JPH05198517A - Batch type gas processor - Google Patents

Batch type gas processor

Info

Publication number
JPH05198517A
JPH05198517A JP2906592A JP2906592A JPH05198517A JP H05198517 A JPH05198517 A JP H05198517A JP 2906592 A JP2906592 A JP 2906592A JP 2906592 A JP2906592 A JP 2906592A JP H05198517 A JPH05198517 A JP H05198517A
Authority
JP
Japan
Prior art keywords
gas
processing
semiconductor wafer
wafer holder
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2906592A
Other languages
Japanese (ja)
Inventor
Koji Koizumi
浩治 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2906592A priority Critical patent/JPH05198517A/en
Publication of JPH05198517A publication Critical patent/JPH05198517A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To equalize the processing under the surface of each semiconductor wafer and prevent the dispersion by the position of many sheets of semiconductor wafers by performing the gas processing of a semiconductor wafer while reciprocating either a gas supply means, which supplies processing gas, or a wafer holder in the direction orthogonal to the processing face of the semiconductor wafer. CONSTITUTION:During the processing of a semiconductor wafer W, the vertical position to a processing vessel 1 of a wafer holder 2 is fixed, and an inside gas introduction means 32 and a mounting means 31 are reciprocated up and down to the wafer holder 2 by a reciprocating means 90. On the other side of the wafer holder 2, a gas exhaust means 4 is arranged to oppose the inside gas introduction means 32. During the processing of a semiconductor wafer W, the vertical position of the wafer holder 2 is fixed, and the inside gas introduction means 32 is reciprocated to the wafer holder 2 by the reciprocating means 90. Hereby, the processing gas from the inside gas introduction means 32 comes to work equally to each semiconductor wafer W.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、バッチ式ガス処理装置
に関する。
FIELD OF THE INVENTION The present invention relates to a batch type gas treatment apparatus.

【0002】[0002]

【従来の技術】例えばバッチ式のCVD装置において
は、図8に示すように、処理容器1内において、多数枚
の半導体ウエハWを各処理面が対向するようウエハ保持
具2に並列に配置し、処理容器1の下部に設けたガス供
給管11,12から処理ガスを供給し、処理容器1の上
部から内管13との間隙14を介して下部に設けられた
ガス排気管15から処理済のガスの排気を行うようにし
ている。
2. Description of the Related Art In a batch type CVD apparatus, for example, as shown in FIG. 8, a large number of semiconductor wafers W are arranged in parallel in a wafer holder 2 in a processing container 1 so that respective processing surfaces face each other. The processing gas is supplied from the gas supply pipes 11 and 12 provided in the lower portion of the processing container 1, and the treated gas is exhausted from the gas exhaust pipe 15 provided in the lower portion of the processing container 1 through the gap 14 with the inner pipe 13. I try to exhaust the gas.

【0003】しかし、1回に処理する半導体ウエハWの
枚数が120〜160枚程度の大バッチ式のCVD装置
では、処理容器1の下部から処理ガスを供給するだけで
は、各半導体ウエハWの面内均一性が不十分となりやす
い。すなわち、1枚の半導体ウエハWに着目したとき
に、その処理面に堆積した膜の厚さに不均一が生じやす
い。そこで、各半導体ウエハWの全面を均一に処理して
面内均一性を高めるためには、各半導体ウエハWの近傍
に内部気体導入手段を配置して、これより処理ガスを各
半導体ウエハWに供給するのが有効である。
However, in a large batch type CVD apparatus in which the number of semiconductor wafers W to be processed at one time is about 120 to 160, the surface of each semiconductor wafer W can be obtained only by supplying the processing gas from the lower part of the processing container 1. Inner uniformity tends to be insufficient. That is, when attention is paid to one semiconductor wafer W, the thickness of the film deposited on the processing surface tends to be nonuniform. Therefore, in order to uniformly process the entire surface of each semiconductor wafer W and improve the in-plane uniformity, an internal gas introducing unit is arranged in the vicinity of each semiconductor wafer W, and the processing gas is supplied to each semiconductor wafer W from this. It is effective to supply.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来のバッチ
式のCVD装置では、内部気体導入手段からの処理ガス
がすべての半導体ウエハWに必ずしも均一に供給され
ず、各半導体ウエハWの処理にばらつきが生じて面間均
一性が劣る問題があった。すなわち、内部気体導入手段
からの処理ガスの流れは、ウエハ保持具2に並列に配置
された多数枚の半導体ウエハWの各位置によって相違
し、半導体ウエハWの位置による処理のばらつきが生じ
やすい。そこで、本発明の目的は、半導体ウエハの面内
均一性を確保しながら、多数枚の半導体ウエハの位置に
よる処理のばらつきを防止して、面間均一性の優れた処
理を行うことができるバッチ式ガス処理装置を提供する
ことにある。
However, in the conventional batch type CVD apparatus, the processing gas from the internal gas introducing means is not always uniformly supplied to all the semiconductor wafers W, and the processing of each semiconductor wafer W varies. However, there was a problem in that the uniformity between the surfaces was poor. That is, the flow of the processing gas from the internal gas introducing unit differs depending on the positions of the multiple semiconductor wafers W arranged in parallel on the wafer holder 2, and the processing tends to vary depending on the positions of the semiconductor wafers W. Therefore, it is an object of the present invention to prevent inconsistencies in processing due to the positions of a large number of semiconductor wafers while ensuring in-plane uniformity of semiconductor wafers, and to perform processing with excellent in-plane uniformity. An object is to provide a gas processing apparatus.

【0005】[0005]

【課題を解決するための手段】以上の目的を達成するた
め、本発明のバッチ式ガス処理装置は、処理容器内にお
いて複数枚の半導体ウエハを各処理面が対向するようウ
エハ保持具に並列に配置してガス処理を行うバッチ式ガ
ス処理装置において、処理ガスを供給するガス供給手段
またはウエハ保持具の一方を半導体ウエハの処理面に直
交する方向に往復させながら半導体ウエハのガス処理を
行うことを特徴とする。
In order to achieve the above object, the batch type gas processing apparatus of the present invention has a plurality of semiconductor wafers arranged in parallel in a wafer holder in a processing container so that respective processing surfaces face each other. In a batch-type gas processing apparatus for arranging and performing gas processing, performing gas processing of a semiconductor wafer while reciprocating one of a gas supply means for supplying a processing gas or a wafer holder in a direction orthogonal to a processing surface of a semiconductor wafer. Is characterized by.

【0006】[0006]

【作用】ガス供給手段またはウエハ保持具の一方を他方
に対して往復させるので、ガス供給手段からの処理ガス
が各半導体ウエハに対して均一に作用するようになる。
従って、各半導体ウエハについては面内における処理の
均一性が確保され、多数枚の半導体ウエハの全体におい
ては、位置による処理のばらつきが生ぜず、すべての半
導体ウエハが均一に処理される。
Since one of the gas supply means and the wafer holder is reciprocated with respect to the other, the processing gas from the gas supply means acts uniformly on each semiconductor wafer.
Therefore, in-plane process uniformity is ensured for each semiconductor wafer, and process variations due to position do not occur in all of the multiple semiconductor wafers, and all semiconductor wafers are uniformly processed.

【0007】[0007]

【実施例】以下、本発明の実施例を説明する。なお、以
下の実施例では、1回の処理枚数が120〜160枚程
度の大バッチ式の縦型のCVD装置を構成する場合につ
いて説明する。
EXAMPLES Examples of the present invention will be described below. In the following examples, a case will be described in which a large-batch vertical CVD apparatus, which can process 120 to 160 wafers at a time, is configured.

【0008】〔実施例1〕図1は、本実施例のCVD装
置の概略図、図2は要部の平面図である。例えば抵抗発
熱線を備えた円筒状ヒータからなる加熱手段10の内部
に設けられた処理容器1は、例えば高純度石英(SiO
2 )からなり、その内部には、例えば高純度石英(Si
2 )からなるウエハ保持具2が配置されている。
[Embodiment 1] FIG. 1 is a schematic view of a CVD apparatus of the present embodiment, and FIG. 2 is a plan view of a main part. For example, the processing container 1 provided inside the heating means 10 composed of a cylindrical heater provided with a resistance heating wire is made of, for example, high-purity quartz (SiO 2).
2 ) of which, for example, high-purity quartz (Si
A wafer holder 2 made of O 2 ) is arranged.

【0009】このウエハ保持具2には、例えば120〜
160枚の半導体ウエハWが処理面が対向するよう水平
な姿勢で並列に保持されている。半導体ウエハWの大き
さは、例えば6〜8インチである。ウエハ保持具2の垂
直軸21には、回転機構22が接続され、この回転機構
22は昇降機構(図示省略)に接続されている。昇降機
構は、処理の開始時にウエハ保持具2を処理容器1内の
所定位置まで上昇させ、処理の終了時にウエハ保持具2
を処理容器1の所定位置から下降させるためのものであ
る。
The wafer holder 2 has, for example, 120 to
160 semiconductor wafers W are held in parallel in a horizontal posture so that their processing surfaces face each other. The size of the semiconductor wafer W is, for example, 6 to 8 inches. A rotation mechanism 22 is connected to the vertical shaft 21 of the wafer holder 2, and the rotation mechanism 22 is connected to an elevating mechanism (not shown). The elevating mechanism raises the wafer holder 2 to a predetermined position in the processing container 1 at the start of processing, and at the end of the processing, the wafer holder 2
Is for lowering from a predetermined position of the processing container 1.

【0010】回転機構22は、処理中にウエハ保持具2
を垂直軸21の回りに回転させるものであり、例えばモ
ーターにより構成されている。処理容器1の下部開口を
塞ぐよう蓋部材16が設けられ、垂直軸21はこの蓋部
材16を例えば磁気シールにより気密な状態で回転可能
に貫通して伸びている。
The rotating mechanism 22 serves to hold the wafer holder 2 during processing.
Is rotated about the vertical axis 21, and is composed of, for example, a motor. A lid member 16 is provided so as to close the lower opening of the processing container 1, and the vertical shaft 21 extends through the lid member 16 rotatably in an airtight state by, for example, a magnetic seal.

【0011】処理中におけるウエハ保持具2の回転速
度、すなわちこれに保持された半導体ウエハWの回転速
度は、CVDにより形成する膜の種類によっても異なる
が、窒化膜のCVDでは窒化膜の成長時間は十分に長い
ため10回/min程度でよい。
The rotation speed of the wafer holder 2 during processing, that is, the rotation speed of the semiconductor wafer W held by the wafer holder 2 varies depending on the type of film formed by CVD. Is sufficiently long, so about 10 times / min is sufficient.

【0012】本実施例のガス供給手段3は、例えば石英
からなる取付け部材31に複数の内部気体導入手段32
が設けられて構成されている。このガス供給手段3は、
図2にも示すように、ウエハ保持具2の外周近傍に配置
され、半導体ウエハWに処理ガスを供給するものであ
る。図3は内部気体導入手段32の一例を示し、(A)
は縦断正面図、(B)は右側面図である。導入管33の
先端に細長いスリット状の吹出口34が設けられてい
る。取付け部材31には導入口35が設けられ、この導
入口35に内部気体導入手段32の導入管33が接続さ
れている。この導入口35の口径は、1〜3mm程度で
ある。取付け部材31の内部にはガス導入路36が形成
され、ガス供給管37に連結している。内部気体導入手
段32,32間の距離は、半導体ウエハW,W間の距離
と同程度であり、例えば1〜10cm程度である。取付
け部材31は、内部断面積が大きく、配管のコンダクタ
ンスが大きくなっている。一方、導入管33は、内部断
面積が小さく、配管のコンダクタンスが小さくなってい
る。従って、複数の導入管33から均一に処理ガスを供
給することができる。
In the gas supply means 3 of this embodiment, a plurality of internal gas introduction means 32 are attached to a mounting member 31 made of, for example, quartz.
Is provided and configured. This gas supply means 3 is
As shown in FIG. 2, it is arranged in the vicinity of the outer periphery of the wafer holder 2 and supplies a processing gas to the semiconductor wafer W. FIG. 3 shows an example of the internal gas introducing means 32, (A)
Is a vertical sectional front view, and (B) is a right side view. An elongated slit-shaped outlet 34 is provided at the tip of the introduction pipe 33. The mounting member 31 is provided with an introduction port 35, and the introduction pipe 33 of the internal gas introduction means 32 is connected to the introduction port 35. The diameter of the introduction port 35 is about 1 to 3 mm. A gas introduction path 36 is formed inside the mounting member 31 and is connected to a gas supply pipe 37. The distance between the internal gas introducing units 32 and 32 is approximately the same as the distance between the semiconductor wafers W and W, and is, for example, approximately 1 to 10 cm. The mounting member 31 has a large internal cross-sectional area and a large pipe conductance. On the other hand, the introduction pipe 33 has a small internal cross-sectional area and a small pipe conductance. Therefore, the processing gas can be uniformly supplied from the plurality of introduction pipes 33.

【0013】本実施例では、半導体ウエハWの処理中
は、ウエハ保持具2の処理容器1に対する上下の位置は
固定され、内部気体導入手段32および取付け部材31
が、往復手段90により、ウエハ保持具2に対して上下
に往復されるようになっている。往復手段90は、ネジ
とモーター等により構成することができる。また、伸縮
できる蛇腹状の管体91により、ガス供給管37が蓋部
材16から貫通する部分をシールするとさらに好適に使
用することができる。処理容器1内の処理ガスの圧力を
比較的高く、すなわち中間流より粘性流に近く設定する
場合には、上記のように内部気体導入手段32のみなら
ず取付け部材31をも一緒に往復させることが好まし
い。この場合は取付け部材31の内壁面の往復によって
も処理ガスが往復するようになる。
In the present embodiment, during processing of the semiconductor wafer W, the upper and lower positions of the wafer holder 2 with respect to the processing container 1 are fixed, and the internal gas introducing means 32 and the mounting member 31.
However, the reciprocating means 90 reciprocates up and down with respect to the wafer holder 2. The reciprocating means 90 can be composed of a screw and a motor. Further, it is possible to use the gas supply pipe 37 more suitably by sealing the portion where the gas supply pipe 37 penetrates from the lid member 16 with the expandable and contractible bellows-shaped pipe body 91. When the pressure of the processing gas in the processing container 1 is set to be relatively high, that is, closer to the viscous flow than the intermediate flow, not only the internal gas introducing means 32 but also the mounting member 31 are reciprocated together as described above. Is preferred. In this case, the processing gas also reciprocates by reciprocating the inner wall surface of the mounting member 31.

【0014】内部気体導入手段32の往復距離は、取付
け部材31の導入口35,35間の距離程度であり、こ
の距離は処理容器1内の真空度には依存しない。また、
内部気体導入手段32の往復速度は、常圧時における処
理ガスの流速と同程度が好ましい。
The reciprocating distance of the internal gas introducing means 32 is about the distance between the introducing ports 35 of the mounting member 31, and this distance does not depend on the degree of vacuum in the processing container 1. Also,
The reciprocating speed of the internal gas introducing means 32 is preferably about the same as the flow speed of the processing gas at normal pressure.

【0015】ウエハ保持具2の他側には、ウエハ保持具
2を挟んで内部気体導入手段32に対向するようガス排
気手段4が配置されている。本実施例のガス排気手段4
は、取付け部材41に、処理済ガスを吸引するスリット
状の吸引口42を形成して構成されている。取付け部材
41の下部にはガス排出管43が接続されている。な
お、このガス排気手段4は、ガス供給手段3を構成する
内部気体導入手段32と同様の構造の内部気体導入手段
を取付け部材41に取付けて構成してもよい。このよう
な内部気体導入手段によれば面間均一性をさらに向上さ
せることができる。この場合、排気効率は低下したとし
ても、CVDにおける圧力は、スパッタ法、真空蒸着法
等の他の成膜プロセスにおける圧力よりも高いために大
きな問題とはならない。
On the other side of the wafer holder 2, a gas exhaust means 4 is arranged so as to face the internal gas introducing means 32 with the wafer holder 2 interposed therebetween. Gas exhaust means 4 of this embodiment
Is formed by forming a slit-shaped suction port 42 for sucking the processed gas in the mounting member 41. A gas exhaust pipe 43 is connected to the lower portion of the mounting member 41. The gas exhausting means 4 may be constructed by attaching the internal gas introducing means having the same structure as the internal gas introducing means 32 constituting the gas supplying means 3 to the attachment member 41. According to such an internal gas introducing means, it is possible to further improve the uniformity between the surfaces. In this case, even if the exhaust efficiency is lowered, the pressure in the CVD is higher than the pressure in other film forming processes such as the sputtering method and the vacuum evaporation method, so that it does not cause a big problem.

【0016】処理容器1内の容量は、例えば2×104
cm3 程度である。半導体ウエハWの処理温度、すなわ
ち半導体ウエハWの加熱温度は、窒化膜のCVDの場合
は、800〜1200℃程度である。半導体ウエハWを
この程度の温度に加熱すると、処理ガスも当該温度付近
まで加熱される傾向にあり、このために表面反応あるい
は気相反応によって半導体ウエハWの処理面への窒化膜
の堆積速度が量産に耐えうる程度まで増大する。内部気
体導入手段32による処理ガスの流量は、窒化膜のCV
Dでは、500〜1000sccm(常圧で1分間当り
の体積(cm3 ))程度である。
The capacity of the processing container 1 is, for example, 2 × 10 4.
It is about cm 3 . The processing temperature of the semiconductor wafer W, that is, the heating temperature of the semiconductor wafer W is about 800 to 1200 ° C. in the case of CVD of the nitride film. When the semiconductor wafer W is heated to such a temperature, the processing gas also tends to be heated to the vicinity of the temperature, and therefore the deposition rate of the nitride film on the processing surface of the semiconductor wafer W is increased by the surface reaction or the gas phase reaction. Increase to the extent that it can withstand mass production. The flow rate of the processing gas by the internal gas introducing means 32 is CV of the nitride film.
In D, it is about 500 to 1000 sccm (volume (cm 3 ) per minute at normal pressure).

【0017】本実施例では、処理ガスは、内部気体導入
手段32のみにより供給する構成であるが、内部気体導
入手段32のほかにガス導入管を設けて、処理容器1内
に処理ガスを導入するようにしてもよい。処理ガスの種
類としては、窒化膜のCVDでは、例えばアンモニア
(NH3 )、テトラクロロシラン(SiCl4 )等が用
いられる。
In this embodiment, the processing gas is supplied only by the internal gas introducing means 32, but a gas introducing pipe is provided in addition to the internal gas introducing means 32 to introduce the processing gas into the processing container 1. You may do so. As the type of processing gas, ammonia (NH 3 ), tetrachlorosilane (SiCl 4 ) or the like is used in the CVD of the nitride film.

【0018】本実施例によれば、以下の作用効果が奏さ
れる。 (1)半導体ウエハWの処理中は、ウエハ保持具2の上
下の位置は固定し、往復手段90により内部気体導入手
段32をウエハ保持具2に対して往復させるので、内部
気体導入手段32からの処理ガスが各半導体ウエハWに
対して均一に作用するようになる。従って、各半導体ウ
エハWについては面内における処理の均一性が確保さ
れ、多数枚の半導体ウエハWの全体においては、位置に
よる処理のばらつきが生ぜず、すべての半導体ウエハW
が均一に処理される。 (2)ウエハ保持具2を往復させないで、内部気体導入
手段32を往復させているので、往復手段において往復
のために必要なエネルギーが少なくて済み、また、構造
的にも安定する。
According to this embodiment, the following operational effects are exhibited. (1) During the processing of the semiconductor wafer W, the upper and lower positions of the wafer holder 2 are fixed, and the internal gas introducing means 32 is reciprocated with respect to the wafer holder 2 by the reciprocating means 90. The processing gas of (3) acts uniformly on each semiconductor wafer (W). Therefore, in-plane process uniformity is ensured for each semiconductor wafer W, and process variations due to positions do not occur in the entire number of semiconductor wafers W, and all semiconductor wafers W are processed.
Are processed uniformly. (2) Since the internal gas introducing means 32 is reciprocated without reciprocating the wafer holder 2, the energy required for reciprocating in the reciprocating means is small and structurally stable.

【0019】〔実施例2〕図4は、内部気体導入手段の
他の例を示し、この内部気体導入手段32は、導入管3
3の先端にラッパ状の吹出口34が設けられ、さらに吹
出口34の内部に吹出口34を塞ぐように円形状の多孔
板38が配置されて構成されている。多孔板38には多
数の開口が設けられており、その開口率分布は中央より
も外周側を大きくすることが好ましい。このような内部
気体導入手段32によれば、内部気体導入手段間の流量
のばらつきが少なく、しかも処理容器1内では内部気体
導入手段の配置方法による半導体ウエハ間膜厚分布への
影響が少なくて済む。
[Embodiment 2] FIG. 4 shows another example of the internal gas introducing means.
3 is provided with a trumpet-shaped outlet 34, and a circular perforated plate 38 is arranged inside the outlet 34 so as to close the outlet 34. The perforated plate 38 is provided with a large number of openings, and it is preferable that the opening ratio distribution be larger on the outer peripheral side than on the center. According to such an internal gas introducing means 32, there is little variation in the flow rate between the internal gas introducing means, and moreover, in the processing container 1, the influence of the arrangement method of the internal gas introducing means on the film thickness distribution between semiconductor wafers is small. I'm done.

【0020】〔実施例3〕図5は、本実施例のCVD装
置の概略図であり、ガス供給手段3は管状の内部気体導
入手段を用いないで構成されている。図6は平面図であ
る。上記ガス供給手段3は図1に示す処理容器1内に収
容されている。本実施例では、ガス供給手段3と、ガス
排気手段4とが合体して、円筒部材5を構成し、この円
筒部材5の筒内にウエハ保持具2が配置されるようにな
っている。円筒部材5を構成するガス供給用円筒部分5
1および52がガス供給手段3を構成し、ガス排気用円
筒部分53がガス排気手段4を構成している。65は各
円筒部分の仕切り部材である。一方のガス供給用円筒部
分51からはアンモニアガス(NH3 )が供給され、他
方のガス供給用円筒部分52からはテトラクロロシラン
ガス(SiCl4 )が供給される。内部気体導入手段を
用いていない場合においては、吹出口56,57の口径
は例えば1mm程度と小さくとり、その数は半導体ウエ
ハの枚数と同程度と多く設けることが望ましい。
[Embodiment 3] FIG. 5 is a schematic view of a CVD apparatus of this embodiment, in which the gas supply means 3 is constructed without using a tubular internal gas introduction means. FIG. 6 is a plan view. The gas supply means 3 is housed in the processing container 1 shown in FIG. In this embodiment, the gas supply means 3 and the gas exhaust means 4 are combined to form a cylindrical member 5, and the wafer holder 2 is arranged in the cylinder of the cylindrical member 5. Cylindrical member 5 constituting gas supply cylindrical portion 5
Reference numerals 1 and 52 constitute the gas supply means 3, and the gas exhaust cylinder portion 53 constitutes the gas exhaust means 4. Reference numeral 65 is a partition member for each cylindrical portion. Ammonia gas (NH 3 ) is supplied from one gas supply cylinder portion 51, and tetrachlorosilane gas (SiCl 4 ) is supplied from the other gas supply cylinder portion 52. When the internal gas introducing means is not used, it is desirable that the outlets 56 and 57 have a small diameter of, for example, about 1 mm, and that the number is as large as the number of semiconductor wafers.

【0021】ガス供給用円筒部分51,52の内部には
処理ガスの供給路54,55が設けられ、ウエハ保持具
2を取囲む側壁には処理ガスの吹出口56,57が多数
設けられている。ガス供給用円筒部分51,52の下部
には、それぞれガス供給管61,62が接続されてい
る。ガス供給管61,62から供給された処理ガスは、
側壁の吹出口56,57から半導体ウエハWに向かって
供給され、半導体ウエハWの近傍で2種類の処理ガスが
混合されることとなる。
Processing gas supply paths 54 and 55 are provided inside the gas supply cylindrical portions 51 and 52, and a large number of processing gas outlets 56 and 57 are provided on the side wall surrounding the wafer holder 2. There is. Gas supply pipes 61 and 62 are connected to the lower portions of the gas supply cylindrical portions 51 and 52, respectively. The processing gas supplied from the gas supply pipes 61 and 62 is
It is supplied toward the semiconductor wafer W from the outlets 56 and 57 on the side wall, and the two kinds of processing gases are mixed in the vicinity of the semiconductor wafer W.

【0022】ガス排気用円筒部分53の内部には処理ガ
スの排出路58が設けられ、ウエハ保持具2を取囲む側
壁には処理ガスの吸引口59が多数設けられている。ガ
ス排気用円筒部分53の下部にはガス排出管63が接続
されている。側壁の吸引口59から吸引した処理済ガス
は下部のガス排出管63から排気される。
A process gas discharge path 58 is provided inside the gas exhaust cylinder portion 53, and a number of process gas suction ports 59 are provided on the side wall surrounding the wafer holder 2. A gas exhaust pipe 63 is connected to the lower portion of the gas exhaust cylindrical portion 53. The processed gas sucked from the side wall suction port 59 is exhausted from the lower gas discharge pipe 63.

【0023】本実施例では、円筒部材5を固定してウエ
ハ保持具2を上下に往復させてもよいし、ウエハ保持具
2の上下の位置を固定して円筒部材5を上下に往復させ
てもよい。ウエハ保持具2を往復させる場合は、窒化膜
のCVDでは半導体ウエハWの処理時間は十分に長いた
めに、ウエハ保持具2の回転速度と同様の速度でゆっく
りと往復させればよい。円筒部材5を往復させる場合
は、ガス供給管61,62およびガス排出管63として
は、可撓性のあるものを用いることが必要である。
In this embodiment, the cylindrical member 5 may be fixed to reciprocate the wafer holder 2 up and down, or the upper and lower positions of the wafer holder 2 may be fixed to reciprocate the cylindrical member 5 up and down. Good. When the wafer holder 2 is reciprocated, since the processing time of the semiconductor wafer W is sufficiently long in the CVD of the nitride film, it may be slowly reciprocated at the same speed as the rotation speed of the wafer holder 2. When the cylindrical member 5 is reciprocated, it is necessary to use flexible gas supply pipes 61 and 62 and a gas exhaust pipe 63.

【0024】〔実施例4〕図7は、本実施例のCVD装
置の要部の概略図である。円筒部材5は、ガス供給手段
3を構成する2つのガス供給用円筒部分51,52と、
ガス排気手段4を構成するスリット7を有する。このス
リットの代わりに複数の排出口を設けてもよい。円筒部
材5の外側には排気路を構成する外周壁8が設けられ、
スリット7からの処理済ガスは外周壁8に設けられたガ
ス排出口81から排気される。
[Embodiment 4] FIG. 7 is a schematic view of a main part of a CVD apparatus according to the present embodiment. The cylindrical member 5 includes two gas supply cylindrical portions 51 and 52 that form the gas supply means 3,
It has a slit 7 constituting the gas exhaust means 4. A plurality of outlets may be provided instead of this slit. An outer peripheral wall 8 forming an exhaust passage is provided outside the cylindrical member 5,
The processed gas from the slit 7 is exhausted from a gas exhaust port 81 provided in the outer peripheral wall 8.

【0025】以上、本発明を実施例に基づいて説明した
が、本発明のバッチ式ガス処理装置は、CVD装置のほ
か、エッチング装置、アッシング装置、酸化・拡散装置
にも適用することができる。また、本発明は縦型の装置
に限定されず、横型の装置にも適用することができる。
Although the present invention has been described based on the embodiments, the batch type gas processing apparatus of the present invention can be applied to an etching apparatus, an ashing apparatus, an oxidation / diffusion apparatus as well as a CVD apparatus. Further, the present invention is not limited to the vertical type device, but can be applied to a horizontal type device.

【0026】[0026]

【発明の効果】以上説明したように、本発明によれば、
半導体ウエハの面内均一性を確保しながら、多数枚の半
導体ウエハの位置による処理のばらつきを防止して、面
間均一性の優れた処理を行うことができる。
As described above, according to the present invention,
While ensuring the in-plane uniformity of the semiconductor wafers, it is possible to prevent the process variations due to the positions of a large number of semiconductor wafers and perform the process having excellent in-plane uniformity.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1に係るバッチ式ガス処理装置の説明図
である。
FIG. 1 is an explanatory diagram of a batch type gas treatment device according to a first embodiment.

【図2】実施例1に係るバッチ式ガス処理装置の概略平
面図である。
FIG. 2 is a schematic plan view of the batch type gas treatment device according to the first embodiment.

【図3】内部気体導入手段の一例を示す説明図である。FIG. 3 is an explanatory diagram showing an example of an internal gas introducing unit.

【図4】実施例2に係る内部気体導入手段を示す説明図
である。
FIG. 4 is an explanatory diagram showing an internal gas introducing unit according to a second embodiment.

【図5】実施例3に係るバッチ式ガス処理装置の説明図
である。
FIG. 5 is an explanatory diagram of a batch type gas treatment device according to a third embodiment.

【図6】実施例3に係るバッチ式ガス処理装置の平面図
である。
FIG. 6 is a plan view of a batch type gas treatment device according to a third embodiment.

【図7】実施例4に係るバッチ式ガス処理装置の平面図
である。
FIG. 7 is a plan view of a batch type gas treatment device according to a fourth embodiment.

【図8】従来のバッチ式ガス処理装置の説明図である。FIG. 8 is an explanatory diagram of a conventional batch type gas treatment device.

【符号の説明】[Explanation of symbols]

W 半導体ウエハ 1 処理容器 10 加熱手段 11,12 ガ
ス供給管 13 内管 14 間隙 15 ガス排気管 16 蓋部材 2 ウエハ保持具 21 垂直軸 22 回転機構 3 ガス供給
手段 31 取付け部材 32 内部気体
導入手段 33 導入管 34 吹出口 35 導入口 36 ガス導入
路 37 ガス供給管 38 多孔板 4 ガス排気手段 41 取付け部
材 42 吸引口 43 ガス排出
管 51,52 ガス供給用円筒部分 53 ガス排気
用円筒部分 54,55 処理ガスの供給路 56,57 吹
出口 58 処理ガスの排出路 59 処理ガス
の吸引口 61,62 ガス供給管 63 ガス排出
管 65 仕切り部材 7 スリット 8 外周壁 81 ガス排出
口 90 往復手段 91 蛇腹状の
管体
W Semiconductor Wafer 1 Processing Container 10 Heating Means 11, 12 Gas Supply Pipe 13 Inner Pipe 14 Gap 15 Gas Exhaust Pipe 16 Lid Member 2 Wafer Holder 21 Vertical Axis 22 Rotating Mechanism 3 Gas Supply Means 31 Mounting Member 32 Internal Gas Introducing Means 33 Inlet pipe 34 Outlet port 35 Inlet port 36 Gas inlet path 37 Gas supply pipe 38 Gas perforated plate 4 Gas exhaust means 41 Mounting member 42 Suction port 43 Gas exhaust pipe 51,52 Gas supply cylindrical part 53 Gas exhaust cylindrical part 54,55 Processing gas supply path 56, 57 Blow-out port 58 Processing gas discharge path 59 Processing gas suction port 61, 62 Gas supply pipe 63 Gas discharge pipe 65 Partition member 7 Slit 8 Outer peripheral wall 81 Gas discharge port 90 Reciprocating means 91 Bellows shape Tube of

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 処理容器内において複数枚の半導体ウエ
ハを各処理面が対向するようウエハ保持具に並列に配置
してガス処理を行うバッチ式ガス処理装置において、 処理ガスを供給するガス供給手段またはウエハ保持具の
一方を半導体ウエハの処理面に直交する方向に往復させ
ながら半導体ウエハのガス処理を行うことを特徴とする
バッチ式ガス処理装置。
1. A batch type gas processing apparatus for performing gas processing by arranging a plurality of semiconductor wafers in parallel in a wafer holder so that respective processing surfaces face each other in a processing container, and a gas supply means for supplying a processing gas. Alternatively, the batch type gas processing apparatus is characterized in that one of the wafer holders is reciprocated in a direction orthogonal to the processing surface of the semiconductor wafer to perform the gas processing of the semiconductor wafer.
JP2906592A 1992-01-21 1992-01-21 Batch type gas processor Withdrawn JPH05198517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2906592A JPH05198517A (en) 1992-01-21 1992-01-21 Batch type gas processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2906592A JPH05198517A (en) 1992-01-21 1992-01-21 Batch type gas processor

Publications (1)

Publication Number Publication Date
JPH05198517A true JPH05198517A (en) 1993-08-06

Family

ID=12265968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2906592A Withdrawn JPH05198517A (en) 1992-01-21 1992-01-21 Batch type gas processor

Country Status (1)

Country Link
JP (1) JPH05198517A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100407508B1 (en) * 2001-05-18 2003-12-01 주식회사 피에스티 Device for growing thin-film over semiconductor wafer without rotation
JPWO2005015619A1 (en) * 2003-08-07 2006-10-05 株式会社日立国際電気 Substrate processing apparatus and semiconductor device manufacturing method
JP2009088315A (en) * 2007-10-01 2009-04-23 Hitachi Kokusai Electric Inc Substrate processing apparatus
JP2009536460A (en) * 2006-05-05 2009-10-08 アプライド マテリアルズ インコーポレイテッド Batch processing chamber with diffusion plate and spray assembly
JP2010093067A (en) * 2008-10-08 2010-04-22 Koyo Thermo System Kk Heat treatment apparatus of substrate
JP2010093069A (en) * 2008-10-08 2010-04-22 Koyo Thermo System Kk Heat treatment apparatus of substrate
JP2012501067A (en) * 2008-08-22 2012-01-12 アプライド マテリアルズ インコーポレイテッド Process gas delivery in semiconductor process chambers
JP2015503227A (en) * 2011-11-17 2015-01-29 ユ−ジーン テクノロジー カンパニー.リミテッド Substrate processing apparatus for supplying reaction gas having phase difference
WO2017056155A1 (en) * 2015-09-28 2017-04-06 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing device, and recording medium
US10811271B2 (en) 2014-09-30 2020-10-20 Kokusai Electric Corporation Substrate processing device, manufacturing method for semiconductor device, and reaction tube
WO2021033461A1 (en) * 2019-08-20 2021-02-25 株式会社Kokusai Electric Substrate treatment device, production method for semiconductor device, program, and recording medium
USRE48871E1 (en) 2003-04-29 2022-01-04 Asm Ip Holding B.V. Method and apparatus for depositing thin films on a surface
US11408070B2 (en) 2019-10-23 2022-08-09 Samsung Electronics Co., Ltd. Wafer processing apparatus and wafer processing method
US11527427B2 (en) 2018-11-27 2022-12-13 Samsung Electronics Co., Ltd. Semiconductor processing apparatus and semiconductor processing system

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100407508B1 (en) * 2001-05-18 2003-12-01 주식회사 피에스티 Device for growing thin-film over semiconductor wafer without rotation
USRE48871E1 (en) 2003-04-29 2022-01-04 Asm Ip Holding B.V. Method and apparatus for depositing thin films on a surface
US8673076B2 (en) 2003-08-07 2014-03-18 Hitachi Kokusai Electric Inc. Substrate processing apparatus and semiconductor device producing method
JPWO2005015619A1 (en) * 2003-08-07 2006-10-05 株式会社日立国際電気 Substrate processing apparatus and semiconductor device manufacturing method
US7622007B2 (en) 2003-08-07 2009-11-24 Hitachi Kokusai Electric Inc. Substrate processing apparatus and semiconductor device producing method
JP2009536460A (en) * 2006-05-05 2009-10-08 アプライド マテリアルズ インコーポレイテッド Batch processing chamber with diffusion plate and spray assembly
JP2009088315A (en) * 2007-10-01 2009-04-23 Hitachi Kokusai Electric Inc Substrate processing apparatus
JP2012501067A (en) * 2008-08-22 2012-01-12 アプライド マテリアルズ インコーポレイテッド Process gas delivery in semiconductor process chambers
JP2010093069A (en) * 2008-10-08 2010-04-22 Koyo Thermo System Kk Heat treatment apparatus of substrate
JP2010093067A (en) * 2008-10-08 2010-04-22 Koyo Thermo System Kk Heat treatment apparatus of substrate
JP2015503227A (en) * 2011-11-17 2015-01-29 ユ−ジーン テクノロジー カンパニー.リミテッド Substrate processing apparatus for supplying reaction gas having phase difference
US10811271B2 (en) 2014-09-30 2020-10-20 Kokusai Electric Corporation Substrate processing device, manufacturing method for semiconductor device, and reaction tube
US10950457B2 (en) 2014-09-30 2021-03-16 Kokusai Electric Corporation Substrate processing device, manufacturing method for semiconductor device, and reaction tube
WO2017056155A1 (en) * 2015-09-28 2017-04-06 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing device, and recording medium
US10287680B2 (en) 2015-09-28 2019-05-14 Kokusai Electric Corporation Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
JPWO2017056155A1 (en) * 2015-09-28 2018-06-28 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing apparatus, and recording medium
US11527427B2 (en) 2018-11-27 2022-12-13 Samsung Electronics Co., Ltd. Semiconductor processing apparatus and semiconductor processing system
WO2021033461A1 (en) * 2019-08-20 2021-02-25 株式会社Kokusai Electric Substrate treatment device, production method for semiconductor device, program, and recording medium
JPWO2021033461A1 (en) * 2019-08-20 2021-02-25
CN114207183A (en) * 2019-08-20 2022-03-18 株式会社国际电气 Substrate processing apparatus, method for manufacturing semiconductor device, program, and recording medium
TWI827871B (en) * 2019-08-20 2024-01-01 日商國際電氣股份有限公司 Substrate processing device, semiconductor device manufacturing method, substrate processing program and recording medium
US11408070B2 (en) 2019-10-23 2022-08-09 Samsung Electronics Co., Ltd. Wafer processing apparatus and wafer processing method

Similar Documents

Publication Publication Date Title
JP3996771B2 (en) Vacuum processing apparatus and vacuum processing method
JPH05198517A (en) Batch type gas processor
JP4118954B2 (en) Shower head for uniform distribution of process gas
JPH1136076A (en) Cvd deposition apparatus and cvd deposition method
JPH10501300A (en) Low-temperature film forming method and apparatus by CVD method and PECVD method
JP4114972B2 (en) Substrate processing equipment
JP3050716B2 (en) Plasma processing equipment
JP4845269B2 (en) Semiconductor wafer processing system, computer readable medium, and semiconductor process chamber cleaning method
US6620289B1 (en) Method and apparatus for asymmetric gas distribution in a semiconductor wafer processing system
JPH06124906A (en) Plasma electrode device
JP3036477B2 (en) Semiconductor manufacturing equipment
JP2783796B2 (en) Deposited film forming apparatus and plasma processing apparatus
JPS61232612A (en) Gaseous phase reaction device
KR20180061061A (en) Integration of dual remote plasmas sources for flowable cvd
JP4620288B2 (en) Batch heat treatment equipment
JP2830585B2 (en) Semiconductor manufacturing equipment
JPH02184022A (en) Cvd electrode
JPH07116610B2 (en) Heat treatment equipment
JPS63300512A (en) Chemical vapor deposition apparatus
JPH07211645A (en) Plasma processing system
JPS5966120A (en) Semiconductor manufacturing device
JPS6295828A (en) Plasma processor
JP2003249489A (en) Substrate processing system
JPH0322522A (en) Vapor growth device
JP2766280B2 (en) Processing equipment

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990408