JPH05199660A - Controller for voltage fluctuation suppressor - Google Patents

Controller for voltage fluctuation suppressor

Info

Publication number
JPH05199660A
JPH05199660A JP4006976A JP697692A JPH05199660A JP H05199660 A JPH05199660 A JP H05199660A JP 4006976 A JP4006976 A JP 4006976A JP 697692 A JP697692 A JP 697692A JP H05199660 A JPH05199660 A JP H05199660A
Authority
JP
Japan
Prior art keywords
voltage
capacitors
fluctuation
level
tsc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4006976A
Other languages
Japanese (ja)
Other versions
JP2990915B2 (en
Inventor
Hideki Yamamura
英機 山村
Satoshi Nishiyama
里志 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP4006976A priority Critical patent/JP2990915B2/en
Publication of JPH05199660A publication Critical patent/JPH05199660A/en
Application granted granted Critical
Publication of JP2990915B2 publication Critical patent/JP2990915B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PURPOSE:To reduce a facility capacity and to improve a facility utilization ratio by suppressing only a voltage fluctuation due to a load fluctuation without being influenced by a power source fluctuation in a TSC(Thyristor Switched Capacitor) for suppressing the voltage fluctuation by controlling open or close of a plurality of phase advancing capacitors disposed on a system bus. CONSTITUTION:A TSC has a plurality of capacitors C1-Cn for supplying phase advancing powers to a power source system and stepwisely switch the number of the applying capacitors to suppress a voltage fluctuation DELTAV due to a load fluctuation of the system. A detected value Vin of a system voltage detected by a voltage detector 9 is passed through a low pass filter 15, its long period component is output as a voltage reference value VS, and applying level Vref and removing level Vrefo of the capacitors C1-Cn are decided to be proportional to the value VS by a level deciding circuit 16. The number of the applying capacitors C1-Cn in so increased or decreased by a capacitor switching controller 17 that the detected value Vin of the system voltage V1 falls between both the levels.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、交流電源系統に設置
される電圧変動抑制装置の制御装置に関し、特に系統母
線に設置した複数の進相コンデンサを開閉制御して、電
圧変動を抑制するTSC(Thyristor Switched Capacit
or)の制御方式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for a voltage fluctuation suppressing device installed in an AC power supply system, and more particularly to a TSC suppressing a voltage fluctuation by controlling opening / closing of a plurality of phase advancing capacitors installed in a system bus. (Thyristor Switched Capacit
or)) control method.

【0002】[0002]

【従来の技術】系統母線の電圧変動を抑制する目的で用
いられるTSCは、図5に示すように、系統母線1に設
置した進相コンデンサC1〜Cnを、サイリスタTh1
Thnで開閉制御し、電圧変動に応じた進相電力を系統
に供給して、変動負荷2等による電圧変動を抑制する。
2. Description of the Related Art As shown in FIG. 5, a TSC used for the purpose of suppressing voltage fluctuations on a system bus has phase-advancing capacitors C 1 -C n installed on a system bus 1 and thyristors Th 1- .
The switching control is performed at Th n , and the phase-advancing power according to the voltage fluctuation is supplied to the system to suppress the voltage fluctuation due to the variable load 2 and the like.

【0003】図5において、系統母線1は変電所電源E
Sに変電所側インピ−ダンスXSを通してつながれ、到来
する列車等の負荷2に給電する。31〜3nは系統母線1
に接続されたTSCで、前記コンデンサC1〜Cnに、こ
のコンデンサ容量の数%程度の容量を持つリアクトルL
1〜Lnと、サイリスタTh1〜ThnおよびダイオードD
1〜Dnの並列回路41〜4nを直列接続して構成される。
この並列回路41〜4nは、サイリスタTh1〜Thnで半
波期間の電流をオン・オフ制御することにより、コンデ
ンサC1〜Cnの投入・引き外しを行うもので、オフ時の
コンデンサC1〜CnはダイオードD1〜Dnの順方向に充
電された状態で待機する。
In FIG. 5, a system bus 1 is a substation power source E.
It is connected to S through the substation side impedance XS and supplies power to the load 2 such as an incoming train. 3 1 to 3 n are system bus 1
In the TSC connected to, a reactor L having a capacity of several% of the capacity of the capacitors C 1 to C n.
1 to L n , thyristors Th 1 to Th n and diode D
It constituted a parallel circuit 4 1 to 4 n of 1 to D n are connected in series.
The parallel circuit 4 1 to 4 n, by on-off control of the current half-wave period in the thyristor Th 1 to TH n, and performs off-on-pulling capacitor C 1 -C n, in the OFF The capacitors C 1 to C n stand by while being charged in the forward direction of the diodes D 1 to D n .

【0004】6はTSCの制御装置で、系統電圧Vl
検出値VinをTSC毎に設定された投入レベルVref1
refnと比較し、これより低下すると、対応するTSC
1〜3nのコンデンサC1〜Cnを投入し、電圧が回復し
てこのレベルを上回ると、これを引き外す。
Reference numeral 6 denotes a TSC control device, which sets the detected value V in of the system voltage V l to a supply level V ref1 to which is set for each TSC.
Compared with V refn , if it falls below this, the corresponding TSC
3 1 was charged to 3 n capacitors C 1 -C n of, exceeds this level recovered voltage, tripping it.

【0005】この制御装置6において、7は電源同期回
路で、降圧トランスPT1、入力トランスPT2を介して
系統母線1につながれ、系統電圧Vlから電圧同期信号
を作る。8はブロックゾーン回路で、この電源同期信号
から前記サイリスタTh1〜Thnの非点弧期間を定める
ブロックゾーン信号を発生する。9は電圧検出回路で、
電圧変成器PT1、入力トランスPT3を介して系統の母
線電圧Vlを検出し、その実効値を電圧検出値Vinとし
て出力する。101〜10nは各TSC31〜3nに対応す
る投入レベルVref1〜Vrefnを設定する設定器、111
〜11nは減算器で、電圧検出値Vinから投入レベルV
ref1〜Vrefnを減算する。121〜12nは加算器で、こ
の減算値にブロックゾーン信号を加算して、ブロックゾ
ーン期間中の減算値を嵩上げし、これを系統電圧Vl
十分に高くコンデンサ投入の必要がない状態に対応した
ものとする。131〜13nはチャタリング防止のためヒ
ステリシス機能を持たせた比較器で、加算器121〜1
nの出力が、一定レベル以下の電圧のとき(電圧検出
値Vinが投入レベルVref1〜Vrefnを下回ったことを示
す)、サイリスタのトリガ信号を発生し、対応するTS
C31〜3nのサイリスタTh1〜Thnのゲートに、アン
プA1〜Anを通して出力する。この出力によって、系統
電圧Vlの低下分に応じた数の進相コンデンサC1〜Cn
が系統母線1に投入され、電圧変動を抑制する。
In the control device 6, a power supply synchronizing circuit 7 is connected to the system bus 1 via a step-down transformer PT 1 and an input transformer PT 2 and produces a voltage synchronizing signal from a system voltage V l . 8 is a block zone circuit, for generating a block zone signal defining a non-ignition period of the thyristor Th 1 to TH n from the power source synchronization signal. 9 is a voltage detection circuit,
The bus voltage V l of the system is detected via the voltage transformer PT 1 and the input transformer PT 3 , and the effective value thereof is output as the voltage detection value V in . Reference numerals 10 1 to 10 n are setters that set the input levels V ref1 to V refn corresponding to the TSCs 3 1 to 3 n , 11 1
In to 11 n are subtracters, charged level V from the voltage detection value V in
Subtract ref1 to Vrefn . Reference numerals 12 1 to 12 n denote adders, which add the block zone signal to the subtracted value to raise the subtracted value during the block zone period, in which the system voltage V l is sufficiently high and it is not necessary to turn on the capacitor. It corresponds to. Reference numerals 13 1 to 13 n denote comparators provided with a hysteresis function to prevent chattering, and adders 12 1 to 1
When the output of 2 n is a voltage below a certain level (indicating that the voltage detection value V in has fallen below the input levels V ref1 to V refn ), a thyristor trigger signal is generated and the corresponding TS is generated.
The gate of the thyristor Th 1 to TH n of C3 1 to 3 n, and outputs through the amplifiers A 1 to A n. By this output, the number of phase advancing capacitors C 1 to C n corresponding to the amount of decrease in the system voltage V l
Is input to the system bus 1 to suppress voltage fluctuations.

【0006】[0006]

【発明が解決しようとする課題】上記従来の制御方式
は、進相コンデンサC1〜Cnの投入レベル(引き外しレ
ベル)が固定値Vref1〜Vrefnであり、負荷変動による
電圧変動ΔVのみならず、電源ESの変動に対しても応
答する。
In the above conventional control method, the input levels (tripping levels) of the phase advancing capacitors C 1 to C n are fixed values V ref1 to V refn , and only the voltage variation ΔV due to the load variation. It also responds to changes in the power supply E S.

【0007】このため、図6に示すように、本来の制御
対象である負荷変動による電圧変動ΔVに対して応答し
なかったり、容量不足となる場合があった。例えば変電
所電源ESの電圧が大きいと、ここから負荷変動による
電圧デイップΔVがあっても、その電圧値は図6のa,
bに示すように、投入レベルVref1〜Vrefnの最大値V
MAXを越えている場合があり、その越えた部分について
は進相コンデンサC1〜Cnの投入が行われれず、補償が
されない。また、変電所電源ESの電圧が低いときは、
それに対応した個数の進相コンデンサが常に投入される
ので、その時点で図6のcのような負荷変動による電圧
デイップΔVがあっても、さらに投入すべきコンデンサ
の容量が不足し、その分については補償できない。
For this reason, as shown in FIG. 6, there is a case where the system does not respond to the voltage variation ΔV due to the load variation which is the original control target, or the capacity becomes insufficient. For example, if the voltage of the substation power supply E S is large, even if there is a voltage dip ΔV due to load fluctuation, the voltage value is a,
As shown in b, the maximum value V of the input levels V ref1 to V refn
May exceeds the MAX, not been made up of the phase advancing capacitor C 1 -C n is about that exceed the portion, not compensated. When the voltage of the substation power supply E S is low,
Since a corresponding number of phase-advancing capacitors are always turned on, even if there is a voltage dip ΔV due to a load change as shown in c of FIG. Cannot be compensated.

【0008】この場合、コンデンサの全容量を増加すれ
ば、系統電圧ESが低いときの電圧デイップΔVの抑制
は可能となるが、系統電圧ESが高いときの電圧デイッ
プΔVの抑制は難しく、設備費用も大きくなる問題が生
じる。
In this case, if the total capacitance of the capacitors is increased, it is possible to suppress the voltage dip ΔV when the system voltage E S is low, but it is difficult to suppress the voltage dip ΔV when the system voltage E S is high. There is a problem that equipment costs will increase.

【0009】このように従来の設備は、電源電圧ES
変動に対しても応答するため、本来の制御目的である負
荷変動による電圧変動ΔVを完全に補償できず、この目
的に対する設備の利用率が低くなるという問題があっ
た。そこで、この発明は負荷変動の大きさに対応した容
量の進相コンデンサを備えておけば、負荷変動による電
圧変動ΔVを確実に補償できる制御装置を提供すること
を目的とする。
As described above, since the conventional equipment responds to the fluctuation of the power supply voltage E S , the voltage fluctuation ΔV due to the load fluctuation, which is the original control purpose, cannot be completely compensated, and the equipment is used for this purpose. There was a problem that the rate was low. Therefore, an object of the present invention is to provide a control device capable of reliably compensating for voltage fluctuation ΔV due to load fluctuation, provided that a phase advancing capacitor having a capacity corresponding to the magnitude of load fluctuation is provided.

【0010】[0010]

【課題を解決するための手段】この発明は、電源系統に
設置されて進み無効電力を供給する複数のコンデンサを
開閉制御し、その投入数を段階的に切換えて系統の負荷
変動による電圧変動を抑制するものにおいて、系統電圧
を検出する電圧検出回路と、検出した系統電圧の長周期
成分を取出して電圧基準値とするローパスフィルタと、
この電圧基準値から系統電圧の長周期成分に追従するコ
ンデンサの投入レベルと引き外しレベルを決定するレベ
ル決定回路と、これらのレベルと検出した系統電圧とを
比較し、系統電圧がこれらのレベルの間に入るようにコ
ンデンサの投入数を増減する制御回路とを具備したこと
を特徴とする電圧変動抑制装置の制御装置を提供する。
SUMMARY OF THE INVENTION According to the present invention, a plurality of capacitors installed in a power supply system and supplying reactive power are controlled to be opened and closed, and the number of the capacitors is switched in stages to prevent voltage fluctuation due to load fluctuation of the system. In the suppression, a voltage detection circuit that detects a system voltage, a low-pass filter that extracts a long-period component of the detected system voltage and uses it as a voltage reference value,
A level determination circuit that determines the closing level and the tripping level of the capacitor that follows the long-period component of the system voltage from this voltage reference value, and these levels are compared with the detected system voltage. There is provided a control device for a voltage fluctuation suppressing device, comprising: a control circuit for increasing or decreasing the number of capacitors to be inserted so as to be in between.

【0011】[0011]

【作用】上記構成は、抑制対象としない電源電圧の長周
期成分をローパスフィルタで検出し、これを基準値と
し、これに追従するように進相コンデンサの投入レベル
及び引き外しレベルを決定する。制御対象とする負荷変
動に伴う電圧変動ΔVは、この長周期成分に重畳する形
で発生するので、これらのレベルによって進相コンデン
サ投入数の増減を行えば、負荷変動に伴う電圧変動のみ
を補償できる。さらに、TSCは負荷変動に対応した大
きさのコンデンサ容量を備えれば使用目的を達成でき、
高い設備利用率が得られる。
With the above construction, the long-period component of the power supply voltage that is not to be suppressed is detected by the low-pass filter, and this is used as the reference value, and the closing level and tripping level of the phase-advancing capacitor are determined so as to follow this. Since the voltage fluctuation ΔV due to the load fluctuation to be controlled occurs in the form of being superimposed on this long-period component, if the number of leading capacitors is increased or decreased depending on these levels, only the voltage fluctuation due to the load fluctuation is compensated. it can. Furthermore, the TSC can achieve its intended purpose if it has a capacitor capacity large enough to cope with load fluctuations.
High capacity factor can be obtained.

【0012】[0012]

【実施例】この発明の一実施例を図1に示し、以下説明
する。なお、図5と共通する部分には、同一符号を付け
てある。図1において、1は変電所電源ESから変電所
側インピ−ダンスXSを通して給電される系統母線、2
は列車負荷等の変動負荷である。31〜3nはTSCで、
進相コンデンサC1〜Cnに、進相コンデンサの数パーセ
ント程度の容量を持つリアクトルL1〜Lnと、ダイオー
ドD1〜DnおよびサイリスタTh1〜Thnの逆並列回路
1〜4nを直列接続して構成されている。このTSC3
1〜3nの全容量は、その系統に発生する負荷変動による
電圧変動ΔVを抑制できる大きさ、すなわち、%Z(=
ΔV)=(TSCの全容量)/(系統の短絡容量PS
の関係に設定すればよい。なお、この実施例では、コン
デンサC1〜Cnの開閉回路として、ダイオードとサイリ
スタの逆並列回路41〜4nを使用しているが、サイリス
タのペアを逆並列接続したものを用いてもよい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention is shown in FIG. 1 and will be described below. The same parts as those in FIG. 5 are designated by the same reference numerals. In FIG. 1, 1 is a system bus that is fed from the substation power supply E S through the substation-side impedance X S , 2
Is the variable load such as train load. 3 1 to 3 n are TSC,
The phase-advancing capacitors C 1 to C n are provided with reactors L 1 to L n having a capacity of about several percent of the phase advancing capacitors, diodes D 1 to D n, and antiparallel circuits 4 1 to 4 of thyristors Th 1 to Th n. It is configured by connecting n in series. This TSC3
The total capacity of 1 to 3 n is a size capable of suppressing the voltage fluctuation ΔV due to the load fluctuation occurring in the system, that is,% Z (=
ΔV) = (total capacity of TSC) / (short-circuit capacity P S of the system)
It should be set to the relationship of. In this embodiment, as an opening and closing circuit of a capacitor C 1 -C n, but using reverse parallel circuit 4 1 to 4 n diode and a thyristor, it is used after reverse parallel connection pairs thyristor Good.

【0013】14は系統母線1の負荷変動に応じて、上
記TSCのサイリスタTh1〜Thnを開閉制御する制御
装置である。この制御装置14において、7はPLL回
路により構成された電源同期回路で、降圧変圧器P
1,入力トランスPT2を介して系統母線1につなが
れ、母線電圧Vlの電源同期信号を取出す。8はブロッ
クゾーン回路で、この電源同期信号を受け、同図に示し
たようにダイオードD1〜Dnに通電させ、サイリスタT
1〜Thnに通電させない期間(斜線部)にブロックゾ
ーン信号VBを発生する。なお、サイリスタTh1〜Th
nの通電期間(ゲートパルス発生期間)は、コンデンサ
1〜Cnに流れる電流が母線電圧Vlに対して略90°
進む関係にあるので、図2に斜線で示すような期間とな
っている。
Reference numeral 14 is a control device for controlling the opening and closing of the thyristors Th 1 to Th n of the TSC according to the load fluctuation of the system bus 1. In this control device 14, 7 is a power supply synchronizing circuit composed of a PLL circuit, which is a step-down transformer P.
It is connected to the system bus 1 via T 1 and the input transformer PT 2, and takes out the power supply synchronizing signal of the bus voltage V l . A block zone circuit 8 receives the power supply synchronizing signal and energizes the diodes D 1 to D n as shown in FIG.
to h 1 to TH n period of not energized (hatched portion) for generating a block zone signal V B. In addition, the thyristors Th 1 to Th
During the energization period of n (gate pulse generation period), the current flowing through the capacitors C 1 to C n is approximately 90 ° with respect to the bus voltage V l .
Because of the advancing relationship, the period shown by the diagonal lines in FIG. 2 is set.

【0014】9は電圧検出回路で、母線電圧Vlを降圧
トランスPT1、入力トランスPT3を通して受け、その
実効値を電圧検出値Vinとして出力する。15はこの電
圧検出値Vinを受け、その長周期成分を取出し電圧基準
値VSとして出力するローパスフィルタで、例えばゲイ
ンをK≧1,時定数ST1を数十秒としたものを用い
る。
A voltage detection circuit 9 receives the bus voltage V l through the step-down transformer PT 1 and the input transformer PT 3 , and outputs its effective value as a voltage detection value V in . A low-pass filter 15 receives the detected voltage value V in and outputs the long-period component as a voltage reference value V S. For example, a low-pass filter having a gain of K ≧ 1 and a time constant ST 1 of several tens of seconds is used.

【0015】16はレベル決定回路で、例えば図示した
ように抵抗器R1,R2,R3を直列接続した分圧回路よ
り構成され、ローパスフィルタ15の出力する電圧基準
値Vsを、所定の比率で分圧して、進相コンデンサC1
nの投入レベルVrefIと引き外しレベルVrefOを決定
する。なお、この実施例の場合、投入レベルは、VrefI
=K・Vin・R3/(R1+R2+R3)、引き外しレベル
は、VrefO=K・Vin・(R2+R3)/(R1+R2+R
3)、但し、K・Vin=VSとなる。
Reference numeral 16 is a level determining circuit, which is composed of a voltage dividing circuit in which resistors R 1 , R 2 and R 3 are connected in series as shown in the figure, and a voltage reference value V s output from the low pass filter 15 is set to a predetermined value. by applying in a ratio minutes, phase advancing capacitor C 1 ~
Determining a charged level V REFI and trip level V REFO of C n. In this embodiment, the input level is V refI.
= K · V in · R 3 / (R 1 + R 2 + R 3 ), the trip level is V refO = K · V in · (R 2 + R 3 ) / (R 1 + R 2 + R
3 ) However, K · V in = V S.

【0016】17は、第1及び第2の比較器181,1
2、アップダウンカウンタ19、出力回路20からな
るコンデンサの開閉制御回路で、上記電圧検出値Vin
投入レベルVrefI及び引き外しレベルVrefOと比較し、
電圧検出値VinがこれらのレベルVrefI,VrefOの間に
入るようにコンデンサC1〜Cnの投入数を増減する。
Reference numeral 17 denotes a first and a second comparator 18 1 , 1
8 2 , an up / down counter 19, and an open / close control circuit for a capacitor, which is composed of an output circuit 20, compares the voltage detection value V in with a closing level V refI and a trip level V refO ,
The number of capacitors C 1 to C n to be turned on is increased or decreased so that the detected voltage value V in falls between these levels V refI and V refO .

【0017】この開閉制御回路17において、第1の比
較器181は、電圧検出値Vinが投入レベルVrefIを下
回ったとき、アップダウンカウンタ19にカウントアッ
プ信号を出力する。第2の比較器182は、電圧検出値
inが引き外しレベルVrefOを上回ったとき、アップダ
ウンカウンタ19にカウントダウン信号を出力する。ア
ップダウンカウンタ19は、最小桁からカウント値に対
応した桁までの出力端子をハイレベル(コンデンサ投入
指令)とするデコード出力を持つもので、出力端子の各
1nは各TSC31〜3nと1対1で対応している。出
力回路20は、上記ブロックゾーン信号VBの発生期間
中のデコード出力を強制的にロウレベルとする加算器2
1〜21nと、この加算器を通過したデコード出力を増
幅して、対応するTSCのサイリスタTh1〜Thnのゲ
ートにトリガパルスとして出力する増幅器A1〜Anとか
ら構成されている。この構成は、デコード出力のハイレ
ベルの桁に対応するTSCのサイリスタTh1〜Th
nを、図2に示す所定のタイミングで導通させ、そのコ
ンデンサC1〜Cnを系統母線1に投入するものである。
In the open / close control circuit 17, the first comparator 18 1 outputs a count-up signal to the up-down counter 19 when the voltage detection value V in falls below the closing level V refI . The second comparator 18 2 outputs a countdown signal to the up / down counter 19 when the voltage detection value V in exceeds the trip level V refO . The up / down counter 19 has a decode output that sets the output terminals from the lowest digit to the digit corresponding to the count value to high level (capacitor input command), and each digit 1 to n of the output terminal is each TSC3 1 to 3. There is a one-to-one correspondence with n . The output circuit 20 includes an adder 2 forcibly setting the decode output during the generation period of the block zone signal V B to a low level.
1 1 to 21 n, and amplifiers A 1 to A n that amplify the decoded output that has passed through this adder and output as a trigger pulse to the gates of the corresponding TSC thyristors Th 1 to Th n . .. This configuration is used for TSC thyristors Th 1 to Th corresponding to the high-level digit of the decoded output.
n is turned on at a predetermined timing shown in FIG. 2, and the capacitors C 1 to C n are put into the system bus 1.

【0018】上記図1の装置の動作を、図3,図4に示
す波形図について説明する。図3に示すように長周期
(数分)で変動する電源ESが系統母線1に供給されて
いるとき、列車負荷2が到来して、図中a,b,cのよ
うな電圧デイップΔVが発生するとき、これを本発明装
置によって抑制する場合を考える。この場合、TSCの
コンデンサ全容量は、前述したように、この電圧降下Δ
Vの大きさを想定して設定されているので、これらはコ
ンデンサC1〜Cnの電圧調整可能な範囲にある。
The operation of the apparatus shown in FIG. 1 will be described with reference to the waveform charts shown in FIGS. As shown in FIG. 3, when the power supply E S that fluctuates in a long cycle (several minutes) is supplied to the system bus 1, the train load 2 arrives and the voltage dip ΔV such as a, b, and c in the figure is reached. Consider the case in which the occurrence of the above occurs when it is suppressed by the device of the present invention. In this case, the total capacitance of the TSC capacitor is equal to this voltage drop Δ, as described above.
Since they are set on the assumption of the magnitude of V, these are in the voltage adjustable range of the capacitors C 1 to C n .

【0019】レベル決定回路16の出力する投入レベル
refIと引き外しレベルVrefOは、母線電圧Vlから長
周期成分を取出した電圧基準値VSに追従するので、電
圧デイップa,b,cのどの時点においても、これらの
レベルVrefI,VrefOと母線電圧Vlの電圧検出値Vin
とは、図4に示すような関係にある。
The charged level V REFI and trip level V REFO output by the level determining circuit 16, so follow the bus voltage V l to the voltage reference value V S is taken out of the long-period component, the voltage dip a, b, c At any point of time, the detected voltage value V in of these levels V refI and V refO and the bus voltage V l
And have a relationship as shown in FIG.

【0020】列車負荷2が到来して電圧デイップΔVが
始まり、電圧検出値Vinが投入レベルVrefIより低下し
ようとすると、第1の比較器181がこれを検出して、
アップダウンカウンタ19を1つカウントアップする。
これにより出力端子の最少桁のみがハイレベルとなり、
出力回路20が、対応するTSCのサイリスタTh
1に、図2に示すタイミングのトリガパルスの出力を開
始する。これによって、系統電圧Vlは、コンデンサC1
の容量分だけ上昇し、電圧変動が抑制される。負荷2へ
の電力供給がさらに大きくなり母線電圧Vlが降下して
行き、その電圧検出値Vinが再び投入レベルVrefIより
低下しようとすると、第1の比較器181は再び、アッ
プダウンカウンタ19を1つカウントアップする。これ
により出力回路20はTSCのサイリスタTh1,Th2
を導通させることになり、系統母線1に投入されるコン
デンサの数は1つ増加して、電圧デイップΔVは再び抑
制される。このコンデンサの追加投入動作は、負荷2へ
の電力供給の増加に対応して行われ、負荷への供給電力
が変化しないときはコンデンサ投入数の増減はない。列
車負荷2が遠ざかり供給電力の減少が始まると、系統電
圧Vlは上昇して行くので、電圧検出値Vinが引き外し
レベルVrefoを上回ろうとする。これは、第2の比較器
182で検出され、その度に、アップダウンカウンタ1
9を1つづつカウントダウンさせ、TSCのコンデンサ
1〜Cnの系統母線1への投入数を1つづつ減少させ、
母線電圧Vlがそれより大きくなるのを抑える。このよ
うに、負荷変動の大きさに対応して、コンデンサC1
nの投入数を段階的に増減するので、系統母線1の仕
上がり電圧Vlを投入レベルVrefIと引き外しレベルV
refOの間に保つことができ、負荷変動による電圧変動Δ
Vを常に抑制できる。
When the train load 2 arrives and the voltage dip ΔV starts to cause the voltage detection value V in to fall below the input level V refI , the first comparator 18 1 detects this and
The up / down counter 19 is incremented by one.
As a result, only the least significant digit of the output terminal goes high,
The output circuit 20 corresponds to the thyristor Th of the corresponding TSC.
At 1 , the trigger pulse output at the timing shown in FIG. 2 is started. Thus, the system voltage V l, the capacitor C 1
And the voltage fluctuation is suppressed. When the power supply to the load 2 further increases and the bus voltage V l drops and the detected voltage value V in tries to fall below the closing level V refI again, the first comparator 18 1 again goes up and down. The counter 19 is incremented by one. As a result, the output circuit 20 becomes a TSC thyristor Th 1, Th 2.
Is made conductive, the number of capacitors inserted in the system bus 1 increases by 1, and the voltage dip ΔV is suppressed again. This additional charging operation of the capacitors is performed in response to the increase in the power supply to the load 2, and when the power supplied to the load does not change, the number of capacitors to be charged does not increase or decrease. When the train load 2 moves away and the supply power starts to decrease, the system voltage V l rises, so that the voltage detection value V in tries to exceed the trip level V refo . This is detected by the second comparator 18 2 , each time the up-down counter 1
9 is counted down one by one, and the number of the TSC capacitors C 1 to C n input to the system bus 1 is reduced by one,
It is possible to prevent the bus voltage V l from becoming larger than that. As described above, the capacitors C 1 to
Since the number of inputs of C n is increased / decreased stepwise, the finish voltage V l of the system bus 1 is changed to the input level V refI and the trip level V ref.
can be maintained during refO , and voltage fluctuation due to load fluctuation Δ
V can always be suppressed.

【0021】[0021]

【発明の効果】本発明によれば、電源変動の影響を受け
ずに負荷変動による電圧変動ΔVのみを抑制できる。特
に、TSCのコンデンサC1〜Cnは、負荷変動による電
圧変動ΔVに対してのみ使用されるので、コンデンサ容
量をその系統の負荷変動に対応させて決定すれば、この
電圧変動ΔVを確実に抑制でき、電源変動にも応答して
いた従来設備と比べ、コンデンサの設置容量を小さく
し、設備利用率を向上することができる。
According to the present invention, only the voltage fluctuation ΔV due to the load fluctuation can be suppressed without being affected by the power fluctuation. Particularly, since the capacitors C 1 to C n of the TSC are used only for the voltage fluctuation ΔV due to the load fluctuation, if the capacitor capacity is determined according to the load fluctuation of the system, this voltage fluctuation ΔV can be surely achieved. Compared with the conventional equipment that can be suppressed and responds to power fluctuations, it is possible to reduce the installed capacity of capacitors and improve the equipment utilization rate.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例である電圧変動抑制装置を
示すブロック図
FIG. 1 is a block diagram showing a voltage fluctuation suppressing device according to an embodiment of the present invention.

【図2】図1におけるコンデンサ開閉回路のサイリスタ
とダイオードの導通タイミング図
2 is a conduction timing diagram of the thyristor and the diode of the capacitor switching circuit in FIG.

【図3】図1に示す電圧変動抑制装置における進相コン
デンサの開閉による電圧変動の抑制状態を示す電圧波形
3 is a voltage waveform diagram showing a state in which voltage fluctuation is suppressed by opening and closing a phase advancing capacitor in the voltage fluctuation suppressing device shown in FIG.

【図4】図3に示す電圧波形図の負荷変動に対応した部
分を、進相コンデンサの投入数と対応させて示す拡大波
形図
FIG. 4 is an enlarged waveform diagram showing a portion of the voltage waveform diagram shown in FIG. 3 corresponding to load fluctuations in correspondence with the number of phase-advancing capacitors inserted.

【図5】進相コンデンサを用いた従来の電圧変動抑制装
置を示すブロック図
FIG. 5 is a block diagram showing a conventional voltage fluctuation suppressing device using a phase-advancing capacitor.

【図6】図5に示す装置で電圧変動を抑制した場合の母
線電圧波形図
6 is a bus voltage waveform diagram when voltage fluctuations are suppressed by the device shown in FIG.

【符号の説明】[Explanation of symbols]

1 系統母線 2 変動負荷 9 電圧検出回路 15 ローパスフィルタ 17 制御回路 31〜3n TSC C1〜Cn 進相コンデンサ Th1〜Th2 サイリスタ1 System Bus 2 Variable Load 9 Voltage Detection Circuit 15 Low Pass Filter 17 Control Circuit 3 1 to 3 n TSC C 1 to C n Phase Advancing Capacitor Th 1 to Th 2 Thyristor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電源系統に設置されて進相電力を供給す
る複数のコンデンサを開閉制御し、その投入数を段階的
に切換えて系統の負荷変動による電圧変動を抑制するも
のにおいて、 系統電圧を検出する電圧検出回路と、検出した系統電圧
の長周期成分を取出して電圧基準値とするローパスフィ
ルタと、この電圧基準値に対応させてコンデンサの投入
レベルと引き外しレベルを決定するレベル決定回路と、
上記両レベルと検出した系統電圧とを比較し、系統電圧
が前記両レベルの間に入るようにコンデンサの投入数を
増減する制御回路とを具備したことを特徴とする電圧変
動抑制装置の制御装置。
Claim: What is claimed is: 1. In a system for controlling the opening and closing of a plurality of capacitors installed in a power supply system for supplying phase-advancing power, and switching the number of inputs in stages to suppress voltage fluctuations due to load fluctuations in the system. A voltage detection circuit that detects the voltage, a low-pass filter that extracts the long-period component of the detected system voltage and uses it as a voltage reference value, and a level determination circuit that determines the closing level and tripping level of the capacitor corresponding to this voltage reference value. ,
A control device for a voltage fluctuation suppressing device, comprising: a control circuit that compares the above two levels with the detected system voltage and increases or decreases the number of capacitors that are inserted so that the system voltage falls between the two levels. ..
JP4006976A 1992-01-18 1992-01-18 Control device for voltage fluctuation suppression device Expired - Fee Related JP2990915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4006976A JP2990915B2 (en) 1992-01-18 1992-01-18 Control device for voltage fluctuation suppression device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4006976A JP2990915B2 (en) 1992-01-18 1992-01-18 Control device for voltage fluctuation suppression device

Publications (2)

Publication Number Publication Date
JPH05199660A true JPH05199660A (en) 1993-08-06
JP2990915B2 JP2990915B2 (en) 1999-12-13

Family

ID=11653232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4006976A Expired - Fee Related JP2990915B2 (en) 1992-01-18 1992-01-18 Control device for voltage fluctuation suppression device

Country Status (1)

Country Link
JP (1) JP2990915B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012029433A (en) * 2010-07-22 2012-02-09 Energy Support Corp Reactive power compensating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012029433A (en) * 2010-07-22 2012-02-09 Energy Support Corp Reactive power compensating device

Also Published As

Publication number Publication date
JP2990915B2 (en) 1999-12-13

Similar Documents

Publication Publication Date Title
US6038155A (en) Three phase SCR rectifier bridge with soft start control IC
US5402058A (en) Method and apparatus for controlling discharge of a thyristor-switched capacitor
US6137277A (en) Static voltage regulator
US20170157623A1 (en) Controlling a high voltage power supply for an electrostatic precipitator
US4876497A (en) Power factor corrector
JPH05199660A (en) Controller for voltage fluctuation suppressor
CN109643909B (en) Method for controlling uninterruptible power supply and device for uninterruptible power supply
US4382805A (en) System for automatically controlling the breakdown voltage limit of an electrofilter
US7283377B2 (en) Method for controlling firing angle under line dip situations
CA2287798C (en) Static voltage regulator
EP0173535B1 (en) A power supply system and a method of operating same
JPH0715875A (en) Controller for reactive power compensator
JP6334366B2 (en) DC feeding system
JP2792085B2 (en) Control method of reactive power compensator
JPH0686111U (en) Control system of reactive power compensator
JPH04125031A (en) Reactive power compensator control method
US20050105312A1 (en) Method of controlling half-controlled rectifier, and rectifier structure
JP3244796B2 (en) Electric dust collector
JPH0681011U (en) Control method of voltage fluctuation suppression device
JP3319307B2 (en) Self-excited reactive power compensator
JP2606946Y2 (en) Control device for voltage fluctuation suppression device
JPH07298497A (en) Controller for reactive power compensating apparatus
SU1136253A1 (en) Device for charging storage battery
JPH0680485B2 (en) Operation control system for voltage fluctuation countermeasure equipment
CN115441720A (en) Control method and control system of switching power supply

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees