JPH05195170A - Heat treatment method of amorphous metal fine wire - Google Patents

Heat treatment method of amorphous metal fine wire

Info

Publication number
JPH05195170A
JPH05195170A JP4009093A JP909392A JPH05195170A JP H05195170 A JPH05195170 A JP H05195170A JP 4009093 A JP4009093 A JP 4009093A JP 909392 A JP909392 A JP 909392A JP H05195170 A JPH05195170 A JP H05195170A
Authority
JP
Japan
Prior art keywords
tension
amorphous metal
heat treatment
wire
fine wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4009093A
Other languages
Japanese (ja)
Other versions
JP3388773B2 (en
Inventor
Isamu Ogasawara
勇 小笠原
Toshiyuki Hirano
俊幸 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP00909392A priority Critical patent/JP3388773B2/en
Publication of JPH05195170A publication Critical patent/JPH05195170A/en
Application granted granted Critical
Publication of JP3388773B2 publication Critical patent/JP3388773B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture an amorphous metal fine wire having twin stabilized magnetic characteristic by applying heat treatment with a specific condition after forming the amorphous metal wire rod manufactured by a water rapid cooling method to the fine wire by die wire drawing. CONSTITUTION:For example, molten Fe-Co-Si-B series alloy is injected into the water and rapidly cooled to manufacture the amorphous metal wire rod. After forming this amorphous metal wire rod to the metal fine wire by the die wire drawing so as to become >=30% of the last reduction of area, in the condition of applying the tension having >=10% of the tensile rupture strength in this fine wire, the heat treatment is executed at the temp. of >=250 deg.C and the crystallizing temp. or lower of this amorphous fine wire. Successively, the tension having the impressed tension in the preceding process is applied, or in the condition of non-tension, the heat treatment is again executed at >=250 deg.C and the crystallizing temp. or lower. Reverse magnetic field value is controlled to the optional value in the desired wide range to manufacture the amorphous metal fine wire having the twin stabilized magnetic characteristic.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、識別マーカのような磁
化反転磁界値を種々変更して使用する用途に使用可能な
非晶質金属細線の製造方法に関し、さらに詳しくは、非
晶質金属細線の熱処理方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an amorphous metal fine wire which can be used for various uses such as an identification marker by changing the magnetization reversal magnetic field value. The present invention relates to a heat treatment method for thin wires.

【0002】[0002]

【従来の技術】これまで双安定磁気特性を有する細線と
しては、ウィーガンド効果を利用したウィーガンドワイ
ヤが知られている(特開昭47-8956号公報)。これは、芯
部を軟質磁性体で、殻部を硬質磁性体でそれぞれ構成し
た二重構造の金属線である。
2. Description of the Related Art Hitherto, as a fine wire having a bistable magnetic property, a Wiegand wire utilizing the Wiegand effect has been known (Japanese Patent Laid-Open No. 47-8956). This is a double-structured metal wire having a core made of a soft magnetic material and a shell made of a hard magnetic material.

【0003】また、水中急冷法により作製された非晶質
金属繊維は双安定磁気特性を示すことが知られている
(日本応用磁気学会誌、第9巻、第2号,第157頁、1985
年)。つまり、水中急冷法では、非晶質金属繊維の内部
応力が緩和されることなく凝固されるので、繊維表面と
中央部の応力状態が異なる非晶質金属繊維が得られる。
したがって、このような非晶質金属繊維は急激な磁化反
転を生じ双安定磁気特性を示す。
It is also known that amorphous metal fibers produced by the water quenching method show bistable magnetic properties.
(Journal of Applied Magnetics of Japan, Vol. 9, No. 2, 157, 1985
Year). That is, in the water quenching method, the internal stress of the amorphous metal fiber is solidified without being relaxed, so that the amorphous metal fiber having different stress states on the fiber surface and the central portion can be obtained.
Therefore, such an amorphous metal fiber causes abrupt magnetization reversal and exhibits bistable magnetic characteristics.

【0004】しかしながら、上記ウィーガンドワイヤ
は、磁束変化を生じるのに必要な磁界が数10エルステッ
ドと大きいこと、双安定磁気特性の発現には非対称磁界
励振が必要なこと及び磁束変化に伴ってワイヤ周囲に巻
き付けられたピックアップコイルに誘起されるパルス電
圧の発生位相位置が一定せず時々刻々の変動(ジッタ)が
あること等の致命的欠点を有しているため、現在まで実
用化されるにはいたっていない。
However, the above-mentioned Wiegand wire has a large magnetic field required to cause a change in magnetic flux of several tens of oersteds, requires asymmetric magnetic field excitation to exhibit bistable magnetic characteristics, and changes the magnetic flux in accordance with the change in magnetic flux. It has fatal drawbacks such as the generation phase position of the pulse voltage induced in the pickup coil wound around it is not constant and there is a momentary fluctuation (jitter). Yes, I haven't.

【0005】また、水中急冷法による非晶質金属繊維は
磁化反転を生じる磁界の値が地球磁場の値よりも小さく
外乱の影響を受け易いこと、線径が0.12m程度と太く反
磁界の影響を強く受けパルス発生に必要な長さが6cm以
上必要であるため、小型素子には不適当であること等の
欠点を有している。
Further, the value of the magnetic field that causes magnetization reversal is smaller than that of the earth's magnetic field in the amorphous metal fiber obtained by the underwater quenching method, and it is easily affected by disturbance. Since the length required to generate a strong pulse is 6 cm or more, it is not suitable for a small element.

【0006】これらの欠点を解決するために、先に本発
明者らは、水中急冷法により作製された非晶質金属繊維
をダイス線引した後、張力を加えた状態で熱処理し、次
いで急冷することにより、双安定磁気特性を有する非晶
質金属細線を得る方法を特開昭63-24003号公報に開示し
た。しかしながら、この方法によって得られる非晶質金
属細線の磁化反転磁界値は約2(Oe)までであり、識別マ
ーカのような磁化反転磁界値を種々変更して使用する用
途には十分でない。
In order to solve these drawbacks, the inventors of the present invention first draw an amorphous metal fiber produced by an underwater quenching method by a die, heat-treat it under tension, and then quench it. Japanese Patent Laid-Open No. 63-24003 discloses a method for obtaining an amorphous metal thin wire having a bistable magnetic property. However, the magnetization reversal magnetic field value of the amorphous metal thin wire obtained by this method is up to about 2 (Oe), which is not sufficient for the purpose of variously changing the magnetization reversal magnetic field value such as an identification marker.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記従来の問
題を解決するものであり、その目的とするところは、反
転磁界値を、所望する広範囲の任意の値に制御して双安
定磁気特性を有する非晶質金属細線を作製することが可
能な、非晶質金属細線の熱処理方法を提供することにあ
る。
SUMMARY OF THE INVENTION The present invention is to solve the above-mentioned conventional problems, and an object of the present invention is to control the reversal magnetic field value to a desired wide range of arbitrary values and to obtain bistable magnetic characteristics. An object of the present invention is to provide a heat treatment method for an amorphous metal thin wire capable of producing an amorphous metal thin wire having

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために鋭意検討の結果、水中急冷法により作
製された非晶質金属細線に特殊な処理工程を施すことに
より、特異な双安定磁気特性を有する非晶質金属細線が
得られることを見い出し、本発明に到達した。すなわ
ち、本発明は、水中急冷法により作製された非晶質金属
繊維を最終減面率30%以上にダイス線引した非晶質金属
細線を、該細線の引張破断強度の10%以上の張力を加え
た状態で250℃以上かつ結晶化温度以下の温度で熱処理
する第1工程;および、該第1工程で得られる細線を、
第1工程の印加張力以下の張力を加えた状態もしくは無
張力の状態で、250℃以上かつ結晶化温度以下の温度で
熱処理する第2工程;を包含することを特徴とする非晶
質金属細線の熱処理方法を要旨とするものである。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have found that by applying a special treatment step to an amorphous metal thin wire produced by an underwater quenching method, The inventors have found that an amorphous metal thin wire having excellent bistable magnetic properties can be obtained, and have reached the present invention. That is, the present invention, an amorphous metal fine wire obtained by die drawing the amorphous metal fiber produced by the underwater quenching method to a final surface reduction rate of 30% or more, a tensile breaking strength of 10% or more of the thin wire A first step of heat-treating at a temperature of 250 ° C. or higher and a crystallization temperature or lower in a state of adding; and the thin wire obtained in the first step,
A second step of heat-treating at a temperature of 250 ° C. or higher and a crystallization temperature or lower in a state in which a tension lower than the applied tension of the first step is applied or in a state of no tension; The heat treatment method is as a gist.

【0009】本発明で用い得る非晶質金属は、Feおよび
/またはCoを少なくとも50%の量で含有する金属元素成
分70〜90原子%、およびSi、B、P、Cおよびこれらの混
合物のような非晶質元素成分30〜10原子%の合金組成で
あることが好ましい。このような非晶質金属の特性を向
上させるために、FeおよびCo以外の元素も含有させ得
る。例えば、耐触性を向上させるためにCrおよびMo等、
または磁気安定性を向上させるためにMn、Nb、Tiおよび
W等のような元素が上記非晶質金属に含有される。
Amorphous metals that can be used in the present invention include Fe and
/ Or Co with an alloy composition of 70-90 atomic% of a metallic elemental component containing at least 50% and an amorphous elemental component of 30-10 atomic% such as Si, B, P, C and mixtures thereof. Preferably there is. In order to improve the characteristics of such an amorphous metal, elements other than Fe and Co may be contained. For example, Cr and Mo to improve the touch resistance,
Or Mn, Nb, Ti and
Elements such as W are contained in the amorphous metal.

【0010】本発明で用い得る非晶質金属細線は水中急
冷法により作製される。水中急冷法の例は特開昭57-525
50号公報に記載されている。この文献では、水が入った
ドラムを回転させることによりドラムの内壁に水の膜を
形成させ、この水膜中に溶融合金を約100〜150μmの紡
糸ノズルから噴出させることにより円形断面を有する金
属細線を得ている。
The amorphous metal fine wire that can be used in the present invention is produced by an underwater quenching method. An example of the underwater quenching method is JP-A-57-525.
No. 50 publication. In this document, a water film is formed on the inner wall of the drum by rotating a drum containing water, and a molten alloy is ejected from the spinning film nozzle of about 100 to 150 μm into the water film to form a metal having a circular cross section. I'm getting a fine line.

【0011】このようにして、通常は約110〜150μmの
線径を有する非晶質金属細線が得られる。この非晶質金
属細線の磁気ヒステリシスループを図1に示す。図1の
磁気ヒステリシスループは双安定磁気特性を有するけれ
ども、磁化反転の磁界は0.08エルステッドと小さい。ま
た、反転磁化量も飽和磁化量の約半分であり充分ではな
い。
Thus, an amorphous metal thin wire having a wire diameter of about 110 to 150 μm is usually obtained. The magnetic hysteresis loop of this amorphous metal thin wire is shown in FIG. Although the magnetic hysteresis loop of FIG. 1 has a bistable magnetic property, the magnetic field of magnetization reversal is as small as 0.08 Oersted. Further, the reversal magnetization amount is about half of the saturation magnetization amount, which is not sufficient.

【0012】本発明では、水中急冷法により作製された
上記非晶質金属細線は、まず、例えば、特開昭57-16051
号に記載のダイス線引法により減面率が30%以上となる
ような最終線径にまで細線化される。
In the present invention, the above-mentioned amorphous metal fine wire produced by the underwater quenching method is first prepared by, for example, Japanese Patent Laid-Open No. 57-16051.
It is thinned to the final wire diameter by the die drawing method described in No. 30 so that the surface reduction rate is 30% or more.

【0013】減面率とは、線引前の非晶質金属細線の断
面積をS0、線引後の非晶質金属細線の断面積をSとした
場合に、式 (S0-S)/S0×100 で示される値(%)である。本発明で減面率が30%以上必
要である理由は、次の張力熱処理によって線引内部応力
の緩和と印加張力による応力分布均一化とを競争的に進
行させてバランスさせることのためにはダイス線引処理
により印加される多軸内部応力がある程度以上必要だか
らである。
The area reduction is expressed by the formula (S 0 -S), where S 0 is the cross-sectional area of the amorphous metal thin wire before drawing and S is the cross-sectional area of the amorphous metal thin wire after drawing. It is the value (%) indicated by / S 0 × 100. The reason why the surface reduction rate is required to be 30% or more in the present invention is that the following tension heat treatment is required to competitively balance the relaxation of the internal stress of the drawing and the homogenization of the stress distribution by the applied tension. This is because the multiaxial internal stress applied by the die wire drawing treatment is required to a certain extent or more.

【0014】このようにして得られる非晶質金属細線
は、図2に示すように、数十エルステッド以上の大きな
保持力を有するけれども双安定磁気特性を示さない、言
わば磁気的には半硬質的磁気特性を有する。
As shown in FIG. 2, the amorphous metal thin wire thus obtained has a large coercive force of several tens oersteds or more, but does not exhibit bistable magnetic characteristics, so to speak, it is magnetically semi-hard. Has magnetic properties.

【0015】次いで、本発明では、第1工程として、上
記細線の引張破断強度の10%以上の張力を加えた状態で
250℃以上かつ結晶化温度以下の温度でこの非晶質金属
細線の熱処理を行う。
Next, in the present invention, in the first step, a tension of 10% or more of the tensile breaking strength of the thin wire is applied.
This amorphous metal thin wire is heat-treated at a temperature of 250 ° C. or higher and a crystallization temperature or lower.

【0016】このような張力熱処理によって非晶質金属
細線には張力に起因する大きな磁気異方性が繊維軸方向
に付与される。張力は少なくとも熱処理後の冷却時に応
力緩和が生じない程度必要なので、破断強度の10%以上
が必要となる。熱処理時に張力印加と同時に直流バイア
ス磁界を印加しておくこともできる。この場合は、張力
の作用と磁界の作用との合算された磁気異方性の効果が
得られる。
By such a tension heat treatment, a large magnetic anisotropy due to the tension is given to the amorphous metal thin wire in the fiber axis direction. Tensile strength is required at least 10% or more of the breaking strength, because stress relaxation is required at least so that stress relaxation does not occur during cooling after heat treatment. A DC bias magnetic field may be applied at the same time as tension is applied during heat treatment. In this case, the effect of the combined magnetic anisotropy of the action of tension and the action of magnetic field is obtained.

【0017】この第1工程で熱処理温度が250℃を下回
ると細線の内在残留応力が充分緩和されないために磁気
特性が改善されない。
If the heat treatment temperature is lower than 250 ° C. in the first step, the internal residual stress of the thin wire is not sufficiently relaxed, so that the magnetic characteristics are not improved.

【0018】その後、第2工程として、第1工程の印加
張力以下の張力を加えた状態もしくは無張力の状態で25
0℃以上かつ結晶化温度以下の温度で上記第1工程で得
られる細線の熱処理を行う。
Then, in the second step, the tension applied to the first step is equal to or less than the applied tension, or the tension is not applied.
The thin wire obtained in the first step is heat-treated at a temperature of 0 ° C. or higher and a crystallization temperature or lower.

【0019】張力熱処理時には、ダイス線引加工中に内
在された不規則残留応力の緩和と、張力印加による繊維
軸方向への応力の均一化が競争的に進行する。したがっ
て、その両者の進行度合を1段の張力熱処理だけで制御
することは甚だ困難であり双安定磁気特性を制御するこ
とに限度がある。
During the tension heat treatment, the relaxation of the irregular residual stress contained in the die wire drawing process and the homogenization of the stress in the fiber axis direction due to the tension application progress competitively. Therefore, it is extremely difficult to control the degree of progress of the both by only one step of the tension heat treatment, and there is a limit in controlling the bistable magnetic characteristics.

【0020】そこで、本発明の方法のごとく多段の張力
熱処理方式とすることにより、繊維軸方向の応力均一化
が計られ、容易に双安定磁気特性を得ることができ、し
かもその磁化反転磁界値を広範囲に制御することが可能
となる。
Therefore, by adopting a multi-stage tension heat treatment method as in the method of the present invention, the stress in the fiber axis direction can be made uniform, and bistable magnetic characteristics can be easily obtained, and the magnetization reversal magnetic field value thereof can be obtained. Can be controlled over a wide range.

【0021】その場合には、第2工程の張力熱処理は繊
維軸方向の応力均一化が主目的なので、印加張力は第1
工程の張力熱処理時張力より低い値であることが好まし
い。この第2工程で熱処理温度が結晶化温度を上回ると
ワイヤが脆くなり磁気特性が悪化する。
In that case, the tension heat treatment in the second step is mainly aimed at homogenizing the stress in the fiber axis direction, so that the applied tension is the first.
The value is preferably lower than the tension during tension heat treatment in the process. If the heat treatment temperature exceeds the crystallization temperature in the second step, the wire becomes brittle and the magnetic characteristics deteriorate.

【0022】図3に本発明の方法による第1工程の張力
熱処理を行った場合の非晶質金属細線の磁気ヒステリシ
スループの例を示す。同図に示されるように、第1工程
の張力熱処理のみでは磁化反転の立ち上がりはやや鋭く
なっているけれども、双安定磁気特性を示すまでには至
っていない。
FIG. 3 shows an example of a magnetic hysteresis loop of an amorphous metal thin wire when the tension heat treatment of the first step is performed by the method of the present invention. As shown in the same drawing, although the rise of the magnetization reversal is slightly sharpened only by the tension heat treatment in the first step, the bistable magnetic characteristics are not yet exhibited.

【0023】この第1工程の張力熱処理後の非晶質金属
細線を、さらに第2工程の張力熱処理を行った場合の磁
気ヒステリシスループを図4に示す。図4(a)は比較的
高温(400℃)で第2工程の張力熱処理温を行った場合、
そして図4(b)は比較的低温(340℃)で第2工程の張力熱
処理を行った場合である。図4より明らかなように、2
段階の張力熱処理を行うことより、上記非晶質金属細線
は双安定磁気特性を示し、且つその磁化反転の生じる磁
界値を第2工程の熱処理温度の変更によって制御でき
る。
FIG. 4 shows a magnetic hysteresis loop when the amorphous metal thin wire after the tension heat treatment in the first step is further subjected to the tension heat treatment in the second step. Figure 4 (a) shows that when the tension heat treatment temperature of the second step is performed at a relatively high temperature (400 ° C),
Then, FIG. 4B shows the case where the tension heat treatment of the second step is performed at a relatively low temperature (340 ° C.). As is clear from FIG.
By performing the tension heat treatment in a step, the amorphous metal thin wire exhibits bistable magnetic characteristics, and the magnetic field value at which the magnetization reversal occurs can be controlled by changing the heat treatment temperature in the second step.

【0024】[0024]

【作用】一般的な磁性体の磁化変化は次のような様式で
ある。一方向(例えばプラス方向)に飽和した磁性体に逆
方向(例えばマイナス方向)の外部磁界をかけていくと、
逆磁区形成限界磁界(H*で表わす)で逆方向すなわちマイ
ナス方向の磁区が発生する。さらに外部磁界を増大して
いくと上記逆磁区が次第に大きくなり、遂には磁壁伝搬
臨界磁界(Hoで表わす)に達して、マイナス方向の磁区が
急速に拡大する。そして、更に外部磁界を増大していく
とプラス方向の磁区はますます小さくなり、最後に消滅
していわゆるマイナス方向の飽和状態となる。
[Operation] The change of magnetization of a general magnetic material is as follows. When an external magnetic field in the opposite direction (for example, the minus direction) is applied to a magnetic substance that is saturated in one direction (for example, the plus direction),
In the reverse magnetic domain formation limit magnetic field (represented by H *), a magnetic domain in the reverse direction, that is, in the negative direction is generated. When the external magnetic field is further increased, the reverse magnetic domain is gradually increased, and finally reaches the domain wall propagation critical magnetic field (represented by Ho), and the negative magnetic domain is rapidly expanded. Then, when the external magnetic field is further increased, the magnetic domain in the positive direction becomes smaller and smaller, and finally disappears into a so-called negative saturation state.

【0025】しかしながら、磁壁伝搬臨界磁界Hoよりも
逆磁区形成限界磁界H*の方が大きい磁性体の場合は、プ
ラス方向に磁化していても、マイナス方向の磁区が少し
でも発生すれば直ちに磁壁移動(伝搬)できる状態となっ
ている。
However, in the case of a magnetic material in which the inverse magnetic domain formation limit magnetic field H * is larger than the domain wall propagation critical magnetic field Ho, even if magnetized in the positive direction, any magnetic domain in the negative direction will be immediately generated. It is ready for movement (propagation).

【0026】したがって、外部磁界が逆磁区形成臨界磁
界よりも大きくなると、マイナス方向の磁区が形成され
るや否や直ちに磁壁が移動し、マイナス方向の磁区が瞬
間的に拡大し、一瞬の内に磁化反転が行われる。すなわ
ち、プラスあるいはマイナス方向に磁化された安定な状
態を交互に維持する双安定な磁気特性となる。
Therefore, when the external magnetic field becomes larger than the inverse magnetic domain formation critical magnetic field, as soon as the negative magnetic domain is formed, the domain wall moves immediately, the negative magnetic domain expands momentarily, and the magnetization occurs in an instant. Inversion occurs. That is, it has a bistable magnetic characteristic in which a stable state magnetized in the positive or negative direction is alternately maintained.

【0027】この逆磁区形成臨界磁界や磁壁伝搬限界磁
界は磁性体の内部応力およびその分布と大きく関連して
おり、優れた双安定磁気特性を得るには内部応力を均一
に付与することが重要である。
The inverse magnetic domain forming critical magnetic field and the domain wall propagation limiting magnetic field are closely related to the internal stress of the magnetic material and its distribution, and it is important to give the internal stress uniformly in order to obtain excellent bistable magnetic characteristics. Is.

【0028】本発明の方法は、ダイス線引時に導入され
た非晶質金属細線内の不規則分布の残留応力の緩和と、
繊維軸方向応力の均一化を行うに際して、第1工程で高
い張力を印加して熱処理した後、第2工程で低い張力状
態で熱処理するという多段張力熱処理によって双安定磁
気特性を得る方法である。
The method of the present invention relaxes the residual stress of the irregular distribution in the amorphous metal thin wire introduced during the die drawing,
This method is a method of obtaining bistable magnetic properties by multistage tension heat treatment in which high tension is applied in the first step to perform heat treatment in the first step and then heat treatment is performed in a low tension state in the second step when the stress in the fiber axial direction is made uniform.

【0029】多段張力熱処理によって導入された繊維軸
方向応力の均一分布と非晶質金属細線の磁歪との効果に
よて、磁壁エネルギー密度の増大と共に繊維軸方向が強
い磁化容易軸となることで極めて優れた双安定磁気特性
を示す非晶質金属細線を得ることができる。
Due to the effect of the uniform distribution of the stress in the fiber axis direction introduced by the multi-stage tension heat treatment and the magnetostriction of the amorphous metal thin wire, the direction of the fiber axis becomes a strong easy axis of magnetization as the domain wall energy density increases. It is possible to obtain an amorphous metal thin wire that exhibits extremely excellent bistable magnetic characteristics.

【0030】[0030]

【実施例】本発明を実施例により更に具体的に説明す
る。
EXAMPLES The present invention will be described more specifically by way of examples.

【0031】[0031]

【実施例1】水中急冷法により、Co39Fe39Si9B13(添字
は原子%を示す)組成の非晶質金属細線を作製した。線
径は125μmであり、結晶化温度は561℃であった。この
非晶質金属細線を室温にてダイス線引することにより線
径50μmの非晶質金属細線を作製した。細線の破断強度
は350kg/mm2であった。
Example 1 An amorphous metal thin wire having a composition of Co 39 Fe 39 Si 9 B 13 (subscript indicates atomic%) was prepared by a water quenching method. The wire diameter was 125 μm, and the crystallization temperature was 561 ° C. This amorphous metal thin wire was drawn by a die at room temperature to prepare an amorphous metal thin wire having a wire diameter of 50 μm. The breaking strength of the thin wire was 350 kg / mm 2 .

【0032】得られた細線について表1に示す条件で第
1工程の張力熱処理を行い、次いで温度400℃、張力0.5
kg/mm2の条件で第2工程の張力熱処理を行った。得られ
た非晶質金属細線の双安定磁気特性(測定長40mm)の測定
結果を以下の表1に示す。
The thin wire thus obtained was subjected to the tension heat treatment in the first step under the conditions shown in Table 1, then at a temperature of 400 ° C. and a tension of 0.5.
The tension heat treatment of the second step was performed under the condition of kg / mm 2 . The measurement results of the bistable magnetic properties (measurement length: 40 mm) of the obtained amorphous metal thin wire are shown in Table 1 below.

【0033】[0033]

【表1】 第1工程温度 第1工程張力 双安定特性 反転磁界 Br/Bs (℃) (kg/mm2) (有無) (Oe) 395 100 有 2.58 0.78 400 100 有 2.21 0.88 400 120 有 1.64 0.95 400 140 有 0.76 0.97 410 80 有 1.88 0.88 410 100 有 1.25 0.97 410 120 有 0.76 0.97 420 70 有 1.30 0.92 420 90 有 0.80 0.96 *)第2工程は温度400℃/張力0.5kg/mm2の条件で行っ
た。
[Table 1] 1st Process Temperature 1st Process Tension Bistability Characteristics Switching magnetic field Br / Bs (℃) (kg / mm 2 ) (Presence) (Oe) 395 100 Yes 2.58 0.78 400 100 Yes 2.21 0.88 400 120 Yes 1.64 0.95 400 140 Yes 0.76 0.97 410 80 Yes 1.88 0.88 410 100 Yes 1.25 0.97 410 120 Yes 0.76 0.97 420 70 Yes 1.30 0.92 420 90 Yes 0.80 0.96 *) the second step is carried out at a temperature of 400 ° C. / tension 0.5 kg / mm 2 It was

【0034】第1工程と第2工程との組み合わせという
多段張力熱処理により双安定磁気特性が得られること、
および第1工程の張力熱処理条件を変えることによって
反転磁界値を制御可能であることが示された。
Bistable magnetic characteristics can be obtained by a multi-step tension heat treatment of a combination of the first step and the second step,
It was shown that the switching field value can be controlled by changing the tension heat treatment conditions in the first step.

【0035】[0035]

【実施例2】実施例1と同様にして得られた非晶質金属
細線について温度300℃、張力140kg/mm2の条件下で第1
工程の張力熱処理を行い、次いで表2に記載の条件で第
2工程の張力熱処理を行った。得られた非晶質金属細線
の双安定磁気特性の測定結果を以下の表2に示す。
Example 2 An amorphous metal thin wire obtained in the same manner as in Example 1 was subjected to the first test under the conditions of a temperature of 300 ° C. and a tension of 140 kg / mm 2 .
The tension heat treatment of the step was performed, and then the tension heat treatment of the second step was performed under the conditions shown in Table 2. The measurement results of the bistable magnetic properties of the obtained amorphous metal thin wires are shown in Table 2 below.

【0036】[0036]

【表2】 第2工程温度 第2工程張力 双安定特性 反転磁界 Br/Bs (℃) (kg/mm2) (有無) (Oe) 340 0.5 有 4.05 0.69 350 0.5 有 3.20 0.71 360 0.5 有 2.26 0.86 370 0.5 有 1.60 0.76 390 0.5 有 0.79 0.93 400 0.5 有 0.55 0.94 380 20 有 0.95 0.95 *)第1工程は温度300℃/張力140kg/mm2の条件で行っ
た。
[Table 2] Second process temperature Second process tension Bistability characteristics Inversion magnetic field Br / Bs (℃) (kg / mm 2 ) (Presence) (Oe) 340 0.5 Yes 4.05 0.69 350 0.5 Yes 3.20 0.71 360 0.5 Yes 2.26 0.86 370 0.5 Yes 1.60 0.76 390 0.5 Yes 0.79 0.93 400 0.5 Yes 0.55 0.94 380 20 Yes 0.95 0.95 *) The first step was performed under the conditions of temperature 300 ° C / tension 140 kg / mm 2 .

【0037】第1工程と第2工程との組み合わせという
多段張力熱処理により双安定磁気特性が得られること、
および第2工程の張力熱処理条件を変えることによって
反転磁界値を制御可能であることが示された。
Bistable magnetic characteristics can be obtained by the multi-stage tension heat treatment of the combination of the first step and the second step,
It was shown that the switching field value can be controlled by changing the tension heat treatment conditions in the second step.

【0038】[0038]

【比較例1】実施例1と同様にして得られた非晶質金属
細線について以下の表3に示す条件で、第1工程および
第2工程の張力熱処理を行った。得られた非晶質金属細
線の双安定磁気特性の測定結果を表3に示す。
Comparative Example 1 An amorphous metal thin wire obtained in the same manner as in Example 1 was subjected to tension heat treatment in the first step and the second step under the conditions shown in Table 3 below. Table 3 shows the measurement results of the bistable magnetic properties of the obtained amorphous metal thin wires.

【0039】[0039]

【表3】 第1工程温度 第1工程張力 第2工程温度 第2工程張力 双安定特性 (℃) (kg/mm2) (℃) (kg/mm2) (有無) 440 1 415 140 無 465 20 440 10 無 465 20 415 110 無 420 70 400 100 無 250 100 400 0.5 無 400 100 250 0.5 無[Table 3] 1st process temperature 1st process tension 2nd process temperature 2nd process tension Bistability characteristics (℃) (kg / mm 2 ) (℃) (kg / mm 2 ) (Presence) 440 1 415 140 None 465 20 440 10 No 465 20 415 110 No 420 70 400 100 No 250 100 400 0.5 No 400 100 250 0.5 No

【0040】表3に示すように、第1工程の張力が20kg
/mm2以下と低い場合は第2工程の張力条件に関係無く双
安定磁気特性が得られない。また、第1工程の張力が破
断強度の10%以上の場合でも、第2工程の張力が第1工
程の張力を超える場合は双安定磁気特性が得られない。
As shown in Table 3, the tension in the first step is 20 kg.
If it is as low as / mm 2 or less, bistable magnetic properties cannot be obtained regardless of the tension condition of the second step. Even if the tension in the first step is 10% or more of the breaking strength, if the tension in the second step exceeds the tension in the first step, bistable magnetic properties cannot be obtained.

【0041】[0041]

【発明の効果】本発明によれば、反転磁界値を、所望す
る広範囲の任意の値に制御して双安定磁気特性を有する
非晶質金属細線を作製することが可能である。
According to the present invention, it is possible to manufacture an amorphous metal thin wire having bistable magnetic characteristics by controlling the switching field value to an arbitrary value in a desired wide range.

【図面の簡単な説明】[Brief description of drawings]

【図1】 水中急冷法により作製された非晶質金属細線
の磁気ヒステリシスループの一例を示すグラフである。
FIG. 1 is a graph showing an example of a magnetic hysteresis loop of an amorphous metal thin wire manufactured by an underwater quenching method.

【図2】 非晶質金属細線をダイス線引して得られた非
晶質金属細線の磁気ヒステリシスループの一例を示すグ
ラフである。
FIG. 2 is a graph showing an example of a magnetic hysteresis loop of an amorphous metal thin wire obtained by drawing an amorphous metal thin wire with a die.

【図3】 本発明の第1工程の張力熱処理を行った非晶
質金属細線の磁気ヒステリシスループの一例を示すグラ
フである。
FIG. 3 is a graph showing an example of a magnetic hysteresis loop of an amorphous metal thin wire subjected to the tension heat treatment of the first step of the present invention.

【図4】 (a)は本発明の第1工程の張力熱処理後さら
に第2工程の張力熱処理を比較的高温条件で行った非晶
質金属細線の磁気ヒステリシスループの一例を、(b)は
本発明の第1工程の張力熱処理後さらに第2工程の張力
熱処理を比較的低温条件で行った非晶質金属細線の磁気
ヒステリシスループの一例を示すグラフである。
FIG. 4 (a) is an example of a magnetic hysteresis loop of an amorphous metal thin wire in which the tension heat treatment of the first step of the present invention and the tension heat treatment of the second step are further performed under a relatively high temperature condition; It is a graph which shows an example of the magnetic hysteresis loop of the amorphous metal thin wire which performed the tension heat treatment of the 2nd process after the tension heat treatment of the 1st process of this invention on comparatively low temperature conditions.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 水中急冷法により作製された非晶質金属
繊維を最終減面率30%以上にダイス線引した非晶質金属
細線を、該細線の引張破断強度の10%以上の張力を加え
た状態で250℃以上かつ結晶化温度以下の温度で熱処理
する第1工程;および、 該第1工程で得られる細線を、第1工程の印加張力以下
の張力を加えた状態もしくは無張力の状態で、250℃以
上かつ結晶化温度以下の温度で熱処理する第2工程; を包含することを特徴とする非晶質金属細線の熱処理方
法。
1. An amorphous metal fine wire obtained by die-drawing an amorphous metal fiber produced by an underwater quenching method to a final reduction of area of 30% or more is applied with a tension of 10% or more of the tensile breaking strength of the thin wire. A first step of heat-treating at a temperature of 250 ° C. or higher and a crystallization temperature or lower in the applied state; and a thin wire obtained in the first step, to which a tension equal to or lower than the applied tension in the first step is applied or without tension. A second step of heat-treating at a temperature of 250 ° C. or higher and a crystallization temperature or lower in the state;
JP00909392A 1992-01-22 1992-01-22 Heat treatment method for amorphous metal wires Expired - Fee Related JP3388773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00909392A JP3388773B2 (en) 1992-01-22 1992-01-22 Heat treatment method for amorphous metal wires

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00909392A JP3388773B2 (en) 1992-01-22 1992-01-22 Heat treatment method for amorphous metal wires

Publications (2)

Publication Number Publication Date
JPH05195170A true JPH05195170A (en) 1993-08-03
JP3388773B2 JP3388773B2 (en) 2003-03-24

Family

ID=11711005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00909392A Expired - Fee Related JP3388773B2 (en) 1992-01-22 1992-01-22 Heat treatment method for amorphous metal wires

Country Status (1)

Country Link
JP (1) JP3388773B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115279926A (en) * 2020-03-10 2022-11-01 日立金属株式会社 Method for producing Fe-Co alloy bar and Fe-Co alloy bar

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115279926A (en) * 2020-03-10 2022-11-01 日立金属株式会社 Method for producing Fe-Co alloy bar and Fe-Co alloy bar

Also Published As

Publication number Publication date
JP3388773B2 (en) 2003-03-24

Similar Documents

Publication Publication Date Title
KR101147571B1 (en) Iron-based soft magnetic alloy, thin ribbon of amorphous alloy, and magnetic part
JP2007182594A (en) Amorphous alloy thin strip, nano-crystalline soft magnetic alloy, and magnetic core composed of nano-crystalline soft magnetic alloy
US5474624A (en) Method of manufacturing Fe-base soft magnetic alloy
US4475962A (en) Annealing method for amorphous magnetic alloy
JPH01242755A (en) Fe-based magnetic alloy
US5619174A (en) Noise filter comprising a soft magnetic alloy ribbon core
KR920007579B1 (en) Soft magnetic materials
JP3388773B2 (en) Heat treatment method for amorphous metal wires
Fujimori et al. Magnetic Properties of an Fe–13P–7C Amorphous Ferromagnet—The Effects of Stress, Stress-Annealing and Magnetic-Field-Annealing—
JPH0544165B2 (en)
JP2778697B2 (en) Fe-based soft magnetic alloy
JPH01290744A (en) Fe-base soft-magnetic alloy
JP3055722B2 (en) Method for manufacturing wound core having high squareness ratio at high frequency and wound core
JPH03107417A (en) Production of supermicrocrystalline soft magnetic alloy
US6120617A (en) Method for manufacturing a magnetic pulse generator
JPS63240003A (en) Fine wire of amorphous metal and manufacture thereof
JP2005187917A (en) Soft magnetic alloy, and magnetic component
JPH01180756A (en) High squareness ratio soft magnetic material
JPH0733564B2 (en) Method for producing C-bottom 0-based amorphous alloy
Bottoni et al. Evolution from soft to hard magnetic behavior in Co‐based devitrified glassy alloy
JPH01247556A (en) Fe-base magnetic alloy excellent in iso-permeability characteristic
Manna et al. Role of artificially created defects on magnetoimpedance of Co73Fe4. 5Mn0. 5Nb1. 0Si4. 2B16. 8 ribbon
JPH01150447A (en) Soft magnetic fiber having high square loop hysteresis
JP2713980B2 (en) Fe-based soft magnetic alloy
JPS59211530A (en) Production of amorphous fe-co-si-b alloy light-gage strip having small ac loss

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees