JPH05194658A - Polybutadiene rubber and its composition - Google Patents

Polybutadiene rubber and its composition

Info

Publication number
JPH05194658A
JPH05194658A JP4259946A JP25994692A JPH05194658A JP H05194658 A JPH05194658 A JP H05194658A JP 4259946 A JP4259946 A JP 4259946A JP 25994692 A JP25994692 A JP 25994692A JP H05194658 A JPH05194658 A JP H05194658A
Authority
JP
Japan
Prior art keywords
rubber
hexane
polybutadiene rubber
boiling
polybutadiene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4259946A
Other languages
Japanese (ja)
Inventor
Norishige Kawaguchi
憲重 川口
Hiroyuki Nakamura
裕之 中村
Tsuneo Tanaka
恒夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP4259946A priority Critical patent/JPH05194658A/en
Publication of JPH05194658A publication Critical patent/JPH05194658A/en
Pending legal-status Critical Current

Links

Landscapes

  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To obtain the subject polybutadiene rubber, composed of a specific polybutadiene, excellent in dynamic characteristics, abrasion resistance, tensile strength, flex crack growth resistance and impact resilience and suitable as base treads, etc., of automotive tires. CONSTITUTION:The objective polybutadiene rubber is composed of (A) 10-25wt.% portion, having 0.5-4 reduced viscosity and insoluble in boiling n-hexane and (B) 90-75wt.% portion insoluble in boiling n-hexane in which (i) the weight- average molecular weight (Mw) is 300000-800000 and (ii) the toluene solution viscosity (t-cp) and the Mooney viscosity (ML) at 100 deg.C satisfy the relation of 3ML-30<t-cp<3ML+30. Furthermore, a rubber composition excellent in runnability is obtained from >=20wt.% objective polybutadiene rubber and natural rubber and/or one or more diene-based rubbers.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ポリブタジエンゴム及
びこのゴムに他のジエン系ゴムや天然ゴムを配合したゴ
ム組成物であって、自動車タイヤの部材、特にベースト
レッドやサイドウォール、ビードフィラー等に好適なも
のに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polybutadiene rubber and a rubber composition obtained by blending this rubber with another diene rubber or natural rubber, which is used for automobile tire members, particularly base treads, sidewalls and bead fillers. Suitable for.

【0002】[0002]

【従来の技術】近年、自動車業界においては、省資源、
省エネルギーの観点から、乗用車の走行燃費を更に低減
することが検討されてきた。走行燃費の低減には自動車
の軽量化と走行抵抗の減少が有効であるが、そのために
は、タイヤそのものの軽量化とともに転がり抵抗の減少
が効果的である。そのため、タイヤの軽量化と転がり抵
抗の減少のための種々の方法が試みられてきた。
2. Description of the Related Art Recently, in the automobile industry, resource saving,
From the viewpoint of energy saving, it has been studied to further reduce the fuel consumption of passenger cars. To reduce the running fuel consumption, it is effective to reduce the weight of the automobile and reduce the running resistance. For that purpose, it is effective to reduce the rolling resistance as well as the weight of the tire itself. Therefore, various methods for reducing the weight of tires and reducing rolling resistance have been tried.

【0003】先ず、タイヤの軽量化の一つの方向とし
て、タイヤ各部のゲージダウン(厚みを減少させる)が
検討された。しかし、トレッドを余り薄くした場合に
は、短期間でトレッドが摩耗し切ってタイヤが使えなく
なり、タイヤの寿命が短くなるという問題があった。一
方、サイドウォールの厚みを余り薄くした場合には、タ
イヤの剛性が低下するという問題が起こった。このた
め、タイヤ各部のゲージダウンによる軽量化には限界が
あることが判った。
First, as one direction for reducing the weight of tires, a gauge down (reduction of thickness) of each part of the tire was studied. However, if the tread is made too thin, there is a problem that the tread is worn out in a short period of time and the tire cannot be used, and the life of the tire is shortened. On the other hand, when the thickness of the sidewall is made too thin, the rigidity of the tire decreases. Therefore, it has been found that there is a limit to weight reduction by reducing the gauge of each part of the tire.

【0004】次に、タイヤのゴムに添加するカーボンブ
ラックの量を減らすことが試みられた。カーボンブラッ
クは比重が大きいので、使用量を減らすことはタイヤそ
のものの軽量化に結びつく。又、カーボンブラックの使
用量を減らすことにより、ゴムの発熱、損失モジュラス
(E”)、及び損失正接(tanδ)を減少させること
ができるので、タイヤの転がり抵抗の減少も期待でき
る。しかし、従来のゴムでは、カーボンブラックの添加
量を減らした場合にゴムの機械的性質、耐摩耗性、硬
度、弾性率等が低下し、それに従ってタイヤそのものの
性能も低下するという問題があった。
Next, attempts were made to reduce the amount of carbon black added to the rubber of tires. Since carbon black has a large specific gravity, reducing the amount used will lead to weight reduction of the tire itself. Further, heat generation, loss modulus (E ″), and loss tangent (tan δ) of rubber can be reduced by reducing the amount of carbon black used, so that a reduction in tire rolling resistance can be expected. The rubber of No. 1 had a problem that when the amount of carbon black added was reduced, the mechanical properties, abrasion resistance, hardness, elastic modulus, etc. of the rubber deteriorated, and the performance of the tire itself also deteriorated accordingly.

【0005】このため、近年、ゴムの硬度、弾性、耐摩
耗性、機械的性質、及び動的特性(発熱特性やtan
δ)を改良することが検討されてきた。このようなゴム
として、高シス−1,4−ポリブタジエン(以下「高シ
ス−BR」と略)のマトリックス中にシンジオタクチッ
ク−1,2−ポリブタジエン(SPB)を分散させた改
良ポリブタジエンゴムが提案された(特公昭49−17
666号)。このポリブタジエンゴムは、SPBが高シ
スBRのマトリックス中に繊維状に分散した構造を有し
ているため、従来のゴム、例えば高シスBR単味のゴム
等と比較して硬度及び弾性が高く耐屈曲亀裂成長性に優
れているという特徴を有している。このため、この改良
ポリブタジエンを用いたタイヤ部材も各種提案されてい
る。このようなものとして、例えばトレッドに使用した
例(特公昭63−1355号)やサイドウォールに使用
した例(特公昭55−17059号)等がある。
Therefore, in recent years, the hardness, elasticity, wear resistance, mechanical properties, and dynamic characteristics of rubber (heat generation characteristics and tan
Improvements in δ) have been investigated. As such a rubber, an improved polybutadiene rubber in which syndiotactic-1,2-polybutadiene (SPB) is dispersed in a matrix of high cis-1,4-polybutadiene (hereinafter abbreviated as "high cis-BR") is proposed. It was done (Japanese Patent Publication Sho 49-17)
666). Since this polybutadiene rubber has a structure in which SPB is dispersed in a high cis BR matrix in a fibrous form, it has a higher hardness and elasticity than conventional rubbers such as high cis BR plain rubber. It has the characteristic of being excellent in bending crack growth. Therefore, various tire members using this improved polybutadiene have been proposed. Examples of such materials include an example used for a tread (Japanese Patent Publication No. 63-1355) and an example used for a sidewall (Japanese Patent Publication No. 55-17059).

【0006】[0006]

【解決すべき課題】しかし、この改良ポリブタジエン
も、最近の高度な省燃費の要求(例えばCAFE対応)
を満たす材料としては充分とは言えなかった。本発明
は、従来の改良ポリブタジエンゴムの長所をそのまま保
持しつつ、動的特性と耐摩耗性、引張強度、耐屈曲亀裂
成長性、反発弾性のバランスに優れたポリブタジエンゴ
ムを提供することを目的とする。
[Problems to be solved] However, this improved polybutadiene is also required to have a high degree of recent fuel efficiency (for example, CAFE compliance).
It could not be said to be sufficient as a material satisfying the above conditions. The present invention aims to provide a polybutadiene rubber excellent in the balance of dynamic properties and wear resistance, tensile strength, flex crack growth resistance, and impact resilience while retaining the advantages of the conventional improved polybutadiene rubber. To do.

【0007】[0007]

【発明の構成】本発明は、 還元粘度0.5〜4の沸騰n−ヘキサン不溶分・・・10〜25重量% (a) 重量平均分子量(Mw)が30万〜80万であり、 (b) トルエン溶液粘度(t−cp)と100℃でのムーニー粘度(ML) とが、 3ML−30<t−cp<3ML+30 なる関係を満足する沸騰n−ヘキサン可溶分・・・・・90〜75重量% からなるポリブタジエンゴムに関する。BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, boiling n-hexane insoluble matter having a reduced viscosity of 0.5 to 4 ... 10 to 25% by weight (a) A weight average molecular weight (Mw) of 300,000 to 800,000, b) Boiling n-hexane-soluble component 90 satisfying the relationship that the toluene solution viscosity (t-cp) and the Mooney viscosity (ML) at 100 ° C. To 75% by weight of polybutadiene rubber.

【0008】本発明は、又、このポリブタジエンゴムに
ジエン系合成ゴム及び/又は天然ゴムを配合したゴム組
成物に関する。
The present invention also relates to a rubber composition obtained by blending this polybutadiene rubber with a diene synthetic rubber and / or natural rubber.

【0009】以下、本発明のポリブタジエンゴムについ
て詳しく説明する。
The polybutadiene rubber of the present invention will be described in detail below.

【0010】本発明のポリブタジエンゴムは、沸騰n−
ヘキサン不溶分と沸騰n−ヘキサン可溶分からなってい
る。
The polybutadiene rubber of the present invention has a boiling n-
It consists of hexane insoluble matter and boiling n-hexane soluble matter.

【0011】沸騰n−ヘキサン不溶分は、シンジオタク
チック−1,2−ポリブタジエン、及び/又はシンジオ
タクチック−1,2−ポリブタジエンを主要構造とする
ポリブタジエンを主成分とするものである。一方、沸騰
n−ヘキサンに可溶な成分は、高シス−1,4−ポリブ
タジエンを主成分とするものである。
The boiling n-hexane insoluble matter is mainly composed of syndiotactic-1,2-polybutadiene and / or polybutadiene having syndiotactic-1,2-polybutadiene as a main structure. On the other hand, the component soluble in boiling n-hexane is mainly composed of high cis-1,4-polybutadiene.

【0012】沸騰n−ヘキサン不溶分の割合は、10〜
25重量%であることが必要である。沸騰n−ヘキサン
不溶分の割合が10重量%より少ないと、ポリブタジエ
ンゴムの硬度、弾性率、及び破壊強度が低下するという
問題が生じる。一方、25重量%より多い場合はポリブ
タジエンゴムの配合物MLが高くなりすぎ、加工性に難
が生じる。ここで「配合物」とは、ポリブタジエンゴム
或いはこのポリブタジエンゴムに他のジエン系ゴムを配
合したゴム組成物にカーボンブラックやプロセスオイ
ル、加硫剤等を配合したものをいう。
The proportion of boiling n-hexane insoluble matter is 10 to 10.
It is necessary to be 25% by weight. When the proportion of the boiling n-hexane insoluble matter is less than 10% by weight, there arises a problem that the hardness, elastic modulus and breaking strength of the polybutadiene rubber are lowered. On the other hand, when the content is more than 25% by weight, the compound ML of the polybutadiene rubber becomes too high and the processability becomes difficult. The term "blend" as used herein means a polybutadiene rubber or a rubber composition obtained by blending this polybutadiene rubber with another diene rubber, with carbon black, process oil, a vulcanizing agent and the like.

【0013】沸騰n−ヘキサン不溶分は、テトラリン中
で130℃で測定した粘度の値から計算した還元粘度の
値が0.5〜4.0の範囲にあることが必要である。還
元粘度が0.5よりも小さいと、沸騰n−ヘキサン不溶
分が沸騰n−ヘキサン可溶分中に繊維状に分散しないの
で、得られるポリブタジエンゴムの硬度や弾性、耐屈曲
性が低下するという問題が起こる。一方、還元粘度が4
を超えると、沸騰n−ヘキサン不溶分は沸騰n−ヘキサ
ン可溶分中で凝集塊を形成するようになり、分散不良を
起こし易くなるので、ポリブタジエンゴムの加工性や耐
久性が低下するという問題が生じる。
The boiling n-hexane insoluble matter must have a reduced viscosity value in the range of 0.5 to 4.0 calculated from the viscosity value measured at 130 ° C. in tetralin. If the reduced viscosity is less than 0.5, the boiling n-hexane insoluble matter does not disperse in the boiling n-hexane soluble matter in a fibrous state, so that the hardness, elasticity, and flex resistance of the obtained polybutadiene rubber decrease. The problem arises. On the other hand, the reduced viscosity is 4
If it exceeds, the boiling n-hexane insoluble matter will form agglomerates in the boiling n-hexane soluble matter, which tends to cause poor dispersion, so that the processability and durability of the polybutadiene rubber are deteriorated. Occurs.

【0014】沸騰n−ヘキサン可溶分は、重量平均分子
量が30万〜80万の範囲であることが必要であり、重
量平均分子量が5万以下の成分の割合は3%以下(沸騰
n−ヘキサン可溶分に対して)であることが好ましい。
又、重量平均分子量(Mw)と数平均分子量(Mn)の
比Mw/Mnは3.0未満であることが好ましい。重量
平均分子量が30万未満の場合は、得られるポリブタジ
エンゴムの耐久性が悪化するという問題が生じる。一
方、重量平均分子量が80万を超える場合は、配合物の
ムーニー粘度が高くなり過ぎ、加工が困難になるという
問題が起こる。又、配合ゴムの流動性も悪化する。
The boiling n-hexane-soluble component must have a weight average molecular weight in the range of 300,000 to 800,000, and the proportion of components having a weight average molecular weight of 50,000 or less is 3% or less (boiling n-hexane Hexane-soluble content).
The ratio Mw / Mn of the weight average molecular weight (Mw) and the number average molecular weight (Mn) is preferably less than 3.0. When the weight average molecular weight is less than 300,000, there is a problem that the durability of the obtained polybutadiene rubber deteriorates. On the other hand, when the weight average molecular weight exceeds 800,000, the Mooney viscosity of the blend becomes too high, which causes a problem that processing becomes difficult. In addition, the fluidity of the compounded rubber also deteriorates.

【0015】更に、沸騰n−ヘキサン可溶分は、それ自
体のトルエン溶液粘度(t−cp)とムーニー粘度(M
L)とが、 3ML−30<t−cp<3ML+30 なる関係を満たしていることが必要である。トルエン溶
液粘度は、濃厚溶液中での沸騰n−ヘキサン可溶分の分
子の絡みあいの程度を示すものであって、同程度の分子
量分布のゴムにあっては、分子量が同一であれば(即ち
ムーニー粘度が同一であれば)ポリマー鎖の分岐の度合
いの尺度となるものである。即ち同一ムーニー粘度の場
合、トルエン溶液粘度が小さいことは分岐度の大きなこ
とを示し、トルエン溶液粘度が大きいことは分岐度の小
さなことを示すのである。本発明において、t−cp≦
3ML−30であると、ポリブタジエンゴムの耐磨耗性
や引張強度が低下し、好ましくない。
Further, the boiling n-hexane-soluble component has its own toluene solution viscosity (t-cp) and Mooney viscosity (M
L) and 3ML-30 <t-cp <3ML + 30 must be satisfied. The toluene solution viscosity indicates the degree of entanglement of boiling n-hexane soluble components in a concentrated solution, and in a rubber having a similar molecular weight distribution, if the molecular weight is the same (that is, It is a measure of the degree of branching of the polymer chains (if the Mooney viscosity is the same). That is, in the case of the same Mooney viscosity, a low toluene solution viscosity indicates a high degree of branching, and a high toluene solution viscosity indicates a low degree of branching. In the present invention, t-cp ≦
If it is 3ML-30, the abrasion resistance and the tensile strength of the polybutadiene rubber are lowered, which is not preferable.

【0016】一方、t−cp≧3ML+30の場合は、
ポリブタジエンゴムの配合物ムーニー粘度が高くなり過
ぎ、加工性が悪くなる。
On the other hand, if t-cp ≧ 3ML + 30,
Formulation of polybutadiene rubber Mooney viscosity becomes too high, resulting in poor processability.

【0017】以下、本発明のポリブタジエンゴムの製造
法について説明する。製造法には、例えば二段重合法が
ある。
The method for producing the polybutadiene rubber of the present invention will be described below. The production method includes, for example, a two-step polymerization method.

【0018】二段重合法とは、1,3−ブタジエンを最
初にシス−1,4−重合して高シス−1,4−ポリブタ
ジエンとし、次いで重合系にシンジオタクチック−1,
2重合触媒を投入して残余の1,3−ブタジエンを1,
2重合させるというものである。1,4−重合触媒、及
びシンジオタクチック−1,2−重合触媒には、公知の
ものを使用することができる。1,4−重合触媒の例と
しては、ジエチルアルミニウムクロライド−コバルト系
触媒やトリアルキルアルミニウム−三弗化硼素−ニッケ
ル系触媒、ジエチルアルミニウムクロライド−ニッケル
系触媒、トリエチルアルミニウム−四沃化チタニウム系
触媒、等のチーグラー・ナッタ型触媒、及びトリエチル
アルミニウム−有機酸ネオジウム−ルイス酸系触媒等の
ランタン系列希土類元素系触媒等を挙げることができ
る。シンジオタクチック1,2−重合触媒の例として
は、可溶性コバルト−有機アルミニウム化合物−二硫化
炭素系触媒(特公昭47−19892号)や、この触媒
系に更にアクリロニトリルを加えたもの(特公昭47−
19893号)を挙げることができる。重合温度、重合
溶媒等も公知の方法に従って適宜設定できる。
The two-stage polymerization method is that 1,3-butadiene is first cis-1,4-polymerized into high cis-1,4-polybutadiene, and then syndiotactic-1,2 is added to the polymerization system.
2 Polymerization catalyst was added to remove the remaining 1,3-butadiene from 1,
2 Polymerize. Known 1,4-polymerization catalysts and syndiotactic-1,2-polymerization catalysts can be used. Examples of 1,4-polymerization catalysts include diethylaluminum chloride-cobalt-based catalysts, trialkylaluminum-boron trifluoride-nickel-based catalysts, diethylaluminum chloride-nickel-based catalysts, triethylaluminum-titanium tetraiodide-based catalysts, Ziegler-Natta type catalysts such as the above, and lanthanum series rare earth element type catalysts such as triethylaluminum-organic acid neodymium-Lewis acid type catalysts. Examples of syndiotactic 1,2-polymerization catalysts include soluble cobalt-organoaluminum compound-carbon disulfide-based catalysts (Japanese Patent Publication No. 47-19892) and those obtained by further adding acrylonitrile to this catalyst system (Japanese Patent Publication No. −
19893). The polymerization temperature, the polymerization solvent and the like can be appropriately set according to known methods.

【0019】本発明のポリブタジエンゴムは、このほか
ブレンド法によっても製造できる。ブレンド法とは、予
め高シス1,4−ポリブタジエンとシンジオタクチック
1,2−ポリブタジエンを別々に重合しておき、各々の
重合溶液をブレンドするというものである。このほか、
高シス1,4−ポリブタジエンの重合溶液に固体状のシ
ンジオタクチック1,2−ポリブタジエンをブレンドす
る等の方法も可能である。
The polybutadiene rubber of the present invention can also be produced by a blending method. The blending method is to polymerize high-cis 1,4-polybutadiene and syndiotactic 1,2-polybutadiene separately in advance and blend the respective polymerization solutions. other than this,
A method such as blending solid syndiotactic 1,2-polybutadiene with a polymerization solution of high-cis 1,4-polybutadiene is also possible.

【0020】本発明のポリブタジエンゴムは、高シスポ
リブタジエンゴムや低シスポリブタジエンゴムやスチレ
ン−ブタジエンゴム、イソプレンゴム、ブチルゴム、及
び天然ゴムからなる群から選ばれた少なくとも1種類の
ゴムを配合した組成物としてタイヤのベーストレッドや
サイドウォール、或いはビードフィラーに好ましく用い
得る。但しこの組成物は本発明のポリブタジエンゴムを
20重量%以上含有することが望ましい。
The polybutadiene rubber of the present invention is a composition containing at least one rubber selected from the group consisting of high cis polybutadiene rubber, low cis polybutadiene rubber, styrene-butadiene rubber, isoprene rubber, butyl rubber, and natural rubber. Can be preferably used as a base tread or sidewall of a tire or a bead filler. However, it is desirable that this composition contains the polybutadiene rubber of the present invention in an amount of 20% by weight or more.

【0021】[0021]

【実施例】以下の実施例および比較例において、ブタジ
エンゴム及びその組成物について以下の各項目の測定
は、次のようにして行った。
EXAMPLES In the following examples and comparative examples, butadiene rubber and its composition were measured for each of the following items as follows.

【0022】n−ヘキサン不溶分の還元粘度 ポリブタジエンゴム25gを沸騰n−ヘキサン1000
ml中で還流し、沸騰n−ヘキサン不溶分と可溶分とに分
離した。得られた沸騰n−ヘキサン不溶分0.2gをテ
トラリン100mlに溶解し、130℃の温度にてウベロ
ーデ粘度計にて測定した。
Reduced viscosity of n-hexane insoluble component 25 g of polybutadiene rubber was boiled with 1000 g of n-hexane.
It was refluxed in ml and separated into boiling n-hexane insoluble matter and soluble matter. 0.2 g of the obtained boiling n-hexane-insoluble matter was dissolved in 100 ml of tetralin, and measured at a temperature of 130 ° C. with an Ubbelohde viscometer.

【0023】n−ヘキサン可溶分の重量平均分子量の測定 ポリブタジエンゴム25gを沸騰n−ヘキサン1000
ml中で還流し、沸騰n−ヘキサン不溶分を濾別し、n−
ヘキサン溶液を回収した。得られたn−ヘキサン溶液か
らn−ヘキサンを除去し、n−ヘキサン可溶分を回収し
た。回収されたn−ヘキサン可溶分をテトラヒドロフラ
ンに溶解し、GPCを用い、ポリスチレン換算分子量か
らMwを算出した。測定条件は以下の通り。 装 置:HLC−802A型(東洋曹達株式会社製) カラム:GMH6000、2本並列 溶離液:テトラヒドロフラン 溶離液流量:1.0ml/分 測定温度:カラム槽・・・40℃ 検出器・・・・40℃ サンプル濃度:0.025g/100ml サンプル注入量:0.5ml
Measurement of weight average molecular weight of n-hexane-soluble component 25 g of polybutadiene rubber was boiled with 1,000 n-hexane.
The mixture was refluxed in ml, the boiling n-hexane insoluble matter was filtered off, and n-hexane was added.
The hexane solution was recovered. N-Hexane was removed from the obtained n-hexane solution, and the n-hexane soluble component was recovered. The recovered n-hexane-soluble component was dissolved in tetrahydrofuran, and Mw was calculated from the polystyrene reduced molecular weight using GPC. The measurement conditions are as follows. Equipment: HLC-802A type (manufactured by Toyo Soda Co., Ltd.) Column: GMH6000, 2 in parallel Eluent: Tetrahydrofuran Eluent flow rate: 1.0 ml / min Measurement temperature: Column tank ・ ・ ・ 40 ° C Detector ... 40 ℃ Sample concentration: 0.025g / 100ml Sample injection amount: 0.5ml

【0024】n−ヘキサン可溶分のミクロ構造 上記の方法で得られた沸騰n−ヘキサン可溶分につい
て、赤外線吸収スペクトル法(モレロ法)によってシス
−1,4構造の割合を定量した。
Micro Structure of n-Hexane-Soluble Content The boiling n-hexane-soluble content obtained by the above method was quantified by the infrared absorption spectrum method (Morero method) to determine the proportion of cis-1,4 structure.

【0025】n−ヘキサン可溶分のトルエン溶液粘度(T−cp) 上記の方法で得られた沸騰n−ヘキサン可溶分を5重量
%になるようにトルエンに溶解して、キャノンフェンス
ケ粘度計を25℃で測定した。
Viscosity of n-hexane soluble component in toluene solution (T-cp) The boiling n-hexane soluble component obtained by the above method was dissolved in toluene so as to be 5% by weight, and the Cannon-Fenske viscosity was obtained. The total was measured at 25 ° C.

【0026】n−ヘキサン可溶分及び配合物のムーニー粘度 JIS−K−6300に規定されている測定方法に従っ
て測定した。
Mooney Viscosity of n-Hexane-Soluble Content and Formulation It was measured according to the measuring method defined in JIS-K-6300.

【0027】加硫物の硬度、反発弾性、及び引張強度 JIS−K−6301に規定されている測定法に従って
測定した。
Hardness, impact resilience, and tensile strength of the vulcanized product were measured according to the measuring methods specified in JIS-K-6301.

【0028】tanδ 加硫物のtanδについては、レオメトリックス社製R
SA2を用いて、温度70℃、周波数10Hz、動歪2
%の条件で測定した。
For tan δ of tan δ vulcanizate, R manufactured by Rheometrics
Using SA2, temperature 70 ℃, frequency 10Hz, dynamic strain 2
% Was measured.

【0029】発熱特性 グッドリッチフレクソメーターを用い、ASTM D6
23に従い、歪み0.175インチ、荷重55ポンド、
100℃25分の条件で測定した。
Exothermic characteristics Using a Goodrich flexometer, ASTM D6
23, strain 0.175 inches, load 55 pounds,
The measurement was performed at 100 ° C. for 25 minutes.

【0030】ピコ摩耗 ASTM D2228に規定されている測定法に従って
測定した。
Pico Wear Measured according to the measuring method specified in ASTM D2228.

【0031】耐屈曲亀裂成長性 2mmの亀裂が15mmに成長するまでの屈曲回数をJ
IS K6301に規定されている測定法に従って測定
した。
Flexural crack growth resistance J is the number of flexing cycles until a crack of 2 mm grows to 15 mm.
It was measured according to the measuring method specified in IS K6301.

【0032】[0032]

【実施例1】内部を窒素ガスで置換した容量2リットル
のオートクレーブに、1,3−ブタジエン192gを脱
水ベンゼン608gに溶解した溶液を仕込み、更に水
1.9mmolを加えて30分間攪拌した。次いで、この溶
液を50℃に昇温し、ジエチルアルミニウムクロライド
3. 1mmol、コバルトオクトエート0.01mmol、及び
1,5−シクロオクタジエン8.5mmolを加えて攪拌を
行い、1,3−ブタジエンをシス−1,4重合した。3
0分経過後、重合溶液に、シンジオタクチック1,2重
合触媒としてトリエチルアルミニウム3.6mmol、二硫
化炭素0.2mmol、及びコバルトオクトエート0.12
0mmolを加えて、温度を50℃に調節して30分間攪拌
を行い、残余の1,3−ブタジエンをシンジオタクチッ
ク1,2重合した。重合終了後、重合溶液に、2,4−
tert−ブチル−p−クレゾール0.5gをメタノー
ル−ベンゼン混合溶媒(50:50)に溶かした溶液を
加えて、重合反応を停止した。重合反応を停止した後、
重合溶液を常法に従って処理し、ポリブタジエンゴムを
回収した。得られたポリブタジエンゴムは、ムーニー粘
度が65(ML1+4 、100℃)、沸騰n−ヘキサン不
溶分の含有率が12.1重量%、沸騰n−ヘキサン可溶
分の含有率は87.9重量%であった。沸騰n−ヘキサ
ン不溶分は還元粘度が2.1であった。沸騰n−ヘキサ
ン可溶分はムーニー粘度が50(ML1+4 、100
℃)、トルエン溶液粘度が150、重量平均分子量が6
3万であり、シス−1,4構造の割合は96.9%であ
った。このポリブタジエンゴムについての上記の結果を
表1に示す。このポリブタジエンゴムに、表2の配合表
に従い、カーボンブラック、プロセスオイル、硫黄等を
配合し、150℃で30分間プレスし、加硫し、配合物
(サンプル1及び2)を調製した。サンプル1及び2に
ついて、硬度、300%応力、引張強度、反発弾性、発
熱等を測定した。測定結果を表3に示す。更に、表4、
6、及び8の配合表に従い、サイドウォール用配合物、
ベーストレッド用配合物、及びビードフィラー用配合物
を調製した。これらの配合物について、硬度、300%
応力、引張強度、反発弾性、発熱等を測定した。測定結
果を表5、7、及び9に示す。
Example 1 A solution prepared by dissolving 192 g of 1,3-butadiene in 608 g of dehydrated benzene was charged into an autoclave having a volume of 2 liters whose interior was replaced with nitrogen gas, 1.9 mmol of water was further added, and the mixture was stirred for 30 minutes. Then, the temperature of this solution was raised to 50 ° C., 3.1 mmol of diethylaluminum chloride, 0.01 mmol of cobalt octoate, and 8.5 mmol of 1,5-cyclooctadiene were added and stirred to obtain 1,3-butadiene. The cis-1,4 was polymerized. Three
After 0 minutes, 3.6 mmol of triethylaluminum as a syndiotactic 1,2 polymerization catalyst, 0.2 mmol of carbon disulfide, and 0.12 of cobalt octoate were added to the polymerization solution.
0 mmol was added, the temperature was adjusted to 50 ° C., and the mixture was stirred for 30 minutes to polymerize the remaining 1,3-butadiene by syndiotactic 1,2. After completion of the polymerization, add 2,4-
A solution of 0.5 g of tert-butyl-p-cresol dissolved in a methanol-benzene mixed solvent (50:50) was added to terminate the polymerization reaction. After stopping the polymerization reaction,
The polymerization solution was treated according to a conventional method to recover the polybutadiene rubber. The obtained polybutadiene rubber had a Mooney viscosity of 65 (ML 1 + 4 , 100 ° C.), a boiling n-hexane insoluble content of 12.1% by weight, and a boiling n-hexane soluble content of 87. It was 9% by weight. The boiling n-hexane insoluble matter had a reduced viscosity of 2.1. The boiling n-hexane soluble component has a Mooney viscosity of 50 (ML 1 + 4 , 100
℃), toluene solution viscosity 150, weight average molecular weight 6
It was 30,000, and the ratio of cis-1,4 structure was 96.9%. The above results for this polybutadiene rubber are shown in Table 1. According to the formulation table of Table 2, carbon black, process oil, sulfur and the like were blended with this polybutadiene rubber, and the mixture was pressed at 150 ° C. for 30 minutes and vulcanized to prepare blends (Samples 1 and 2). Samples 1 and 2 were measured for hardness, 300% stress, tensile strength, impact resilience, heat generation and the like. The measurement results are shown in Table 3. Furthermore, Table 4,
Formulation for sidewall according to the formulation table of 6 and 8,
A base tread formulation and a bead filler formulation were prepared. For these formulations, hardness, 300%
The stress, tensile strength, impact resilience, heat generation, etc. were measured. The measurement results are shown in Tables 5, 7, and 9.

【0033】[0033]

【実施例2】シス−1,4重合において水を1.8mmo
l、1,5−シクロオクタジエンの量を10.5mmolと
し、シンジオタクチック1.2重合においてコバルトオ
クトエートの量を0.20mmolとした以外は、実施例1
と同様にして2段重合を行い、ポリブタジエンゴムを得
た。このポリブタジエンゴムのn−ヘキサン不溶分の割
合、n−ヘキサン可溶分のムーニー粘度とトルエン溶液
粘度、等について測定した結果を表1に示す。このポリ
ブタジエンゴムに、表2の配合表に従いカーボンブラッ
ク、プロセスオイル、硫黄等を配合し、150℃で30
分間プレスし、加硫し、サンプル3及び4を調製した。
サンプル3及び4について、硬度、300%応力、引張
強度、反発弾性、発熱等を測定した。測定結果を表3に
示す。更に、表4、6及び7の配合表に従い、サイドウ
ォール用配合物及びベーストレッド用配合物を調製し
た。これらの配合物について、硬度、300%応力、引
張強度、反発弾性、発熱等を測定した。測定結果を表
5、7、及び9に示す。
Example 2 Water was added at 1.8 mmo in cis-1,4 polymerization.
Example 1 except that the amount of 1,1,5-cyclooctadiene was 10.5 mmol and the amount of cobalt octoate was 0.20 mmol in the syndiotactic 1.2 polymerization.
Two-stage polymerization was carried out in the same manner as above to obtain a polybutadiene rubber. Table 1 shows the results of measurement of the ratio of the n-hexane insoluble matter, the Mooney viscosity and the toluene solution viscosity of the n-hexane soluble matter of this polybutadiene rubber. Carbon black, process oil, sulfur, etc. were blended with this polybutadiene rubber according to the blending table in Table 2, and the blended amount was 30 ° C. at 150 ° C.
Samples 3 and 4 were prepared by pressing for 1 minute and vulcanizing.
With respect to Samples 3 and 4, hardness, 300% stress, tensile strength, impact resilience, heat generation, etc. were measured. The measurement results are shown in Table 3. Further, according to the formulation tables of Tables 4, 6 and 7, a sidewall formulation and a base tread formulation were prepared. With respect to these blends, hardness, 300% stress, tensile strength, impact resilience, heat generation, etc. were measured. The measurement results are shown in Tables 5, 7, and 9.

【0034】[0034]

【実施例3】シス−1,4重合において1,5−シクロ
オクタジエンの量を10.0mmolとし、シンジオタクチ
ック1.2重合においてトリエチルアルミニウムの量を
3.9mmol、コバルトオクトエートの量を0.20mmol
とした以外は、実施例1と同様にして2段重合を行い、
ポリブタジエンゴムを得た。このポリブタジエンゴムの
n−ヘキサン不溶分の割合、n−ヘキサン可溶分のムー
ニー粘度とトルエン溶液粘度、等について測定した結果
を表1に示す。次いで、このポリブタジエンゴムに、表
2の配合表に従いカーボンブラック、プロセスオイル、
硫黄等を配合し、150℃で30分間プレスし、加硫
し、サンプル5を調製した。サンプル5について、硬
度、300%応力、引張強度、反発弾性、発熱等を測定
した。測定結果を表3に示す。更に、表4、6、及び8
の配合表に従い、サイドウォール用配合物及びベースト
レッド用配合物を調製した。これらの配合物について、
硬度、300%応力、引張強度、反発弾性、発熱等を測
定した。測定結果を表5、7、及び9に示す。
Example 3 In cis-1,4 polymerization, the amount of 1,5-cyclooctadiene was set to 10.0 mmol, in syndiotactic 1.2 polymerization, the amount of triethylaluminum was 3.9 mmol, and the amount of cobalt octoate was changed. 0.20 mmol
Except that the two-stage polymerization was carried out in the same manner as in Example 1,
A polybutadiene rubber was obtained. Table 1 shows the results of measurement of the ratio of the n-hexane insoluble matter, the Mooney viscosity and the toluene solution viscosity of the n-hexane soluble matter of this polybutadiene rubber. Then, according to the composition table of Table 2, carbon black, process oil,
Sample 5 was prepared by blending sulfur and the like, pressing at 150 ° C. for 30 minutes and vulcanizing. For sample 5, hardness, 300% stress, tensile strength, impact resilience, heat generation, etc. were measured. The measurement results are shown in Table 3. In addition, Tables 4, 6, and 8
According to the formulation table of 1., a sidewall formulation and a base tread formulation were prepared. For these formulations,
Hardness, 300% stress, tensile strength, impact resilience, heat generation, etc. were measured. The measurement results are shown in Tables 5, 7, and 9.

【0035】[0035]

【実施例4】シス−1,4重合において水の量を1.9
5mmolとし、シンジオタクチック1.2重合においてト
リエチルアルミニウムの量を3.5mmolとした以外は、
実施例1と同様にして2段重合を行い、ポリブタジエン
ゴムを得た。このポリブタジエンゴムのn−ヘキサン不
溶分の割合、n−ヘキサン可溶分のムーニー粘度とトル
エン溶液粘度、等について測定した結果を表1に示す。
次いで、このポリブタジエンゴムに、表2の配合表に従
いカーボンブラック、プロセスオイル、硫黄等を配合
し、この配合ゴムを150℃で30分間プレスし、加硫
し、サンプル6を調製した。サンプル6について、硬
度、300%応力、引張強度、反発弾性、発熱等を測定
した。測定結果を表3に示す。更に、表4、6、及び8
の配合表に従い、サイドウォール用配合物及びベースト
レッド用配合物を調製した。これらの配合物について、
硬度、300%応力、引張強度、反発弾性、発熱等を測
定した。測定結果を表5、7、及び9に示す。
Example 4 The amount of water was 1.9 in cis-1,4 polymerization.
5 mmol and the amount of triethylaluminum in the syndiotactic 1.2 polymerization was 3.5 mmol.
Two-stage polymerization was carried out in the same manner as in Example 1 to obtain a polybutadiene rubber. Table 1 shows the results of measurement of the ratio of the n-hexane insoluble matter, the Mooney viscosity and the toluene solution viscosity of the n-hexane soluble matter of this polybutadiene rubber.
Then, carbon black, process oil, sulfur and the like were blended with the polybutadiene rubber according to the blending table of Table 2, and the blended rubber was pressed at 150 ° C. for 30 minutes and vulcanized to prepare Sample 6. For sample 6, hardness, 300% stress, tensile strength, impact resilience, heat generation, etc. were measured. The measurement results are shown in Table 3. In addition, Tables 4, 6, and 8
According to the formulation table of 1., a sidewall formulation and a base tread formulation were prepared. For these formulations,
Hardness, 300% stress, tensile strength, impact resilience, heat generation, etc. were measured. The measurement results are shown in Tables 5, 7, and 9.

【0036】[0036]

【比較例1】シス−1,4重合においてコバルトオクト
エートの量を0.08mmolとした以外は、実施例1と同
様にして2段重合を行い、ポリブタジエンゴムを得た。
得られたポリブタジエンゴムは、ムーニー粘度が60
(ML1+4 、100℃)、沸騰n−ヘキサン不溶分の含
有率が7.8重量%、沸騰n−ヘキサン可溶分の含有率
は92.2重量%であった。沸騰n−ヘキサン不溶分は
還元粘度が2.1であった。沸騰n−ヘキサン可溶分は
ムーニー粘度が48(ML1+4 、100℃)、トルエン
溶液粘度が132、重量平均分子量が52万であり、シ
ス−1,4構造の割合は96.7%であった。このポリ
ブタジエンゴムについての上記の結果を表1に示す。こ
のポリブタジエンゴムに、表2の配合表に従い、カーボ
ンブラック、プロセスオイル、硫黄等を配合し、150
℃で30分間プレスし、加硫し、サンプル7を調製し
た。サンプル7について、硬度、300%応力、引張強
度、反発弾性、発熱等を測定した。測定結果を表3に示
す。更に、表4、6、及び8の配合表に従い、サイドウ
ォール用配合物及びベーストレッド用配合物を調製し
た。これらの配合物について、硬度、300%応力、引
張強度、反発弾性、発熱等を測定した。測定結果を表
5、7、及び9に示す。
Comparative Example 1 Polybutadiene rubber was obtained by carrying out two-step polymerization in the same manner as in Example 1 except that the amount of cobalt octoate was 0.08 mmol in cis-1,4 polymerization.
The polybutadiene rubber obtained has a Mooney viscosity of 60.
(ML 1 + 4 , 100 ° C.), the boiling n-hexane insoluble content was 7.8 wt%, and the boiling n-hexane soluble content was 92.2 wt%. The boiling n-hexane insoluble matter had a reduced viscosity of 2.1. The boiling n-hexane soluble component had a Mooney viscosity of 48 (ML 1 + 4 , 100 ° C.), a toluene solution viscosity of 132, a weight average molecular weight of 520,000, and a cis-1,4 structure ratio of 96.7%. Met. The above results for this polybutadiene rubber are shown in Table 1. According to the blending table in Table 2, carbon black, process oil, sulfur, etc. were blended with this polybutadiene rubber to give 150
Sample 7 was prepared by pressing at 30 ° C. for 30 minutes and vulcanizing. With respect to Sample 7, hardness, 300% stress, tensile strength, impact resilience, heat generation, etc. were measured. The measurement results are shown in Table 3. Further, according to the formulations of Tables 4, 6 and 8, a formulation for sidewall and a formulation for base tread were prepared. With respect to these blends, hardness, 300% stress, tensile strength, impact resilience, heat generation, etc. were measured. The measurement results are shown in Tables 5, 7, and 9.

【0037】[0037]

【比較例2】シス−1,4重合において水を1.7mmo
l、シクロオクタジエンの量を10.0mmolとした以外
は、実施例2と同様にして2段重合を行い、ポリブタジ
エンゴムを得た。得られたポリブタジエンゴムは、ムー
ニー粘度が62(ML1+4 、100℃)、沸騰n−ヘキ
サン不溶分の含有率が18.3重量%であった。n−ヘ
キサン可溶分のムーニー粘度は41、重量平均分子量が
50万であった。これらの結果を表1に示す。次いで、
このポリブタジエンゴムに、表2の配合表に従いカーボ
ンブラック、プロセスオイル、硫黄等を配合し、150
℃で30分間プレスし、加硫し、サンプル8を調製し
た。サンプル8について、硬度、300%応力、引張強
度、反発弾性、発熱等を測定した。測定結果を表3に示
す。更に、表4、6、及び8の配合表に従い、サイドウ
ォール用配合物及びベーストレッド用配合物を調製し
た。これらの配合物について、硬度、300%応力、引
張強度、反発弾性、発熱等を測定した。測定結果を表
5、7、及び9に示す。
[Comparative Example 2] 1.7 mmo of water in cis-1,4 polymerization
Two-step polymerization was carried out in the same manner as in Example 2 except that the amounts of l and cyclooctadiene were changed to 10.0 mmol to obtain polybutadiene rubber. The polybutadiene rubber obtained had a Mooney viscosity of 62 (ML 1 + 4 , 100 ° C.) and a boiling n-hexane insoluble content of 18.3% by weight. The Mooney viscosity of the n-hexane soluble component was 41, and the weight average molecular weight was 500,000. The results are shown in Table 1. Then
Carbon black, process oil, sulfur, etc. were blended with this polybutadiene rubber according to the blending table in Table 2 to obtain 150
Sample 8 was prepared by pressing at 30 ° C. for 30 minutes and vulcanizing. With respect to Sample 8, hardness, 300% stress, tensile strength, impact resilience, heat generation, etc. were measured. The measurement results are shown in Table 3. Further, according to the formulations of Tables 4, 6 and 8, a formulation for sidewall and a formulation for base tread were prepared. With respect to these blends, hardness, 300% stress, tensile strength, impact resilience, heat generation, etc. were measured. The measurement results are shown in Tables 5, 7, and 9.

【0038】[0038]

【比較例3】シス−1,4重合において水の量を1.7
5mmolとし、ジエチルアルミニウムクロライドの量を
3.3mmolとした以外は実施例2と同様にしてポリブタ
ジエンゴムを得た。得られたポリブタジエンゴムは、ム
ーニー粘度が62(ML1+4 、100℃)、沸騰n−ヘ
キサン不溶分の含有率が18.3重量%であった。n−
ヘキサン可溶分のムーニー粘度は38、重量平均分子量
が48万であった。これらの結果を表1に示す。次い
で、このポリブタジエンゴムに、表2の配合表に従いカ
ーボンブラック、プロセスオイル、硫黄等を配合し、1
50℃で30分間プレスし、加硫し、サンプル9を調製
した。サンプル9について、硬度、300%応力、引張
強度、反発弾性、発熱等を測定した。測定結果を表3に
示す。更に、表4、6、及び8の配合表に従い、サイド
ウォール用配合物及びベーストレッド用配合物を調製し
た。これらの配合物について、硬度、300%応力、引
張強度、反発弾性、発熱等を測定した。測定結果を表
5、7、及び9に示す。
Comparative Example 3 The amount of water was 1.7 in cis-1,4 polymerization.
A polybutadiene rubber was obtained in the same manner as in Example 2 except that the amount was 5 mmol and the amount of diethylaluminum chloride was 3.3 mmol. The polybutadiene rubber obtained had a Mooney viscosity of 62 (ML 1 + 4 , 100 ° C.) and a boiling n-hexane insoluble content of 18.3% by weight. n-
The Mooney viscosity of the hexane-soluble component was 38, and the weight average molecular weight was 480,000. The results are shown in Table 1. Then, carbon black, process oil, sulfur, etc. are blended with this polybutadiene rubber according to the blending table in Table 2, and 1
Sample 9 was prepared by pressing at 50 ° C. for 30 minutes and vulcanizing. For sample 9, hardness, 300% stress, tensile strength, impact resilience, heat generation, etc. were measured. The measurement results are shown in Table 3. Further, according to the formulations of Tables 4, 6 and 8, a formulation for sidewall and a formulation for base tread were prepared. With respect to these blends, hardness, 300% stress, tensile strength, impact resilience, heat generation, etc. were measured. The measurement results are shown in Tables 5, 7, and 9.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【表2】 [Table 2]

【0041】[0041]

【表3】 [Table 3]

【0042】[0042]

【表4】 [Table 4]

【0043】[0043]

【表5】 [Table 5]

【0044】[0044]

【表6】 [Table 6]

【0045】[0045]

【表7】 [Table 7]

【0046】[0046]

【表8】 [Table 8]

【0047】[0047]

【表9】 [Table 9]

【0048】[0048]

【発明の効果】本発明のポリブタジエン及びゴム組成物
は従来の改良ポリブタジエンゴムの長所をそのまま保持
しているとともに、動的特性と耐摩耗性、引張強度、耐
屈曲性、反発弾性のバランスに優れている。
The polybutadiene and the rubber composition of the present invention retain the advantages of the conventional improved polybutadiene rubber as they are, and have an excellent balance of dynamic properties and wear resistance, tensile strength, flex resistance and impact resilience. ing.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】還元粘度0.5〜4の沸騰n−ヘキサン
不溶分・・・10〜25重量% (a) 重量平均分子量(Mw)が30万〜80万であ
り、(b) トルエン溶液粘度(t−cp)と100℃にお
けるムーニー粘度(ML)とが、3ML−30<t−c
p<3ML+30なる関係を満足する沸騰n−ヘキサン
可溶分・・・・・90〜75重量% からなるポリブタジエンゴム。
1. A boiling n-hexane insoluble matter having a reduced viscosity of 0.5 to 4 ... 10 to 25% by weight (a) a weight average molecular weight (Mw) of 300,000 to 800,000, and (b) a toluene solution The viscosity (t-cp) and the Mooney viscosity (ML) at 100 ° C. are 3ML-30 <t-c.
A polybutadiene rubber having a boiling n-hexane soluble content of 90 to 75% by weight, which satisfies the relationship of p <3ML + 30.
【請求項2】(a) 請求項1に記載のポリブタジエンゴム
・・・20重量%以上 (b)天然ゴム、及び/又は少なくとも1種類のジエン系
合成ゴム・・・・・・・・・・・・残 部であるゴム
組成物。
2. (a) Polybutadiene rubber according to claim 1, 20% by weight or more (b) Natural rubber, and / or at least one type of diene synthetic rubber. ..Rubber composition that is the balance.
JP4259946A 1991-10-22 1992-09-29 Polybutadiene rubber and its composition Pending JPH05194658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4259946A JPH05194658A (en) 1991-10-22 1992-09-29 Polybutadiene rubber and its composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP33640391 1991-10-22
JP3-336403 1991-10-22
JP4259946A JPH05194658A (en) 1991-10-22 1992-09-29 Polybutadiene rubber and its composition

Publications (1)

Publication Number Publication Date
JPH05194658A true JPH05194658A (en) 1993-08-03

Family

ID=26544371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4259946A Pending JPH05194658A (en) 1991-10-22 1992-09-29 Polybutadiene rubber and its composition

Country Status (1)

Country Link
JP (1) JPH05194658A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338740A (en) * 2001-03-15 2002-11-27 Ube Ind Ltd Rubber composition for tire
WO2005056663A1 (en) * 2003-12-12 2005-06-23 Ube Industries, Ltd. Vinyl-cis-polybutadiene rubber and butadiene rubber composition using same
JP2006056978A (en) * 2004-08-19 2006-03-02 Toyo Tire & Rubber Co Ltd Rubber composition for tire rim strip
JP2006063284A (en) * 2004-08-30 2006-03-09 Toyo Tire & Rubber Co Ltd Rubber composition for tire side wall and pneumatic tire
JP2006063287A (en) * 2004-08-30 2006-03-09 Toyo Tire & Rubber Co Ltd Rubber composition for tire side wall and pneumatic tire
WO2006054808A1 (en) 2004-12-20 2006-05-26 Ube Industries, Ltd. Process for production of polybutadiene rubber and rubber compositions
JP2007126649A (en) * 2005-10-05 2007-05-24 Ube Ind Ltd Vibration-proof rubber composition
JP2007284554A (en) * 2006-04-17 2007-11-01 Sumitomo Rubber Ind Ltd Rubber composition for base tread
JP2008255161A (en) * 2007-04-02 2008-10-23 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2008255156A (en) * 2007-04-02 2008-10-23 Yokohama Rubber Co Ltd:The Pneumatic tire
DE102008047614A1 (en) 2007-09-18 2009-04-23 Toyo Tire & Rubber Co., Ltd., Osaka-shi Rubber composition and pneumatic tires
US7884154B2 (en) 2004-12-21 2011-02-08 Ube Industries, Ltd. Rubber composition
JP2013227522A (en) * 2012-03-30 2013-11-07 Ube Industries Ltd Vinyl cis-polybutadiene and method of manufacturing the same
JP2013227524A (en) * 2012-03-30 2013-11-07 Ube Industries Ltd Method of manufacturing vinyl cis-polybutadiene and vinyl cis-polybutadiene obtained by the same
WO2015151625A1 (en) * 2014-03-31 2015-10-08 宇部興産株式会社 Polybutadiene
WO2015151626A1 (en) * 2014-03-31 2015-10-08 宇部興産株式会社 Rubber composition for tires
JP2015189282A (en) * 2014-03-27 2015-11-02 住友ゴム工業株式会社 pneumatic tire
WO2017056767A1 (en) * 2015-09-30 2017-04-06 住友ゴム工業株式会社 Pneumatic tire
TWI678379B (en) * 2013-11-05 2019-12-01 義大利商佛沙里斯股份有限公司 Stereoregular diblock polybutadienes having a 1,4-cis/syndiotactic 1,2 structure from stereospecific polymerization and preparation method thereof
JP2021066371A (en) * 2019-10-25 2021-04-30 横浜ゴム株式会社 Pneumatic tire

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6173707A (en) * 1984-09-19 1986-04-15 Ube Ind Ltd Polybutadiene rubber
JPH0245508A (en) * 1988-08-05 1990-02-15 Ube Ind Ltd Polybutadiene and impact-resistant polystyrenic resin composition using said polybutadiene
JPH0345609A (en) * 1989-07-14 1991-02-27 Ube Ind Ltd Polybutadiene rubber and its composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6173707A (en) * 1984-09-19 1986-04-15 Ube Ind Ltd Polybutadiene rubber
JPH0245508A (en) * 1988-08-05 1990-02-15 Ube Ind Ltd Polybutadiene and impact-resistant polystyrenic resin composition using said polybutadiene
JPH0345609A (en) * 1989-07-14 1991-02-27 Ube Ind Ltd Polybutadiene rubber and its composition

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4543590B2 (en) * 2001-03-15 2010-09-15 宇部興産株式会社 Rubber composition for tire
JP2002338740A (en) * 2001-03-15 2002-11-27 Ube Ind Ltd Rubber composition for tire
KR100841792B1 (en) * 2003-12-12 2008-06-27 우베 고산 가부시키가이샤 VINYL¤ýCIS-POLYBUTADIENE RUBBER AND BUTADIENE RUBBER COMPOSITION USING SAME
WO2005056663A1 (en) * 2003-12-12 2005-06-23 Ube Industries, Ltd. Vinyl-cis-polybutadiene rubber and butadiene rubber composition using same
US7863385B2 (en) 2003-12-12 2011-01-04 Ube Industries, Ltd. Vinyl-cis-polybutadiene rubber and butadiene rubber composition using the same
US7700691B2 (en) 2003-12-12 2010-04-20 Ube Industries, Ltd. Vinyl-cis-polybutadiene rubber and butadiene rubber composition using the same
JP2006056978A (en) * 2004-08-19 2006-03-02 Toyo Tire & Rubber Co Ltd Rubber composition for tire rim strip
JP2006063287A (en) * 2004-08-30 2006-03-09 Toyo Tire & Rubber Co Ltd Rubber composition for tire side wall and pneumatic tire
JP2006063284A (en) * 2004-08-30 2006-03-09 Toyo Tire & Rubber Co Ltd Rubber composition for tire side wall and pneumatic tire
JP4602718B2 (en) * 2004-08-30 2010-12-22 東洋ゴム工業株式会社 Rubber composition for tire sidewall and pneumatic tire
US7884155B2 (en) 2004-12-20 2011-02-08 Ube Industries, Ltd. Process for producing polybutadiene rubber and rubber composition
EP1842875A4 (en) * 2004-12-20 2009-09-16 Ube Industries Process for production of polybutadiene rubber and rubber compositions
WO2006054808A1 (en) 2004-12-20 2006-05-26 Ube Industries, Ltd. Process for production of polybutadiene rubber and rubber compositions
KR100963998B1 (en) * 2004-12-20 2010-06-15 우베 고산 가부시키가이샤 Process for production of polybutadiene rubber and rubber compositions
US7884154B2 (en) 2004-12-21 2011-02-08 Ube Industries, Ltd. Rubber composition
JP2007126649A (en) * 2005-10-05 2007-05-24 Ube Ind Ltd Vibration-proof rubber composition
JP2007284554A (en) * 2006-04-17 2007-11-01 Sumitomo Rubber Ind Ltd Rubber composition for base tread
JP4510778B2 (en) * 2006-04-17 2010-07-28 住友ゴム工業株式会社 Rubber composition for base tread
JP2008255161A (en) * 2007-04-02 2008-10-23 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2008255156A (en) * 2007-04-02 2008-10-23 Yokohama Rubber Co Ltd:The Pneumatic tire
DE102008047614A1 (en) 2007-09-18 2009-04-23 Toyo Tire & Rubber Co., Ltd., Osaka-shi Rubber composition and pneumatic tires
JP2013227522A (en) * 2012-03-30 2013-11-07 Ube Industries Ltd Vinyl cis-polybutadiene and method of manufacturing the same
JP2013227524A (en) * 2012-03-30 2013-11-07 Ube Industries Ltd Method of manufacturing vinyl cis-polybutadiene and vinyl cis-polybutadiene obtained by the same
JP2014025071A (en) * 2012-03-30 2014-02-06 Ube Ind Ltd Vinyl-cis-polybutadiene
TWI678379B (en) * 2013-11-05 2019-12-01 義大利商佛沙里斯股份有限公司 Stereoregular diblock polybutadienes having a 1,4-cis/syndiotactic 1,2 structure from stereospecific polymerization and preparation method thereof
JP2015189282A (en) * 2014-03-27 2015-11-02 住友ゴム工業株式会社 pneumatic tire
CN106062064A (en) * 2014-03-31 2016-10-26 宇部兴产株式会社 Rubber composition for tires
JP5928660B2 (en) * 2014-03-31 2016-06-01 宇部興産株式会社 Polybutadiene and method for producing the same
JP2016172862A (en) * 2014-03-31 2016-09-29 宇部興産株式会社 Rubber composition for vibration-proof rubber, belt, hose or footwear member
WO2015151626A1 (en) * 2014-03-31 2015-10-08 宇部興産株式会社 Rubber composition for tires
JPWO2015151626A1 (en) * 2014-03-31 2017-04-13 宇部興産株式会社 Rubber composition for tire
JPWO2015151625A1 (en) * 2014-03-31 2017-04-13 宇部興産株式会社 Polybutadiene and method for producing the same
US9676881B2 (en) 2014-03-31 2017-06-13 Ube Industries, Ltd. Polybutadiene
US10377883B2 (en) 2014-03-31 2019-08-13 Ube Industries, Ltd. Rubber composition for tire
WO2015151625A1 (en) * 2014-03-31 2015-10-08 宇部興産株式会社 Polybutadiene
WO2017056767A1 (en) * 2015-09-30 2017-04-06 住友ゴム工業株式会社 Pneumatic tire
JPWO2017056767A1 (en) * 2015-09-30 2018-07-19 住友ゴム工業株式会社 Pneumatic tire
US10435546B2 (en) 2015-09-30 2019-10-08 Sumitomo Rubber Industries, Ltd. Pneumatic tire
JP2021066371A (en) * 2019-10-25 2021-04-30 横浜ゴム株式会社 Pneumatic tire

Similar Documents

Publication Publication Date Title
JPH05194658A (en) Polybutadiene rubber and its composition
US4550142A (en) Rubber composition
JP3456654B2 (en) Diene rubber, production method thereof and rubber composition
EP1829924B1 (en) Rubber composition
US5025059A (en) Pneumatic tires with tread comprising a blend of isoprene rubber, high-transpolybutadiene rubber and carbon black
US6939920B2 (en) Tire sidewall compounds having improved flex fatigue and tread compound having improved tear strength
US6812277B2 (en) Tire with component comprised of a blend of polybutadiene-rich rubber composition which contains a minor portion of styrene-rich styrene/isoprene elastomer
KR20120091216A (en) Neodymium-catalyzed polybutadienes
EP1961785A1 (en) Rubber composition for tread
JP3855480B2 (en) Novel vinyl cis-butadiene rubber production method and vinyl cis-butadiene rubber composition
JPH0345609A (en) Polybutadiene rubber and its composition
JP2001302730A (en) Polybutadiene rubber and its composition
JP6390610B2 (en) Conjugated diene polymerization catalyst, conjugated diene polymer, modified conjugated diene polymer using the same, production method thereof, rubber composition for tire, and rubber composition for rubber belt
JPH0625355A (en) Polybutadiene rubber and its composition
JP3345106B2 (en) Pneumatic tire
EP2990218B1 (en) Rubber composition and tire with silica-rich rubber tread
CN112210127B (en) High-performance rubber for radial tire tread base and preparation method thereof
JPH06228370A (en) Polybutadiene rubber and its composition
JP3933796B2 (en) Rubber mixture and rubber composition
JP4151620B2 (en) Rubber composition for passenger car tires
US6114451A (en) Rubber composition
JPH07188467A (en) Rubber composition
JP4151621B2 (en) Rubber composition for large vehicle tires
JP4353013B2 (en) Rubber composition for tire cord coating
JPS61103948A (en) Rubber composition