JPH052003A - Measuring method for specific heat of metal - Google Patents
Measuring method for specific heat of metalInfo
- Publication number
- JPH052003A JPH052003A JP15455591A JP15455591A JPH052003A JP H052003 A JPH052003 A JP H052003A JP 15455591 A JP15455591 A JP 15455591A JP 15455591 A JP15455591 A JP 15455591A JP H052003 A JPH052003 A JP H052003A
- Authority
- JP
- Japan
- Prior art keywords
- value
- specific heat
- temperature
- heat
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、金属の比熱測定方法に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the specific heat of metal.
【0002】[0002]
【従来の技術】たとえば鉄鋼業のように多品種にわたる
鋼種を熱処理する業界では、熱処理のための制御パラメ
ータとして比熱値の把握が非常に重要である。ところで
従来の比熱測定方法としては、断熱型連続法あるいはレ
ーザフラッシュ法などが広く知られている。2. Description of the Related Art In the industry for heat treating a wide variety of steels, such as the iron and steel industry, it is very important to understand the specific heat value as a control parameter for heat treatment. By the way, as a conventional specific heat measuring method, an adiabatic continuous method or a laser flash method is widely known.
【0003】断熱型連続法としては、たとえば図4に示
すような断熱熱量計を用いたものが一般的である。すな
わち、真空容器11の中央に熱の良導体で比熱の特異点の
ない断熱容器12が格納され、その中心に試料13が配置さ
れる。この試料13にはヒータ14が電気的に絶縁されて埋
め込まれ、配線15を介して外部から直流電圧が印加され
る。また断熱容器12の外側には断熱容器12を加熱するヒ
ータ16が設けられ、さらにその外側にはヒータ16の熱の
外部発散を防止する熱反射板17が装着される。そして両
ヒータ14,16を介して試料13および断熱容器12をそれぞ
れ加熱し、それらの温度差を差動型熱電対18で測定する
とともに、その温度差をなくして同一温度に保持して外
部から試料13への熱の出入りを断った状態、すなわち断
熱した状態で試料13に一定の入熱を与えてその温度上昇
の時間を標準値と比較することにより、その比熱の値を
測定するものである(たとえば、工業測定便覧(精機学
会・計測自動制御学会編,S57.1発行,P.612 〜613
)参照)。As an adiabatic continuous method, for example, an adiabatic calorimeter as shown in FIG. 4 is generally used. That is, a heat insulating container 12 having a good conductor of heat and having no singular point of specific heat is stored in the center of the vacuum container 11, and a sample 13 is arranged in the center thereof. A heater 14 is electrically insulated and embedded in the sample 13, and a DC voltage is externally applied via a wiring 15. A heater 16 that heats the heat insulating container 12 is provided outside the heat insulating container 12, and a heat reflection plate 17 that prevents the heat of the heater 16 from radiating to the outside is attached to the outside of the heater 16. Then, the sample 13 and the heat insulating container 12 are respectively heated via both the heaters 14 and 16, and the temperature difference between them is measured by the differential thermocouple 18, and the temperature difference is eliminated and the temperature is kept the same from the outside. The specific heat value is measured by applying a constant heat input to the sample 13 in a state where the heat input to and from the sample 13 is cut off, that is, in a heat-insulated state, and comparing the time of the temperature rise with a standard value. There is (for example, Industrial Measurement Handbook (edited by the Society of Precision Instruments and Society of Instrument and Control Engineers, published by S57.1, P.612-613)
)reference).
【0004】一方、レーザフラッシュ法については、そ
の原理はたとえば図5に示すように、円板状の試料21の
表面に均一にルビーレーザ装置22のパルス光を瞬間照射
し、その試料21の裏面温度を赤外線センサ23によって検
出し、温度上昇をたとえば高速メモリ記録計24で観測す
る。そして、得られた裏面温度上昇の特性曲線から熱拡
散率を求め、さらに比熱を求めるものである(たとえ
ば、論文「新素材AlNと高熱伝導率測定(金属,1988年
4月号,P.25〜26)参照)。On the other hand, the principle of the laser flash method is, for example, as shown in FIG. 5, the surface of a disk-shaped sample 21 is uniformly and instantaneously irradiated with the pulsed light of the ruby laser device 22, and the back surface of the sample 21. The temperature is detected by the infrared sensor 23, and the temperature rise is observed by, for example, the high speed memory recorder 24. Then, the thermal diffusivity is calculated from the obtained characteristic curve of the backside temperature rise, and the specific heat is further calculated (for example, the paper “New Material AlN and High Thermal Conductivity Measurement (Metal, April 1988, P.25. ~ 26))).
【0005】[0005]
【発明が解決しようとする課題】しかしながら、上記し
た従来技術である断熱型連続法あるいはレーザフラッシ
ュ法は、いずれも測定装置として高価な上に測定温度範
囲としても限られるという欠点がある。また、測定サン
プルについても測定装置に応じた大きさ,形などが要求
され、規格外のサンプルでは真空炉などでいったん溶融
した後、整形加工する必要があるなどの問題がある。さ
らに、金属の比熱値については多くの文献などに散見す
ることができるが、合金の場合は成分比により比熱が変
動し、たとえばCr系ステンレス鋼の場合、Crの含有率に
より変態点が変化するのにともない比熱のピーク点およ
びそのピーク値がさまざまに変化するため、変態点付近
の文献値は第1次近似値としてしか参考にならないもの
が多い。However, the above-mentioned conventional adiabatic continuous method or laser flash method is disadvantageous in that the measuring apparatus is expensive and the measuring temperature range is limited. Further, the measurement sample is also required to have a size and shape according to the measuring device, and a nonstandard sample has a problem that it needs to be once melted in a vacuum furnace or the like and then shaped. Further, the specific heat value of metals can be found in many documents, but in the case of alloys, the specific heat fluctuates depending on the component ratio, and in the case of Cr-based stainless steel, the transformation point changes depending on the Cr content. Since the peak point of the specific heat and its peak value change in various ways, the literature values near the transformation point are often referred to only as the first-order approximation values.
【0006】本発明は、上記のような従来技術の有する
課題を解決すべくしてなされたものであって、代表鋼種
の比熱値さえあればそれに類する亜鋼種の比熱値を、安
価かつ容易で、測定温度範囲も広く、しかも精度はやや
劣るがかなり信頼のできる金属の比熱測定方法を提供す
ることを目的とする。The present invention has been made in order to solve the problems of the prior art as described above. If the specific heat value of a representative steel grade is available, the specific heat value of a similar sub-steel grade can be obtained inexpensively and easily, It is an object of the present invention to provide a method for measuring the specific heat of a metal, which has a wide measurement temperature range and is somewhat inferior in accuracy, but fairly reliable.
【0007】[0007]
【課題を解決するための手段】本発明は、金属の比熱を
測定する方法において、輻射加熱炉で熱電対端部を溶着
した小片の金属試料を加熱して昇温カーブを記録する工
程と、前記昇温カーブと前記金属試料の比熱値に近い第
1次近似値としての比熱値とから、輻射伝熱方程式を利
用して第1次近似値としての総括熱吸収率を逆算する工
程と、前記第1次近似値としての総括熱吸収率と第1次
近似値としての比熱値のうちのより信頼できる2点を利
用して、第2近似値としてのより信頼できる総括熱吸収
率を求める工程と、前記第2近似値としての総括熱吸収
率と前記昇温カーブから、前記輻射伝熱方程式を利用し
て第2近似値としてのより信頼できる比熱値を逆算する
工程と、からなることを特徴とする金属の比熱測定方法
である。According to the present invention, in a method for measuring a specific heat of a metal, a step of heating a small metal sample having a thermocouple end welded in a radiant heating furnace to record a temperature rising curve, Calculating a total heat absorption coefficient as a first-order approximation value by using a radiation heat transfer equation from the temperature rising curve and a specific heat value as a first-order approximation value close to the specific heat value of the metal sample; By using two more reliable points of the overall heat absorption rate as the first approximation value and the specific heat value as the first approximation value, a more reliable overall heat absorption rate as the second approximation value is obtained. And a step of back-calculating a more reliable specific heat value as a second approximate value from the overall heat absorption coefficient as the second approximate value and the temperature rise curve by using the radiation heat transfer equation. Is a method for measuring the specific heat of a metal.
【0008】[0008]
【作 用】以下に、本発明の作用について説明するが、
本発明に用いられる比熱測定装置の構成を図1に示す。
すなわち、輻射加熱炉1に熱電対3の端部を溶着した小
片の金属試料2を装入して、ヒータ電源5から給電され
るヒータ4によって輻射加熱し、そのとき熱電対3で検
出された金属試料2の温度を昇温カーブとして温度記録
計6のチャートに記録する。[Operation] The operation of the present invention will be described below.
The structure of the specific heat measuring device used in the present invention is shown in FIG.
That is, a small piece of metal sample 2 having the end portion of the thermocouple 3 welded is loaded into the radiant heating furnace 1 and radiantly heated by the heater 4 fed from the heater power source 5, and detected by the thermocouple 3 at that time. The temperature of the metal sample 2 is recorded on the chart of the temperature recorder 6 as a temperature rising curve.
【0009】いま、小片の金属試料2としてDなる板厚
を有する薄板小片を用いて輻射加熱した場合に、得られ
る金属試料2の昇温カーブは、一般に下記式(数1)で
示す輻射伝熱方程式に従うことが知られている。[0009] Now, when the thin metal piece 2 having a plate thickness D is used as the small metal piece 2 for radiant heating, the temperature rise curve of the obtained metal sample 2 is generally represented by the following equation (Equation 1). It is known to follow the heat equation.
【0010】[0010]
【数1】 [Equation 1]
【0011】ここで、TS は金属試料2の温度で、TF
は輻射加熱炉1の炉内雰囲気温度、tは加熱時間、cは
比熱、ρは比重、φCGは総括熱吸収率、σはステファン
ボルツマン定数である。そこで、まず金属試料2の温度
TS は温度記録計6のチャートから得られる。また、炉
内雰囲気温度TF は金属試料2を輻射加熱炉1内で一定
時間保持したときの金属試料2の温度TS と炉内雰囲気
温度TF とがほぼ一致したときの金属試料2の温度TS
を選ぶようにする。そうすると、式(数1)中の未知数
は比熱cと総括熱吸収率φCGのみであるから、一方の未
知数を決めると他方を一意的に求めることができること
になる。なお、比熱cと総括熱吸収率φCGは金属試料温
度TS の関数と考えることができるが、総括熱吸収率φ
CGは主として金属試料2の表面状態に依存するのに対
し、比熱cは金属試料2の内部の物性に依存し、板厚D
を小さくすることにより急速昇温すると総括熱吸収率φ
CGは金属試料温度の広い範囲にわたってゆるやかにしか
変化しないと考えることができる。Where T S is the temperature of the metal sample 2 and T F
Is the atmospheric temperature in the radiant heating furnace 1, t is the heating time, c is the specific heat, ρ is the specific gravity, φ CG is the overall heat absorption rate, and σ is the Stefan Boltzmann constant. Therefore, first, the temperature T S of the metal sample 2 is obtained from the chart of the temperature recorder 6. The furnace atmosphere temperature T F is the same as that of the metal sample 2 when the temperature T S of the metal sample 2 when the metal sample 2 is held in the radiant heating furnace 1 for a certain time and the furnace atmosphere temperature T F substantially match. Temperature T S
To choose. Then, since the unknowns in the equation (Equation 1) are only the specific heat c and the overall heat absorption coefficient φ CG , if one of the unknowns is determined, the other can be uniquely obtained. Although the specific heat c and the total heat absorption coefficient φ CG can be considered as a function of the metal sample temperature T S , the total heat absorption coefficient φ
CG mainly depends on the surface condition of the metal sample 2, whereas the specific heat c depends on the physical properties inside the metal sample 2, and the plate thickness D
When the temperature rises rapidly by decreasing
It can be considered that CG changes only slowly over a wide range of metal sample temperatures.
【0012】一方、比熱cの方は前述したように金属内
部の物性に依存し、とくに変態点付近前後では鋭いピー
ク値をとる。合金の場合、添加金属の含有率により変態
点が移動し、ピーク値も変化するが、変態点からかなり
離れた低温域および高温域では変態点付近の比熱ほど変
動が少なく成分比の似通った金属の測定値あるいは文献
値とほぼ等しいとみなすことができる。On the other hand, the specific heat c depends on the physical properties of the metal as described above, and has a sharp peak value especially around the transformation point. In the case of alloys, the transformation point moves and the peak value also changes depending on the content of the added metal, but in the low temperature region and high temperature region far from the transformation point, the specific heat near the transformation point has less variation and the metal with a similar composition Can be considered to be almost equal to the measured value or the literature value.
【0013】このような事実を応用することにより本発
明は成り立つのであるが、この本発明の原理について図
2に基づいて以下に説明する。 予め測定対象の金属
試料2に近い材質を有し、かつ比熱が公知である金属の
中からその比熱c1 を必要な測定温度範囲に対して調べ
ておく。 輻射加熱炉1で金属試料2を加熱して、そ
の昇温カーブを温度記録計6のチャートに記録する。
ステップで得られた昇温カーブ(たとえば図3参照)
とステップからの第1近似値としての比熱c1 を利用
して、式(数1)を用いて逆算し第1近似値としての昇
温カーブ測定範囲内の各温度に対する総括熱吸収率φ
CG1 を得る。 ステップの第1近似値としての比熱
c1 は、変態点から離れた低温, 高温領域ではかなり信
頼ができるから、その領域の比熱で逆算して得られたス
テップでの第1近似値としての総括熱吸収率φCG1 も
信頼できる。この総括熱吸収率φCG1 は広範囲の温度域
でゆるやかにしか変化しないから、上記の変態点を間に
挟んだ低温域と高温域の総括熱吸収率φCGL ,φCGH を
利用して、その間の温度に対して内挿して第2近似値と
しての昇温カーブの各測定温度に対する総括熱吸収率φ
CG2 を得る。この総括熱吸収率φCG2 はステップで得
られた第1近似値としての総括熱吸収率φCG1 よりも信
頼ができる。 ステップで得られた第2近似値とし
ての総括熱吸収率φCG2 とステップで得られた昇温カ
ーブから、式(数1)を逆算して第2近似値としての昇
温カーブ測定範囲内の各温度に対する比熱c2 が得られ
る。この第2近似値としての比熱c2 は当然第1近似値
としての比熱c1 よりも信頼することができ、変態点付
近の比熱cの挙動がより正確かつ明瞭になる。The present invention is realized by applying such a fact, and the principle of the present invention will be described below with reference to FIG. The specific heat c 1 of a metal having a material close to that of the metal sample 2 to be measured and having a known specific heat is checked in advance over the required measurement temperature range. The metal sample 2 is heated in the radiant heating furnace 1, and the temperature rising curve is recorded on the chart of the temperature recorder 6.
Temperature rising curve obtained in step (see, for example, Fig. 3)
Using the specific heat c 1 as the first approximation value from the step and back calculation using the equation (Equation 1), the overall heat absorption rate φ for each temperature in the temperature increase curve measurement range as the first approximation value
Get CG1 . Since the specific heat c 1 as the first approximate value of the step is fairly reliable in the low temperature and high temperature regions distant from the transformation point, the summary as the first approximate value in the step obtained by back calculation with the specific heat of the region The heat absorption rate φ CG1 is also reliable. Since this total heat absorption coefficient φ CG1 changes only slowly over a wide temperature range, the total heat absorption coefficients φ CGL and φ CGH in the low temperature region and the high temperature region sandwiching the above transformation point are used, and The overall heat absorption coefficient φ for each measured temperature of the temperature rise curve as the second approximate value
Get CG2 . This total heat absorption coefficient φ CG2 is more reliable than the total heat absorption coefficient φ CG1 as the first approximate value obtained in the step. From the overall heat absorption coefficient φ CG2 as the second approximate value obtained in the step and the temperature increase curve obtained in the step, the equation (Equation 1) is back-calculated to obtain the temperature increase curve within the measurement range as the second approximate value. The specific heat c 2 for each temperature is obtained. The specific heat c 2 as the second approximate value can be more reliable than the specific heat c 1 as the first approximate value, and the behavior of the specific heat c near the transformation point becomes more accurate and clear.
【0014】[0014]
【実施例】以下に本発明の実施例について説明する。金
属試料として、たとえば成分がC:0.04wt%,Si:0.40
wt%, Cr:16.30wt%, Mn:0.55wt%, N:0.010 wt%,
P:0.025 wt%, S:0.07wt%, Ni:0.20wt%, Al:
0.11wt%, 残部FeからなるJIS のSUS430ステンレス鋼の
比熱を測定する場合について、具体的にその測定手順を
説明する。EXAMPLES Examples of the present invention will be described below. As a metal sample, for example, the component is C: 0.04 wt%, Si: 0.40
wt%, Cr: 16.30 wt%, Mn: 0.55 wt%, N: 0.010 wt%,
P: 0.025 wt%, S: 0.07 wt%, Ni: 0.20 wt%, Al:
The specific measurement procedure for measuring the specific heat of JIS SUS430 stainless steel consisting of 0.11 wt% and the balance Fe will be described.
【0015】まず、金属試料であるJIS のSUS430ステン
レス鋼の比熱に近い公知の鉄合金はJIS のSUS410ステン
レス鋼であり、その板厚1mmでの比熱は図4に示すよう
な特性値であることが文献値からわかる。これをSUS430
ステンレス鋼の比熱に近い第1近似値としての比熱値c
1 とする。一方、金属試料であるSUS430ステンレス鋼を
輻射加熱炉で加熱して得られた昇温カーブのチャートの
一例は図5のごとくであるので、この図5の昇温カーブ
と図4の比熱値c1 から金属試料の第1近似値としての
総括熱吸収率φCG1 を式(数1)を逆算して求めた結果
を図6に示した。First, a known iron alloy close to the specific heat of JIS SUS430 stainless steel as a metal sample is JIS SUS410 stainless steel, and the specific heat at a plate thickness of 1 mm has the characteristic values shown in FIG. Can be seen from literature values. This is SUS430
Specific heat value c as a first approximation close to the specific heat of stainless steel
Set to 1 . On the other hand, one example of the chart of the temperature rising curve obtained by heating the metal sample SUS430 stainless steel in the radiant heating furnace is as shown in FIG. 5, so that the temperature rising curve of FIG. 5 and the specific heat value c of FIG. the overall heat absorption rate phi CG1 as a first approximation of the metal sample from the 1 shows the results obtained by back calculation equation (equation 1) in FIG. 6.
【0016】ここで、SUS430ステンレス鋼の変態点は50
0 〜900 ℃であるから、図6からそれよりも低温域であ
る板温300℃における総括熱吸収率φCGL は0.30であ
り、またその高温域としての板温1000℃における総括熱
吸収率φCGH は0.34であることがわかる。そこで、これ
ら総括熱吸収率φCGL ,φCGH をなめらかに内挿した結
果、温度が500 〜900 ℃の範囲での第2近似値としての
総括熱吸収率φCG2 を図7に示すようにして得ることが
できた。Here, the transformation point of SUS430 stainless steel is 50.
Since it is 0 to 900 ℃, the overall heat absorption rate φ CGL at the plate temperature 300 ℃ which is lower than that of Fig. 6 is 0.30, and the total heat absorption rate φ at the plate temperature 1000 ℃ as the high temperature range φ It can be seen that CGH is 0.34. Therefore, as a result of smoothly interpolating these total heat absorption coefficients φ CGL and φ CGH , the total heat absorption coefficient φ CG2 as the second approximate value in the temperature range of 500 to 900 ° C. is obtained as shown in FIG. I was able to get it.
【0017】最後に、この新しい総括熱吸収率φCG2 と
昇温カーブとから、再度式(数1)を用いて金属試料の
第2近似値としての比熱値c2を逆算したところ、図8
に示す結果を得ることができた。この比熱値c2 は従来
文献の比熱値と変態点温度を挟む500 〜900 ℃で明らか
に差異があり、この範囲内でより実用的に使用できる値
が得られていることがわかる。Finally, the specific heat value c 2 as the second approximate value of the metal sample was back calculated from the new total heat absorption coefficient φ CG2 and the temperature rising curve by using the formula (Equation 1) again.
The results shown in were obtained. This specific heat value c 2 has a clear difference between the specific heat value of the conventional literature and 500 to 900 ° C. between the transformation point temperatures, and it can be seen that a value that can be practically used is obtained within this range.
【0018】[0018]
【発明の効果】以上説明したように本発明によれば、輻
射加熱炉,熱電対,温度記録計などの機器のみで簡単に
比熱を測定することができ、比熱測定専用の特別で高価
な機器は不要であり、測定する金属試料についても比熱
測定専用器向きに特別な形状や大きさに加工するなどの
制約条件も少ないという効果がある。また、本発明は輻
射加熱炉で加熱した全温度域で比熱を測定することがで
き、従来法よりも測定温度範囲に対する制約が少ないと
いう効果が得られる。As described above, according to the present invention, the specific heat can be easily measured only by the equipment such as the radiant heating furnace, the thermocouple, and the temperature recorder, and the special and expensive equipment dedicated to the specific heat measurement. Is also unnecessary, and there is an effect that there are few constraint conditions such as processing a metal sample to be measured into a special shape and size for a specific heat measuring device. Further, the present invention can measure the specific heat in the entire temperature range heated by the radiant heating furnace, and has an effect that there are less restrictions on the measurement temperature range than the conventional method.
【図1】本発明に用いられる比熱測定装置の実施例の構
成を示す側断面図である。FIG. 1 is a side sectional view showing a configuration of an embodiment of a specific heat measuring device used in the present invention.
【図2】本発明の手順を示す流れ図である。FIG. 2 is a flow chart showing the procedure of the present invention.
【図3】昇温カーブを示す特性図である。FIG. 3 is a characteristic diagram showing a temperature rising curve.
【図4】SUS410ステンレス鋼の板温と第1近似値として
の比熱比c1 の関係を示す特性図である。FIG. 4 is a characteristic diagram showing the relationship between the plate temperature of SUS410 stainless steel and the specific heat ratio c 1 as a first approximation.
【図5】SUS430ステンレス鋼の板温の推移を示す特性図
である。FIG. 5 is a characteristic diagram showing changes in plate temperature of SUS430 stainless steel.
【図6】SUS430ステンレス鋼の板温と第1近似値として
の総括熱吸収率φCG1 の関係を示す特性図である。FIG. 6 is a characteristic diagram showing the relationship between the plate temperature of SUS430 stainless steel and the overall heat absorption coefficient φ CG1 as a first approximation value.
【図7】SUS430ステンレス鋼の板温と第2近似値として
の総括熱吸収率φCG2 の関係を示す特性図である。FIG. 7 is a characteristic diagram showing the relationship between the plate temperature of SUS430 stainless steel and the overall heat absorption coefficient φ CG2 as a second approximation value.
【図8】SUS430ステンレス鋼の板温と第2近似値として
の比熱比c2 の関係を示す特性図である。FIG. 8 is a characteristic diagram showing the relationship between the plate temperature of SUS430 stainless steel and the specific heat ratio c 2 as a second approximate value.
【図9】従来の断熱熱量計の構成例を示す側断面図であ
る。FIG. 9 is a side sectional view showing a configuration example of a conventional adiabatic calorimeter.
【図10】従来のレーザフラッシュ法の原理を示す斜視図
である。FIG. 10 is a perspective view showing the principle of a conventional laser flash method.
1 輻射加熱炉 2 金属試料 3 熱電対 4 ヒータ 5 温度記録計 1 Radiant heating furnace 2 Metal sample 3 Thermocouple 4 Heater 5 Temperature recorder
Claims (1)
輻射加熱炉で熱電対端部を溶着した小片の金属試料を加
熱して昇温カーブを記録する工程と、前記昇温カーブと
前記金属試料の比熱値に近い第1次近似値としての比熱
値とから、輻射伝熱方程式を利用して第1次近似値とし
ての総括熱吸収率を逆算する工程と、前記第1次近似値
としての総括熱吸収率と第1次近似値としての比熱値の
うちのより信頼できる2点を利用して、第2近似値とし
てのより信頼できる総括熱吸収率を求める工程と、前記
第2近似値としての総括熱吸収率と前記昇温カーブか
ら、前記輻射伝熱方程式を利用して第2近似値としての
より信頼できる比熱値を逆算する工程と、からなること
を特徴とする金属の比熱測定方法。Claim: What is claimed is: 1. A method for measuring a specific heat of a metal, comprising:
A step of heating a small metal sample whose thermocouple ends are welded in a radiant heating furnace to record a temperature rise curve; a specific heat value as a first approximation value close to the specific heat values of the temperature rise curve and the metal sample. From the above, the step of back-calculating the total heat absorption rate as the first approximation value using the radiation heat transfer equation, and the total heat absorption rate as the first approximation value and the specific heat value as the first approximation value Using the more reliable two points of the above, a step of obtaining a more reliable total heat absorption rate as the second approximate value, and a total heat absorption rate as the second approximate value and the temperature rising curve A method for measuring a specific heat of a metal, comprising a step of calculating a more reliable specific heat value as a second approximate value by using a radiation heat transfer equation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15455591A JPH052003A (en) | 1991-06-26 | 1991-06-26 | Measuring method for specific heat of metal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15455591A JPH052003A (en) | 1991-06-26 | 1991-06-26 | Measuring method for specific heat of metal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH052003A true JPH052003A (en) | 1993-01-08 |
Family
ID=15586815
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15455591A Pending JPH052003A (en) | 1991-06-26 | 1991-06-26 | Measuring method for specific heat of metal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH052003A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111125913A (en) * | 2019-12-25 | 2020-05-08 | 东北大学 | Method and device for identifying total heat absorption rate of heating furnace |
-
1991
- 1991-06-26 JP JP15455591A patent/JPH052003A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111125913A (en) * | 2019-12-25 | 2020-05-08 | 东北大学 | Method and device for identifying total heat absorption rate of heating furnace |
CN111125913B (en) * | 2019-12-25 | 2023-11-03 | 东北大学 | Method and device for identifying total heat absorption rate of heating furnace |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Burkov et al. | Experimental set-up for thermopower and resistivity measurements at 100-1300 K | |
JP3175887B2 (en) | measuring device | |
US12092502B2 (en) | Non-invasive thermometer | |
Hampson Jr et al. | Vapor pressures of platinum, iridium, and rhodium | |
JPH03225268A (en) | Direct heating type calorimetric instrument | |
Whitney | The temperature scales of columbium, thorium, rhodium and molybdenum at 0.667 μ | |
JP2007218591A (en) | Hybrid-type surface thermometer, apparatus, and method for measuring temperature distribution | |
JPH052003A (en) | Measuring method for specific heat of metal | |
US3266290A (en) | Measurement of thermal conductivity | |
Otsuka et al. | A survey of hemispherical total emissivity of the refractory metals in practical use | |
Brand et al. | The temperature calibration of a high temperature X-ray diffraction camera | |
JPH07197135A (en) | Temperature controller | |
Haacke et al. | Method for thermal conductivity measurements on solids | |
JPH03273121A (en) | Radiation thermometer | |
Di Novi | Application of the pulse method to a specific heat and density-independent measurement of thermal conductivity: extension of the method to very small specimens | |
JP3300110B2 (en) | Gas detector | |
JP2949314B2 (en) | Calorimeter and method | |
JP2001165739A (en) | Operation method for measurement device | |
Wilthan et al. | Thermophysical properties of five industrial steels in the solid and liquid phase | |
Schmon et al. | Thermophysical properties of Manganin (Cu86Mn12Ni2) in the solid and liquid state | |
Backman et al. | Analysis of Test Specimen Temperature Gradients Incurred in Resistive Heating System Oxidation Studies of Ultra-High Temperature Ceramics | |
Bauerle | Analysis of``Immersed''Thermocouple Error | |
JP3570042B2 (en) | Thermal analyzer | |
JP3246861B2 (en) | Thermal characteristic measuring device and soil moisture content measuring device using the same | |
JP3539624B2 (en) | Thermal conductivity measuring method and measuring device |