness increase is extremely small at the groove bottom. On the other hand, in the case of even-numbered drawing rolls, the outer diameter drawing ratio is extremely small, so that almost no increase in thickness occurs. Therefore, the thickness increases only at the flange portions of the odd-numbered drawing rolls, resulting in a difference in wall thickness in the circumferential direction, resulting in a steel pipe with different thickness cross-sections having an elliptical inner surface shape. That is, the method of the present invention is a method in which the hole shapes of the odd-numbered rolls and the even-numbered rolls are arranged approximately alternately in the form of an ellipse and a circle. In this reduction rolling, the ellipticity of the roll hole shape is in the range of 1.03 to 1.30 for the odd numbered drawing rolls, and 0.99 to 1.01 for the even numbered drawing rolls, and the outer diameter reduction ratio is 3 for the odd numbered drawing rolls. ~10%, and even-numbered squeeze rolls take a value of 0-1%. This is because the lower limit values of the ellipticity and outer diameter reduction ratio of the odd-numbered drawing rolls are less effective below these values.
The upper limit of the ellipticity is set because if it exceeds this, it may be twisted when entering the next squeeze roll, and the upper limit of the outer diameter drawing ratio is in balance with the upper limit of the ellipticity. This is because defects occur in finished steel pipes. Note that the outer diameter reduction ratio of the even-numbered drawing rolls serving as the final drawing rolls may take a value of about 1% in order to improve the accuracy of the outer diameter shape of the finished steel pipe. Next, if a large tension of 0.5 times or more than the deformation resistance of the pipe is applied to the odd-numbered drawing rolls, the pipe wall thickness will decrease even if a relatively large outer diameter drawing ratio is applied, but the thinning rate at the bottom of the groove will especially decrease. It is the largest and smaller at the flange. On the other hand, since there is almost no change in the wall thickness in the even-numbered drawing rolls, thinning progresses at the groove bottom of the odd-numbered drawing rolls, resulting in a difference in wall thickness in the circumferential direction, resulting in a steel pipe of different thickness with an elliptical inner shape. is obtained. In this reduction rolling, a tension of 0.6 times the deformation resistance of the pipe was applied to the odd-numbered reduction rolls, but the applied tension may be arbitrarily selected according to the manufacturing conditions of the reduction rolled product steel pipe. In other words, in this reduction rolling, a finished steel pipe of a predetermined shape can be easily obtained by selecting the dimensions of the base steel pipe, the roll hole shape of the odd-numbered drawing rolls, the ellipticity, the outer diameter reduction ratio, and more preferably the tension. be. Note that the heating temperature of the base steel pipe may be appropriately selected in consideration of the rigidity of the stretch reducer, the amount of scale generated, etc. (Example) In this example, the outer diameter was 76.3 by reduction rolling.
In order to obtain a finished steel pipe with a wall thickness of 6 mm in the thick part and 4 mm in the thin part, a base steel pipe with an outer diameter of 114.3 mm and a wall thickness of 3.7 mm was heated to 900°C and drawn into the roll hole type shown in Table 1. Reduction rolling was performed using a roll stretch reducer.

【表】 得られた成品鋼管は奇数番ロールにおいて絞り
ロールのフランジ部(第4図において3fで印さ
れる部分)と接触する部分を中心に増肉し必要肉
厚である6mmになり、溝底部(第4図においては
bで示される部分)と接触する部分は僅かに増
肉して4mmとなり、必要とする寸法形状に仕上つ
ていた。 又同様に外径114.3mm、肉厚6.5mmの母鋼管を
900℃に加熱し第1表のロール孔型の絞りロール
のストレツチレデユーサで、偶数番絞りロールで
は殆ど張力をかけずに絞り圧延し、奇数番絞りロ
ールでは管の変形抵抗の0.6倍の張力応力が作用
するよう張力をかけて絞り圧延することにより、
奇数番ロールの溝底部と接触する部分を中心に減
肉し4mmになり、奇数番ロールのフランジ部と接
触する部分はほとんど肉厚の変化がなく6mmであ
り必要とする寸法形状の成品鋼管が得られた。 (発明の効果) 本発明によれば管周方向に肉厚差のある異厚断
面鋼管が絞り圧延法により製造できるので高能率
で安価に製造できる。 なお本発明は管内面形状が楕円をなす異厚鋼管
の製造法について述べたが全く同様に3ロールタ
イプのストレツチレデユーサを用いれば管内面形
状が3角形をなす異厚鋼管の製造も可能である。
[Table] The thickness of the obtained finished steel pipe was increased in the odd-numbered rolls mainly at the part that contacts the flange part of the drawing roll (the part marked 3f in Fig. 4) to reach the required wall thickness of 6 mm. The part in contact with the groove bottom (part 3b in Figure 4) was slightly thickened to 4 mm, and had the required size and shape. Similarly, a base steel pipe with an outer diameter of 114.3 mm and a wall thickness of 6.5 mm was used.
Heating it to 900℃, using the stretch reducer of the roll-hole type squeeze rolls shown in Table 1, the even-numbered squeeze rolls apply almost no tension, and the odd-numbered squeeze rolls reduce the deformation resistance by 0.6 times the deformation resistance of the tube. By applying tension and reducing rolling to apply tension stress,
The wall thickness decreases to 4mm mainly in the part that contacts the groove bottom of the odd numbered rolls, and there is almost no change in wall thickness in the part that contacts the flange part of the odd numbered rolls, making it possible to obtain a finished steel pipe with the required dimensions and shape. Obtained. (Effects of the Invention) According to the present invention, steel pipes with different thickness cross-sections having different wall thicknesses in the circumferential direction can be manufactured by a reduction rolling method, so that they can be manufactured with high efficiency and at low cost. Although the present invention has described a method for producing steel pipes of different thicknesses with an elliptical inner shape, it is also possible to produce steel pipes of different thicknesses with a triangular inner shape by using a three-roll type stretch reducer in exactly the same way. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の鋼管の断面図、第2図は本発
明を説明するストレツチレデユーサの簡単な平面
図、第3図は従来のストレツチレデユーサ成品の
四角張りを示す断面図、第4図は絞りロールの孔
型を説明する図である。 1……加熱炉、2……母鋼管、3……ストレツ
チレデユーサ、3i……i番目の絞りロール、4
……成品鋼管。
FIG. 1 is a sectional view of the steel pipe of the present invention, FIG. 2 is a simple plan view of a stretch reducer explaining the present invention, and FIG. 3 is a sectional view of a conventional stretch reducer product shown in a square manner. FIG. 4 is a diagram illustrating the hole shape of the squeeze roll. DESCRIPTION OF SYMBOLS 1... Heating furnace, 2... Mother steel pipe, 3... Stretch reducer, 3 i ... i-th drawing roll, 4
...Finished steel pipe.

Claims (1)

【特許請求の範囲】 1 加熱された母鋼管をストレツチレデユーサで
絞り圧延する際に、 楕円率1.03〜1.30で外径絞り率3〜10%のロー
ル孔型の絞りロールと楕円率0.99〜1.01で外径絞
り率0〜1%のロール孔型の絞りロールを交互に
配設したストレツチレデユーサを用いることを特
徴とする異厚断面鋼管の製造方法。
[Scope of Claims] 1. When reducing and rolling a heated base steel pipe with a stretch reducer, a roll hole type drawing roll with an ellipticity of 1.03 to 1.30 and an outer diameter reduction of 3 to 10% and an ellipticity of 0.99 to 1.30 are used. 1. A method for producing steel pipes with different thickness cross sections, characterized by using a stretch reducer in which roll hole type drawing rolls with an outer diameter reduction ratio of 0 to 1% are arranged alternately.
JP12490484A 1984-06-18 1984-06-18 Production of steel pipe having different-thickness section Granted JPS613604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12490484A JPS613604A (en) 1984-06-18 1984-06-18 Production of steel pipe having different-thickness section

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12490484A JPS613604A (en) 1984-06-18 1984-06-18 Production of steel pipe having different-thickness section

Publications (2)

Publication Number Publication Date
JPS613604A JPS613604A (en) 1986-01-09
JPH0520162B2 true JPH0520162B2 (en) 1993-03-18

Family

ID=14896984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12490484A Granted JPS613604A (en) 1984-06-18 1984-06-18 Production of steel pipe having different-thickness section

Country Status (1)

Country Link
JP (1) JPS613604A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0410986Y2 (en) * 1986-02-27 1992-03-18
US6536312B1 (en) 1999-05-13 2003-03-25 Komatsu Machinery Corporation Compound machining center compound machining method and machining tool
ITPI20070081A1 (en) * 2007-07-17 2009-01-18 Tromba Maurizio Snc METHOD AND DEVICE FOR THE MANUFACTURE OF METALLIC PIPES WITH AN ELLIPTICAL OR SIMILAR SECTION
JP5428854B2 (en) * 2009-12-29 2014-02-26 セイコーエプソン株式会社 Conveying roller, conveying unit, printing apparatus, and conveying roller manufacturing method

Also Published As

Publication number Publication date
JPS613604A (en) 1986-01-09

Similar Documents

Publication Publication Date Title
JPH07232202A (en) Roll for rolling mill and roll shifting type rolling mill
JPH0520162B2 (en)
JP2000000616A (en) Tube forming equipment train and tube forming method
JP2738280B2 (en) Manufacturing method of external constant parallel flange channel steel
US4276763A (en) Method of rolling angular profiles having flanges of equal length
JPH0275404A (en) Roll for drafting web thickness of shape stock
JPS5837042B2 (en) Manufacturing method of shaped steel
JP3233070B2 (en) Concave roller for forming
JPS603904A (en) Shape steel sheet having thick part at both ends and manufacture thereof
JPS5886933A (en) Tension leveler
SU1437119A1 (en) Tool for periodic deformation of tubes
JP3582253B2 (en) Rolling method and rolling roll of crude billet for section steel
JP4474744B2 (en) Drawing method of metal tube
SU822936A1 (en) Billet for cold rolling of tubes
JPH07303907A (en) Production of electric resistance welded steel tube excellent in roundness
JP2812213B2 (en) Tube rolling method
JPH04284902A (en) Device for hot-finish-rolling metallic plate and method therefor
JPS60227901A (en) Production of channel steel
JPS61276705A (en) Cold rolling method for decreasing edge drop
JPS62110801A (en) Production of channel steel
JPH02112801A (en) Universal rolling method and rolling machine for flanged shape steel
JPH11740A (en) Manufacture of bar of dissimilar section
JPH05269502A (en) Method for hot rolling h-shape steel
JPS635162B2 (en)
JPH0371204B2 (en)