JPH05199766A - Control method for static power supply device - Google Patents

Control method for static power supply device

Info

Publication number
JPH05199766A
JPH05199766A JP4007463A JP746392A JPH05199766A JP H05199766 A JPH05199766 A JP H05199766A JP 4007463 A JP4007463 A JP 4007463A JP 746392 A JP746392 A JP 746392A JP H05199766 A JPH05199766 A JP H05199766A
Authority
JP
Japan
Prior art keywords
power supply
static power
supply device
load
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4007463A
Other languages
Japanese (ja)
Inventor
Tetsuo Yasuda
哲夫 安田
Norio Ouchi
則男 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP4007463A priority Critical patent/JPH05199766A/en
Publication of JPH05199766A publication Critical patent/JPH05199766A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To protect a static power supply device to which load as voltage source is connected from an overcurrent state and to prevent abnormal voltage drop. CONSTITUTION:Output current of a static power supply device (inverter) 1 to which load as voltage source is connected is detected by current transformers 5A-5C. When a surplus of detection value exceeding a specific level is detected by an overcurrent detection circuit 6, switches 4A-4C k operated by a control circuit 8 to release the output of the inverter for a short period of time and, at the same time, a phase difference against the inverter 1 of load is detected by polarity of output voltage detected through comparators 7A-7C, and after that, the inverter 1 starts to control so that the phase difference is eliminated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、静止型電源装置を過
電流状態から保護し、異常な電圧低下を抑制するための
制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control method for protecting a static power supply device from an overcurrent state and suppressing an abnormal voltage drop.

【0002】[0002]

【従来の技術】従来、静止型電源装置で過電流状態が発
生した時は、出力電圧を低くして電流を抑制するように
しているのが、一般的である。
2. Description of the Related Art Conventionally, when an overcurrent condition occurs in a static power supply device, it is general to reduce the output voltage to suppress the current.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、電源系
統が図8に示すように、例えば負荷として発電機(G)
のような電圧源となり得る負荷20Cが含まれる場合
は、静止型電源装置1の出力電圧を低くすると、静止型
電源装置1と電圧源20Cとの間に流れる電流(横流)
は却って増える傾向にあり、これによって静止型電源装
置1の半導体素子が破壊されるおそれがあるという問題
がある。一般に、2つの電圧源(V)を無作為に並列運
転すると、両者の位相差θによって生じる電圧V’は V’=Vcos(θ/2) となる。位相差が30度のときは電圧の低下は97%で
あり、位相差が90度のときは71%に低下すると同時
に過大な電流が流れることになる。なお、図8におい
て、2は平滑用リアクトル、3は平滑用コンデンサ、2
0A,20Bはコンタクタ、20Dは負荷である。した
がって、この発明の課題は静止型電源装置を過電流状態
から保護し、かつ異常な電圧低下を抑制するための制御
方法を提供することにある。
However, as shown in FIG. 8, the power supply system has, for example, a generator (G) as a load.
When a load 20C that can be a voltage source such as the above is included, if the output voltage of the static power supply device 1 is lowered, the current (cross current) flowing between the static power supply device 1 and the voltage source 20C.
However, there is a problem that the semiconductor element of the static power supply device 1 may be destroyed due to this tendency. In general, when two voltage sources (V) are randomly operated in parallel, the voltage V ′ generated by the phase difference θ between the two becomes V ′ = Vcos (θ / 2). When the phase difference is 30 degrees, the voltage drop is 97%, and when the phase difference is 90 degrees, the voltage drop is 71%, and at the same time an excessive current flows. In FIG. 8, 2 is a smoothing reactor, 3 is a smoothing capacitor, 2
0A and 20B are contactors, and 20D is a load. Therefore, an object of the present invention is to provide a control method for protecting a static power supply device from an overcurrent state and suppressing an abnormal voltage drop.

【0004】[0004]

【課題を解決するための手段】このような課題を解決す
るため、第1の発明では、基準の周波数をもって制御さ
れる半導体素子をスイッチング素子とし、電圧源となり
得る負荷が接続される静止型電源装置の出力電流を監視
し、これが所定値を越えたときは前記静止型電源装置の
出力を一時的に開放し、その期間内に別途検出される各
相電圧の極性から前記負荷の静止型電源装置に対する位
相差を検出し、しかる後検出された位相差に応じて基準
正弦波の位相をずらして前記半導体素子の制御を開始す
ることを特徴としている。第2の発明では、基準の周波
数をもって制御される半導体素子をスイッチング素子と
し、電圧源となり得る負荷が接続される静止型電源装置
の出力電流を監視し、これが所定値を越えたときは、所
定の期間だけ周波数を基準のそれよりも高くして制御す
ることを特徴としている。また、第3の発明では、基準
の周波数をもって制御される半導体素子をスイッチング
素子とし、電圧源となり得る負荷が接続される静止型電
源装置の出力電圧を監視し、この出力電圧が基準値より
下がる期間だけ正弦波信号の基準位相を180度変えて
制御することを特徴としている。
In order to solve such a problem, in the first invention, a static power source to which a semiconductor element controlled with a reference frequency is used as a switching element and a load which can be a voltage source is connected The output current of the device is monitored, and when the output current exceeds a predetermined value, the output of the static power supply device is temporarily opened, and the static power supply of the load is detected from the polarity of each phase voltage separately detected during the period. It is characterized in that the phase difference with respect to the device is detected, and then the phase of the reference sine wave is shifted according to the detected phase difference to start the control of the semiconductor element. In the second invention, a semiconductor element controlled with a reference frequency is used as a switching element, and an output current of a static power supply device to which a load that can be a voltage source is connected is monitored. When the output current exceeds a predetermined value, a predetermined value is determined. It is characterized in that the frequency is controlled to be higher than that of the standard only during the period. Further, in the third invention, a semiconductor element controlled at a reference frequency is used as a switching element, and an output voltage of a static power supply device to which a load that can be a voltage source is connected is monitored, and the output voltage falls below a reference value. It is characterized in that the reference phase of the sine wave signal is changed by 180 degrees for control only during the period.

【0005】[0005]

【作用】電圧源となり得る負荷が接続される静止型電源
装置の出力電流を監視し、これが過電流状態のときは静
止型電源装置を短時間停止させ同期をとった後に運転を
再開するか、または短時間だけ周波数を上げるかし、さ
らには静止型電源装置の出力電圧を監視し、これが所定
値以下となるときは正弦波信号の位相を反転させること
により、静止型電源装置を過電流状態から保護し、異常
な電圧低下を防止する。
The output current of the static power supply device to which a load that can be a voltage source is connected is monitored, and when this is in an overcurrent state, the static power supply device is stopped for a short time and synchronized to resume operation. Alternatively, the frequency of the static power supply is raised for a short time, and the output voltage of the static power supply is monitored, and if it falls below a predetermined value, the phase of the sine wave signal is inverted to place the static power supply in the overcurrent state. To prevent abnormal voltage drop.

【0006】[0006]

【実施例】図1はこの発明の第1実施例を説明するため
の構成図である。同図において、1は単相インバータ1
A,1B,1Cからなる3相インバータ(静止型電源装
置)、2A〜2Cは平滑用リアクトル、3A〜3Cは平
滑用コンデンサ、4A〜4Cはスイッチ、5A〜5Cは
変流器(CT)、6は過電流検出回路、7A〜7Cは比
較器、8は制御回路である。これは、図8に示す電源系
統の静止型電源装置側を示すもので、発電機Gのごとき
電圧源となる負荷が接続される3相インバータ1の出力
電流をCT5A〜5Cによって監視し、これを比較器を
内蔵する過電流検出回路6にて所定の基準値と比較する
ことにより、過電流かどうかを判断する。そして、過電
流状態と判断されたときは、制御回路8は系統の電圧を
比較器7A〜7Cに導入してその極性を判断し、その結
果にもとづき、負荷と静止型電源装置との位相差の検出
を行なう。
1 is a block diagram for explaining a first embodiment of the present invention. In the figure, 1 is a single-phase inverter 1.
A three-phase inverter (static power supply device) consisting of A, 1B, and 1C, 2A to 2C are smoothing reactors, 3A to 3C are smoothing capacitors, 4A to 4C are switches, and 5A to 5C are current transformers (CT), 6 is an overcurrent detection circuit, 7A to 7C are comparators, and 8 is a control circuit. This shows the static power supply side of the power supply system shown in FIG. 8, in which the output current of the three-phase inverter 1 to which a load serving as a voltage source such as the generator G is connected is monitored by CT5A to 5C, and Is compared with a predetermined reference value in the overcurrent detection circuit 6 having a built-in comparator to determine whether or not it is an overcurrent. When it is determined that the current is the overcurrent state, the control circuit 8 introduces the voltage of the system into the comparators 7A to 7C and determines the polarity, and based on the result, the phase difference between the load and the static power supply device is determined. Is detected.

【0007】すなわち、負荷電圧は3相のいずれかの相
の極性が60度毎に図2の如く変化するので、比較器7
A〜7Cで検出した極性信号を図3に示すような位相検
出部に入力して負荷と静止型電源装置との位相差を検出
する。図3の9は極性信号A,B,Cが正のときはN側
に、負のときはI側に出力を出すゲート、10はアンド
ゲートである。したがって、例えば極性信号A,B,C
がそれぞれ(+),(−),(−)のときは、上から2
段目のアンドゲート10から出力が得られ、これによっ
て位相差は60度であり、極性信号A,B,Cがそれぞ
れ(+),(+),(−)のときは、上から3段目のア
ンドゲート10から出力が得られ、これによって位相差
は120度であることなどが分かる。
That is, since the polarity of any one of the three phases of the load voltage changes every 60 degrees as shown in FIG. 2, the comparator 7
The polarity signals detected by A to 7C are input to the phase detection unit as shown in FIG. 3 to detect the phase difference between the load and the static power supply device. Reference numeral 9 in FIG. 3 is a gate that outputs to the N side when the polarity signals A, B, and C are positive, and to the I side when the polarity signals A, B, and C are negative, and 10 is an AND gate. Therefore, for example, the polarity signals A, B, C
Are (+), (-), (-) respectively, 2 from the top
An output is obtained from the AND gate 10 in the third stage, whereby the phase difference is 60 degrees, and when the polarity signals A, B, and C are (+), (+), and (-), respectively, the third stage from the top. An output is obtained from the AND gate 10 of the eye, which shows that the phase difference is 120 degrees.

【0008】図4は図3の位相検出部からの出力にもと
づき正弦波信号を出力する正弦波信号発生部で、正弦波
発生器11A,11,11Cとアンドゲート12および
オアゲート13等より構成されている。なお、正弦波発
生器11A,11,11CのNは図示の如き正弦波信号
をそのまま出力する端子、Iは図示の如き正弦波信号を
反転して出力する端子をそれぞれ示している。これは、
例えば位相差が60度のときは正弦波発生器11A,1
1B,11Cの図示の如き各正弦波信号を反転したも
の、また位相差が120度のときは正弦波発生器11
A,11B,11Cの図示の如き各正弦波信号を、アン
ドゲート12およびオアゲート13を介してそれぞれ出
力することにより、位相差に応じて単相インバータ1
A,1B,1Cを制御し、負荷に対して位相を合わせる
(同期をとる)ものである。
FIG. 4 shows a sine wave signal generator which outputs a sine wave signal based on the output from the phase detector shown in FIG. 3, and is composed of sine wave generators 11A, 11 and 11C, an AND gate 12 and an OR gate 13. ing. In addition, N of the sine wave generators 11A, 11 and 11C indicates a terminal for directly outputting a sine wave signal as shown in the figure, and I indicates a terminal for inverting and outputting the sine wave signal as shown in the figure. this is,
For example, when the phase difference is 60 degrees, the sine wave generators 11A, 1
1B and 11C, which are obtained by inverting each sine wave signal as shown in the drawing, and when the phase difference is 120 degrees, the sine wave generator 11
By outputting the respective sine wave signals A, 11B, and 11C shown in the figure through the AND gate 12 and the OR gate 13, the single-phase inverter 1 according to the phase difference is output.
It controls A, 1B and 1C to match the phase with the load (synchronize).

【0009】図5はこの発明の第2実施例を説明するた
めの構成図である。同図からも明らかなように、この実
施例は2つの正弦波発振器14A,14Bを設けた点が
特徴で、その他は図1と同様である。8Aは制御回路
で、図1に示すものとは若干異なる機能を有しているの
で、符号にAを付して制御回路8と区別した。したがっ
て、この場合もCT5A〜5Cと過電流検出回路6とに
よって過電流状態であることが検出されると、このこと
が制御回路8Aに通知されるので、制御回路8Aは単相
インバータ1A,1B,1Cを駆動する周波数を基準の
もの14Aから、それよりも周波数の高い信号を発生す
る周波数発振器14Bに切り換えて制御するようにして
いる。この場合、発振器14Bの周波数としては14A
のものよりも高ければ任意の値で良く、14Aの近傍の
周波数でも数倍のものでも良い。また、発振器を別々の
ものではなくV/F(電圧/周波数)変換器を用いて周
波数を変えるようにしても良い。その後、負荷と静止型
電源装置との位相が一致すると過電流の信号も消失する
ので、元の周波数でインバータを運転することができ
る。
FIG. 5 is a block diagram for explaining the second embodiment of the present invention. As is apparent from the figure, this embodiment is characterized in that two sine wave oscillators 14A and 14B are provided, and the other points are the same as in FIG. Reference numeral 8A is a control circuit, which has a slightly different function from that shown in FIG. Therefore, in this case as well, when the CTs 5A to 5C and the overcurrent detection circuit 6 detect the overcurrent state, this is notified to the control circuit 8A, so that the control circuit 8A causes the single-phase inverters 1A and 1B. , 1C is switched from the reference frequency 14A to the frequency oscillator 14B which generates a signal having a higher frequency than that of the reference frequency, and is controlled. In this case, the frequency of the oscillator 14B is 14A
Any value may be used as long as it is higher than that, and the frequency may be in the vicinity of 14 A or several times. The frequency may be changed by using a V / F (voltage / frequency) converter instead of using separate oscillators. After that, when the load and the static power supply device are in phase with each other, the overcurrent signal also disappears, so that the inverter can be operated at the original frequency.

【0010】図6はこの発明の第3実施例を説明するた
めの構成図で、8Bは制御回路、15はインバータの電
圧(不足電圧)検出回路である。すなわち、この実施例
は電圧検出回路15によりインバータ1の出力電圧が所
定値以下となったら、そのことを制御回路8Bに通知
し、制御回路8Bにより出力電圧が所定値以下となる区
間は正弦波の信号を180度移相(反転)し、反転した
信号を単相インバータ1A,1B,1Cに与えて制御す
ることにより、90度よりも小さな位相差に収めるられ
るようにし、過電流の抑制と電圧の異常な低下を防止す
るものである。
FIG. 6 is a block diagram for explaining the third embodiment of the present invention, in which 8B is a control circuit and 15 is a voltage (undervoltage) detection circuit of an inverter. That is, in this embodiment, when the output voltage of the inverter 1 becomes less than or equal to the predetermined value by the voltage detection circuit 15, the control circuit 8B is notified of that, and the section in which the output voltage is less than or equal to the predetermined value by the control circuit 8B is a sine wave. 180 degree phase shift (inversion), and the inverted signal is given to the single-phase inverters 1A, 1B, 1C to be controlled so that the phase difference is smaller than 90 degrees, thereby suppressing overcurrent. This is to prevent an abnormal drop in voltage.

【0011】図7にその動作波形を示す。同図のは電
圧検出回路の波形例を示しており、正常な場合は−1
のように波高値X(1.414)と谷の値Y(1.41
4cos30°=1.225)の間にある。これに対
し、負荷と静止型電源装置と180度に近い位相差で並
列運転すると、零近くまで低下する。ところで、負荷に
対して安定な給電を行なうためにはおよそ−25%が限
度であるが、この場合のXは1.061,Yは0.91
9となり、これは位相差が83度の場合に相当する。位
相差が90度の場合にはYは0.866となるので、こ
れを不足電圧判断の基準Zとして選び、電圧検出回路の
出力がこのZ値以下となるときは、信号により正弦波
信号の位相を180度変えるようにする。こうすれば、
−2の如き電圧の異常低下を抑制することができる。
FIG. 7 shows the operation waveform. The figure shows an example of the waveform of the voltage detection circuit.
Like the peak value X (1.414) and the valley value Y (1.41
4 cos 30 ° = 1.225). On the other hand, when the load and the static power supply device are operated in parallel with a phase difference close to 180 degrees, the load drops to near zero. By the way, in order to perform stable power supply to the load, the limit is approximately -25%. In this case, X is 1.061 and Y is 0.91.
9, which corresponds to a phase difference of 83 degrees. When the phase difference is 90 degrees, Y becomes 0.866. Therefore, this is selected as the reference Z for the undervoltage judgment, and when the output of the voltage detection circuit becomes less than this Z value, the Change the phase by 180 degrees. This way
It is possible to suppress an abnormal voltage drop such as -2.

【0012】[0012]

【発明の効果】この発明によれば、電圧源となり得る負
荷が接続される静止型電源装置の出力電流を監視し、こ
れが過電流状態のときは静止型電源装置を短時間停止さ
せ同期をとった後に運転を再開するか、または短時間だ
け周波数を上げるかし、さらには静止型電源装置の出力
電圧を監視し、これが所定値以下となるときは正弦波信
号の位相を反転させるようにしたので、静止型電源装置
を過電流状態から保護することができ、異常な電圧低下
を防止し得る利点が得られる。
According to the present invention, the output current of a static power supply device to which a load that can be a voltage source is connected is monitored, and when it is in an overcurrent state, the static power supply device is stopped for a short time for synchronization. After that, the operation is restarted, or the frequency is raised for a short time, and the output voltage of the static power supply is monitored, and when this falls below a predetermined value, the phase of the sine wave signal is inverted. Therefore, the static power supply device can be protected from an overcurrent state, and an advantage that an abnormal voltage drop can be prevented is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1実施例を説明するための構成図
である。
FIG. 1 is a configuration diagram for explaining a first embodiment of the present invention.

【図2】電圧の極性から位相を検出する原理を説明する
ための説明図である。
FIG. 2 is an explanatory diagram for explaining the principle of detecting a phase from the polarity of voltage.

【図3】位相検出部の具体例を示す概要図である。FIG. 3 is a schematic diagram showing a specific example of a phase detection unit.

【図4】正弦波発生部の具体例を示す概要図である。FIG. 4 is a schematic diagram showing a specific example of a sine wave generator.

【図5】この発明の第2実施例を説明するための構成図
である。
FIG. 5 is a configuration diagram for explaining a second embodiment of the present invention.

【図6】この発明の第3実施例を説明するための構成図
である。
FIG. 6 is a configuration diagram for explaining a third embodiment of the present invention.

【図7】第3実施例を説明するための波形図である。FIG. 7 is a waveform diagram for explaining a third embodiment.

【図8】電源系統の1例を示す概要図である。FIG. 8 is a schematic diagram showing an example of a power supply system.

【符号の説明】[Explanation of symbols]

1…3相インバータ(静止型電源装置)、2A〜2C…
平滑用リアクトル、3A〜3C…平滑用コンデンサ、4
A〜4C…スイッチ、5A〜5C…変流器(CT)、6
…過電流検出回路、7A〜7C…比較器、8,8A,8
B…制御回路、9…ゲート、10,12…アンドゲー
ト、11A〜11C…正弦波発生器、13…オアゲー
ト、14A,14B…正弦波発振器、15…電圧検出回
路。
1 ... 3-phase inverter (static power supply), 2A to 2C ...
Smoothing reactor, 3A to 3C ... Smoothing capacitor, 4
A-4C ... Switch, 5A-5C ... Current transformer (CT), 6
... Overcurrent detection circuit, 7A to 7C ... Comparator, 8, 8A, 8
B ... Control circuit, 9 ... Gate, 10, 12 ... AND gate, 11A-11C ... Sine wave generator, 13 ... OR gate, 14A, 14B ... Sine wave oscillator, 15 ... Voltage detection circuit.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基準の周波数をもって制御される半導体
素子をスイッチング素子とし、電圧源となり得る負荷が
接続される静止型電源装置の出力電流を監視し、これが
所定値を越えたときは前記静止型電源装置の出力を一時
的に開放し、その期間内に別途検出される各相電圧の極
性から前記負荷の静止型電源装置に対する位相差を検出
し、しかる後検出された位相差に応じて基準正弦波の位
相をずらして前記半導体素子の制御を開始することを特
徴とする静止型電源装置の制御方法。
1. An output current of a static power supply device to which a semiconductor element controlled by a reference frequency is used as a switching element and a load that can be a voltage source is connected, and when the output current exceeds a predetermined value, the static type The output of the power supply is temporarily opened, the phase difference of the load with respect to the static power supply is detected from the polarity of each phase voltage that is separately detected during that period, and then the reference is determined according to the detected phase difference. A method of controlling a static power supply device, comprising: controlling the semiconductor element by shifting the phase of a sine wave.
【請求項2】 基準の周波数をもって制御される半導体
素子をスイッチング素子とし、電圧源となり得る負荷が
接続される静止型電源装置の出力電流を監視し、これが
所定値を越えたときは、所定の期間だけ周波数を基準の
それよりも高くして制御することを特徴とする静止型電
源装置の制御方法。
2. A semiconductor element controlled by a reference frequency is used as a switching element, and an output current of a static power supply device to which a load that can be a voltage source is connected is monitored. When the output current exceeds a predetermined value, a predetermined value is determined. A control method for a static power supply device, which is characterized in that the frequency is controlled to be higher than a reference frequency for a period.
【請求項3】 基準の周波数をもって制御される半導体
素子をスイッチング素子とし、電圧源となり得る負荷が
接続される静止型電源装置の出力電圧を監視し、この出
力電圧が基準値より下がる期間だけ正弦波信号の基準位
相を180度変えて制御することを特徴とする静止型電
源装置の制御方法。
3. A semiconductor element controlled by a reference frequency is used as a switching element, and an output voltage of a static power supply device to which a load that can be a voltage source is connected is monitored, and a sine wave is output only during a period when the output voltage is lower than a reference value. A control method for a static power supply device, characterized in that the reference phase of the wave signal is changed by 180 degrees for control.
JP4007463A 1992-01-20 1992-01-20 Control method for static power supply device Pending JPH05199766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4007463A JPH05199766A (en) 1992-01-20 1992-01-20 Control method for static power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4007463A JPH05199766A (en) 1992-01-20 1992-01-20 Control method for static power supply device

Publications (1)

Publication Number Publication Date
JPH05199766A true JPH05199766A (en) 1993-08-06

Family

ID=11666512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4007463A Pending JPH05199766A (en) 1992-01-20 1992-01-20 Control method for static power supply device

Country Status (1)

Country Link
JP (1) JPH05199766A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010206904A (en) * 2009-03-02 2010-09-16 Daishin Industries Ltd Inverter generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010206904A (en) * 2009-03-02 2010-09-16 Daishin Industries Ltd Inverter generator

Similar Documents

Publication Publication Date Title
US4641042A (en) Power supply system and a control method thereof
CA2066490C (en) Parallel operation system of ac output inverters
JP3432640B2 (en) Converter protection device
EP0310048B1 (en) Inverter apparatus for system interconnection
JPH06175741A (en) Static reactive power generating device
JPH05199766A (en) Control method for static power supply device
JPH1014251A (en) Control circuit for uninterruptible power supply
Thankachen et al. Hysteresis controller based fault current interruption using DVR
KR100387588B1 (en) Method of bypass without phase-difference for UPS with phase-difference
JP2004112888A (en) Power failure detection circuit for auxiliary power supply unit of pwm converter system
JP3807998B2 (en) Power converter
JP2002027757A (en) Circuit for detecting phase of power supply
JP2000014041A (en) Power converter
JPH027831A (en) Protective circuit for inverter
JPH10145977A (en) Inverter
JPS61221533A (en) Controller for reactive power compensator
JPH0686560A (en) Self-excited inverter
RU2024143C1 (en) Quick-action current protection device for ac installations
RU2119706C1 (en) Method for protecting high-voltage lines
JPH0514715Y2 (en)
JPH04248316A (en) Overcurrent protector for power converter
JP2004229463A (en) Device for protecting electric power system
JPH0799940B2 (en) Inverter control method
JPH0734656B2 (en) Inverter device
JP2000020151A (en) Pwm control reactive power generator