JP3855480B2 - Novel vinyl cis-butadiene rubber production method and vinyl cis-butadiene rubber composition - Google Patents

Novel vinyl cis-butadiene rubber production method and vinyl cis-butadiene rubber composition Download PDF

Info

Publication number
JP3855480B2
JP3855480B2 JP21801398A JP21801398A JP3855480B2 JP 3855480 B2 JP3855480 B2 JP 3855480B2 JP 21801398 A JP21801398 A JP 21801398A JP 21801398 A JP21801398 A JP 21801398A JP 3855480 B2 JP3855480 B2 JP 3855480B2
Authority
JP
Japan
Prior art keywords
cis
polymerization
butadiene
vcr
boiling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21801398A
Other languages
Japanese (ja)
Other versions
JP2000044633A (en
Inventor
裕之 中村
毅 仲島
孝二 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP21801398A priority Critical patent/JP3855480B2/en
Publication of JP2000044633A publication Critical patent/JP2000044633A/en
Application granted granted Critical
Publication of JP3855480B2 publication Critical patent/JP3855480B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はC4 留分を主成分とする不活性有機溶媒中におけるシス−1,4重合とシンジオタクチック−1,2重合からなるビニル・シス−ブタジエンゴム(以下,VCRと略す)の製造方法及びVCR組成物に関するものである。詳しくはシス−1,4ポリブタジエンであるブタジエンゴム(以下,BRと略す)の成形性や引張応力,引張強さ,耐屈曲亀裂成長性などを改良したVCRの更なる改良に関するものである。
【0002】
【従来の技術】
従来VCRの製造方法はベンゼン,トルエン,キシレンなどの芳香族炭化水素,n−ヘキサン,n−ヘプタンなどの脂肪族炭化水素,シクロヘキサン,シクロペンタンなどの脂環族炭化水素,及びこれらのハロゲン化族炭化水素,例えばクロルベンゼン,塩化メチレンなどの不活性有機溶媒で行われてきた。これらの溶媒を用いると重合溶液の粘度が高く撹拌,伝熱,移送などに問題があり,溶媒の回収には過大なエネルギーが必要であった。又,前記溶媒は毒性の為,発癌作用の為に環境にとって非常に危険性のあるものであった。
【0003】
VCRの製造方法としては前記の不活性有機溶媒中で水,可溶性コバルト化合物と一般式AlRn X3-n (但しRは炭素数1〜6のアルキル基,フェニル基又はシクロアルキル基であり,Xはハロゲン元素であり,nは1.5〜2の数字)で表せる有機アルミニウムクロライドから得られた触媒を用いて1,3−ブタジエンをシス−1,4重合してBRを製造して,次いでこの重合系に1,3−ブタジエン及び/または前記溶媒を添加するか或いは添加しないで可溶性コバルト化合物と一般式AlR3 (但しRは炭素数1〜6のアルキル基,フェニル基又はシクロアルキル基である)で表せる有機アルミニウム化合物と二硫化炭素とから得られるシンジオタクチック−1,2重合触媒を存在させて1,3−ブタジエンをシンジオタクチック−1,2重合(以下,1,2重合と略す)する方法(特公昭49−17666号,特公昭49−17667号)は公知である。
【0004】
また特公昭62−171号公報,特公昭63−36324号公報,特公平2−37927号公報,特公平2−38081号公報,特公平3−63566号公報にはVCRの製造法として二硫化炭素の存在下又は不在下に1,3−ブタジエンをシス−1,4重合してVCRを製造したり,VCRを製造した後に1,3−ブタジエンと二硫化炭素を分離・回収して二硫化炭素を実質的に含有しない1,3−ブタジエンや前記の不活性有機溶媒を循環させる方法などが記載されている。更に特公平4−48815号公報には配合物のダイスウェル比が小さく,その加硫物がタイヤのサイドウォ−ルとして好適な引張応力と耐屈曲亀裂成長性に優れたVCRが記載されている。
【0005】
【発明が解決しようとする課題】
しかしながら,これらのVCRの製造方法はベンゼン,トルエン,キシレンなどの芳香族炭化水素,n−ヘキサン,n−ヘプタンなどの脂肪族炭化水素,シクロヘキサン,シクロペンタンなどの脂環族炭化水素,及びこれらのハロゲン化族炭化水素,例えばクロルベンゼン,塩化メチレンなどの不活性有機溶媒で行われているので重合溶液の粘度が高く撹拌,伝熱,移送などに問題があり,溶媒の回収には過大なエネルギーを必要とするし,人体に対する環境衛生などの欠点を有している。また配合物や加硫物物性などは更に改良する必要がある。本発明はこのような問題点を解決すべくなされたものであり,主に常温で沸点を有する不活性媒体中で水−有機アルミニウムクロライド−可溶性コバルト化合物を触媒成分として1,3−ブタジエンを連続的にシス−1,4重合した後に1,3−ブタジエンを連続的に1,2重合して沸騰n−ヘキサン不溶分(以下,H.Iと略す)3〜30重量%と沸騰n−ヘキサン可溶分97〜70重量%とするVCRの新規製造方法及びVCR組成物を提供することを目的とする。
【0006】
【問題を解決するための手段】
本発明によれば,(A)1,3−ブタジエンとC留分を主成分とする不活性有機溶媒を混合して,(B)得られた1,3−ブタジエンと不活性有機溶媒からなる混合物の水分の濃度が、前記溶媒中の有機アルミニウムクロライド1モル当たり0.1〜1.0モルになるよう調節し,次いで,(C)シス−1,4重合触媒の一成分である一般式AlR3−n(但しRは炭素数1〜6のアルキル基,フェニル基又はシクロアルキル基であり,Xはハロゲン元素であり,nは1.5〜2の数字)で表されるハロゲン含有の有機アルミニウム化合物とシス−1,4重合触媒の他の一成分である可溶性コバルト化合物とを前記混合物に添加して1,3−ブタジエンをシス−1,4重合して,(D)得られた重合反応混合物中に可溶性コバルト化合物と一般式AlR(但しRは炭素数1〜6のアルキル基,フェニル基又はシクロアルキル基である)で表される有機アルミニウム化合物と二硫化炭素とから得られるシンジオタクチック−1,2重合触媒を存在させて,1,3−ブタジエンをシンジオタクチック−1,2重合(以下,1,2重合と略す)して新規なビニル・シス−ブタジエンゴム(以下,VCRと略す)が提供される。そして,C留分を主成分とする不活性有機溶媒がn−ブタン,シス−2−ブテン,トランス−2−ブテン,ブテン−1から選択される。そして,以下の(a)及び(b)からなる:即ち,(a)沸騰n−ヘキサン不溶分が3〜30重量%;(1)沸騰n−ヘキサン不溶分(以下,H.Iと略す)がシンジオタクチック−1,2−ポリブタジエン(以下,SPBDと略す)であり,(2)SPBDの分散形態が短繊維結晶であり,(3)短繊維結晶の長軸長さの分布が繊維長さの98%が0.6μm未満であり,70%以上が0.2μm未満である,また(b)沸騰n−ヘキサン可溶分97〜70重量%;(1)沸騰n−ヘキサン可溶分のミクロ構造が
90%以上のシス−1,4−ポリブタジエンからなるVCR組成物が提供される。
【0007】
【発明の実施の形態】
まず本発明のVCRの製造方法及びVCR組成物の一態様を説明する。1,3−ブタジエンと炭素数が4のC4 留分を主成分とする不活性媒体は好ましくは1,3−ブタジエンとC4 留分を主成分とする不活性媒体との合計量に対する1,3−ブタジエンの割合が10重量%以上,特に10〜60重量%となるように混合する。60重量%以上の場合にはVCRの製造方法の制御が困難となり,10重量%以下ではVCRの製造方法の効率が低下するので好ましくない。
【0008】
炭素数が4のC4 留分(以下,C4 留分と略す)を主成分とする不活性有機溶媒としては,製造されるBRを溶解し,又は溶解しなくても撹拌や移送,伝熱,重合反応槽への付着がなく,触媒の活性に悪影響を及ぼさない不活性媒体であれば特に制限されないが,本発明ではC4 留分を主成分とする不活性有機溶媒が使用される。好ましくはシス−2−ブテン,トランス−2−ブテンを50重量%以上含有し,シス−2−ブテンとトランス−2−ブテン以外に,ブテン−1,n−ブタンなどのC4 留分を主成分とする炭化水素が用いられる。炭素数がC1 〜C3 留分を用いると低温・高圧下でのVCRの製造が必要となり生産性も低下しコスト高になりるので経済的でない。また,ベンゼン,トルエン,キシレン,クロルベンゼンなどの不活性溶媒を使用するとBR中へのSPBDの短繊維結晶の分散状態が本発明の如く形成されないので,優れたダイスウェル特性や高引張応力,引張強さ,高屈曲亀裂成長性能を発現しないので好ましくない。但し,ベンゼン,トルエン,キシレン,クロルベンゼンなどを,例えば触媒調製用溶媒として使用することはできる。
【0009】
次に1,3−ブタジエンと前記のC4 留分を主成分とする不活性有機溶媒とを混合して得られた混合媒体中の水分の濃度を調節する。水分は前記媒体中の有機アルミニウムクロライド1モル当たり,好ましくは0.1〜1.0モル,特に好ましくは0.2〜1.0モルの範囲である。この範囲以外では触媒活性が低下したり,シス−1,4構造含有率が低下したり,分子量が異常に低下又は高くなったり,重合時のゲルの発生を抑制することができず,このため重合槽などへのゲルの付着が起り,更に連続重合時間を延ばすことができないので好ましくない。水分の濃度を調節する方法は公知の方法が適用できる。多孔質濾過材を通して添加・分散させる方法(特開平4−85304号公報)も有効である。
【0010】
1,3−ブタジエンとC4 留分を主成分とする不活性媒体溶液中の水分の濃度を調節して得られた溶液には有機アルミニウムクロライドを添加する。一般式AlRn X3-n で表される有機アルミニウムクロライドの具体例としては,ジエチルアルミニウムモノクロライド,ジエチルアルミニウムモノブロマイド,ジイソブチルアルミニウムモノクロライド,ジシクロヘキシルアルミニウムモノクロライド,ジフェニルアルミニウムモノクロライド,ジエチルアルミニウムセスキクロライドなどを好適に挙げることができる。有機アルミニウムクロライドの使用量の具体例としては,1,3−ブタジエンの全量1モル当たり0.1ミリモル以上,特に0.5〜50ミリモルが好ましい。
【0011】
次いで,有機アルミニウムクロライドを添加した混合媒体に可溶性コバルト化合物を添加してシス−1,4重合する。可溶性コバルト化合物としては,C4 留分を主成分とする不活性媒体又は液体1,3−ブタジエンに可溶なものであるか又は,均一に分散できる,例えばコバルト(II)アセチルアセトナート,コバルト(III )アセチルアセトナートなどコバルトのβ−ジケトン錯体,コバルトアセト酢酸エチルエステル錯体のようなコバルトのβ−ケト酸エステル錯体,コバルトオクトエート,コバルトナフテネート,コバルトベンゾエートなどの炭素数6以上の有機カルボン酸のコバルト塩,塩化コバルトピリジン錯体,塩化コバルトエチルアルコール錯体などのハロゲン化コバルト錯体などを挙げることができる。可溶性コバルト化合物の使用量は1,3−ブタジエンの1モル当たり0.001ミリモル以上,特に0.005ミリモル以上であることが好ましい。また可溶性コバルト化合物に対する有機アルミニウムクロライドのモル比(Al/Co)は10以上であり,特に50以上であることが好ましい。また,可溶性コバルト化合物以外にもニッケルの有機カルボン酸塩,ニッケルの有機錯塩,有機リチウム化合物を使用することも可能である。
【0012】
シス−1,4重合する温度は0℃を超える温度〜100℃,好ましくは10〜100℃、更に好ましくは20〜100℃までの温度範囲で1,3−ブタジエンをシス−1,4重合する。重合時間(平均滞留時間)は10分〜2時間の範囲が好ましい。シス−1,4重合後のポリマー濃度は5〜26重量%となるようにシス−1,4重合を行うことが好ましい。重合槽は1槽,又は2槽以上の槽を連結して行われる。重合は重合槽(重合器)内にて溶液を攪拌混合して行う。重合に用いる重合槽としては高粘度液攪拌装置付きの重合槽,例えば特公昭40−2645号に記載された装置を用いることができる。
【0013】
本発明のシス−1,4重合時に公知の分子量調節剤,例えばシクロオクタジエン,アレン,メチルアレン(1,2−ブタジエン)などの非共役ジエン類,又はエチレン,プロピレン,ブテン−1などのα−オレフィン類を使用することができる。又重合時のゲルの生成を更に抑制するために公知のゲル化防止剤を使用することができる。シス−1,4−構造含有率が一般に90%以上,特に95%以上で,ムーニー粘度(ML1+4 ,100℃,以下,MLと略す)10〜130,好ましくは15〜80であり,実質的にゲル分を含有しない。
【0014】
前記の如くして得られたシス−1,4重合反応混合物に1,3−ブタジエンを添加しても添加しなくてもよい。そして,一般式AlR3 で表せる有機アルミニウム化合物と二硫化炭素,必要なら前記の可溶性コバルト化合物を添加して1,3−ブタジエンを1,2重合して沸点n−ヘキサン可溶分97〜70重量%とH.Iが3〜30重量%とからなるVCRを製造する。一般式AlR3 で表せる有機アルミニウム化合物としてはトリメチルアルミニウム,トリエチルアルミニウム,トリイソブチルアルミニウム,トリn−ヘキシルアルミニウム,トリフェニルアルミニウムなどを好適に挙げることができる。有機アルミニウム化合物は1,3−ブタジエン1モル当たり0.1ミリモル以上,特に0.5〜50ミリモル以上である。二硫化炭素は特に限定されないが水分を含まないものであることが好ましい。二硫化炭素の濃度は20ミリモル/L以下,特に好ましくは0.01〜10ミリモル/Lである。二硫化炭素の代替として公知のイソチオシアン酸フェニルやキサントゲン酸化合物を使用してもよい。
【0015】
1,2重合する温度は0℃を超える温度〜100℃,好ましくは10〜100℃,更に好ましくは20〜100℃までの温度範囲で1,3−ブタジエンを1,2重合する。1,2重合する際の重合系には前記のシス重合液100重量部当たり1〜50重量部,好ましくは1〜20重量部の1,3−ブタジエンを添加することで1,2重合時の1,2−ポリブタジエンの収量を増大させることができる。重合時間(平均滞留時間)は10分〜2時間の範囲が好ましい。1,2重合後のポリマー濃度は9〜29重量%となるように1,2重合を行うことが好ましい。重合槽は1槽,又は2槽以上の槽を連結して行われる。重合は重合槽(重合器)内にて重合溶液を攪拌混合して行う。1,2重合に用いる重合槽としては1,2重合中に更に高粘度となり,ポリマーが付着しやすいので高粘度液攪拌装置付きの重合槽,例えば特公昭40−2645号公報に記載された装置を用いることができる。
【0016】
重合反応が所定の重合率に達した後,常法に従って公知の老化防止剤を添加することができる。老化防止剤の代表としてはフェノール系の2,6−ジ−t−ブチル−p−クレゾール(BHT),リン系のトリノニルフェニルフォスファイト(TNP),硫黄系のジラウリル−3,3’−チオジプロピオネート(TPL)などが挙げられる。単独でも2種以上組み合わせて用いてもよく,老化防止剤の添加はVCR100重量部に対して0.001〜5重量部である。次に重合停止剤を重合系に加えて停止する。例えば重合反応終了後,重合停止槽に供給し,この重合溶液にメタノール,エタノールなどのアルコール,水などの極性溶媒を大量に投入する方法,塩酸,硫酸などの無機酸,酢酸,安息香酸などの有機酸,塩化水素ガスを重合溶液に導入する方法などの,それ自体公知の方法である。次いで通常の方法に従い生成したVCRを分離,洗浄,乾燥する。
【0017】
このようにして得られたVCRは沸騰n−ヘキサン可溶分97〜70重量%とH.Iが3〜30重量%とからなり,沸騰n−ヘキサン可溶分はミクロ構造が90%以上のシス−1,4−ポリブタジエンであり,H.Iの融点が180〜215℃のSPBDである。MLは20〜150,好ましくは25〜100である。VCR中に分散したSPBDはBRマトリックス中に微細な結晶として均一に分散し,SPBDの極微細短繊維結晶により結晶間距離が短縮されてその間にBRを拘束した構造となっており,その短繊維結晶の長軸長さの分布は繊維長さの98%以上が0.6μm未満であり,且つ繊維長さの70%以上が0.2μm未満である。他方,従来のVCRは,その短繊維結晶の長軸長さの分布は繊維長さの98%以上が1.0μm未満であり,且つ繊維長さの70%以上が0.4μm未満であった。明らかに分布が異なっていた。
【0018】
このようにして得られたVCRを分離取得した残部の未反応の1,3−ブタジエン,不活性媒体及び二硫化炭素を含有する混合物から蒸留により1,3−ブタジエン,不活性媒体として分離して,一方,二硫化炭素を吸着分離処理,あるいは二硫化炭素付加物の分離処理によって二硫化炭素を分離除去し,二硫化炭素を実質的に含有しない1,3−ブタジエンと不活性媒体とを回収する。また,前記の混合物から蒸留によって3成分を回収して,この蒸留から前記の吸着分離あるいは二硫化炭素付着物分離処理によって二硫化炭素を分離除去することによっても,二硫化炭素を実質的に含有しない1,3−ブタジエンと不活性媒体とを回収することもできる。前記のようにして回収された二硫化炭素と不活性媒体とは新たに補充した1,3−ブタジエンを混合して使用される。
【0019】
本発明による方法で連続運転すると,触媒成分の操作性に優れ,高い触媒効率で工業的に有利にVCRを連続的に長時間製造することができる。特に,重合槽内の内壁や攪拌翼,その他攪拌が緩慢な部分に付着することもなく,高い転化率で工業的に有利に連続製造できる。
【0020】
本発明により得られるVCRは単独でまたは他の合成ゴム若しくは天然ゴムとブレンドして配合し,必要ならばプロセス油で油展し,次いでカーボンブラックなどの充填剤,加硫剤,加硫促進剤その他通常の配合剤を加えて加硫し,タイヤ用として有用であり,トレッド,サイウォール,スティフナー,ビードフィラー,インナーライナー,カーカスなどに,その他,ホース,ベルトその他の各種工業用品等の機械的特性及び耐摩耗性が要求されるゴム用途に使用される。また,プラスチックスの改質剤として使用することもできる。
【0021】
本発明により得られるVCRに前記の配合剤を加えて混練した組成物は,従来のベンゼン,トルエン,ヘキサン,シクロヘキサン,クロルベンゼンなどの溶媒を使用した方法で得られたVCRに比較してダイスウェル比(押出し時の配合物の径とダイオリフィス径の比)が小さく押出加工性に優れている。本発明によるダイスウェル比(Dsn)及び前記従来の方法によるダイスウェル比(Dso)の関係をDsn/Dsoの比とVCR組成物(配合物)中のH.I=w(重量%)の関係が以下の式で表されることを特徴とする。即ち,
Dsn/Dso ≦ −0.02w + 1
但し,VCR組成物=T(重量部),VCR配合量=v(重量部)及びVCR組成物中のH.I=w(重量%)の関係はw=(vH.I)/Tである。VCR組成物中のH.Iが増加するとダイスウェル比が小さくなり押出加工性が改善される。即ち,本発明のVCR組成物と従来のVCR組成物間のダイスウェル比の差は,配合物中のH.Iが増加する程大きくなり,押出加工性が良好になることを示す。
【0022】
また,本発明により得られるVCR組成物(配合物)を加硫すると硬度や引張応力が向上する。特に100%引張応力の向上が著しく,前記従来の方法で得られたVCRに比較して補強効果が大幅に改善されおり,本発明による100%引張応力(Mn100 )及び前記従来の方法による100%引張応力(Mo100 )の比と配合物中のH.I=w(重量%)の関係が以下の式で表されることを特徴とする。即ち, Mn100 /Mo100 ≧ 0.03w + 1
但し,w=(vH.I)/Tであるのは前記の通りである。配合物のH.Iが増加すると加硫物の100%引張応力が大きくなる。即ち,本発明のVCRと従来のVCR間の100%引張応力の差は,配合物中のH.Iが増加する程大きくなり,補強効果が増大することを示す。
【0023】
【実施例】
以下,本発明を実施例に基づいて具体的に説明するが,これらは本発明の目的を限定するものではない。また,VCRの素ゴムの物性,配合物の物性及び加硫物の物性は以下のようにして測定した。
沸騰n−ヘキサン不溶分H.I:;2gのVCRを200mlのn−ヘキサンにて4時間ソックスレー抽出器によって沸騰抽出した抽出残部を重量%で示した。
沸騰n−ヘキサン不溶分の融点:;沸騰n−ヘキサン抽出残部を示差走査熱量計(DSC)による吸熱曲線のピーク温度により決定した。
沸騰n−ヘキサン可溶分のミクロ構造:;赤外吸収分光法により測定した。
ムーニー粘度,ML1+4,100℃,ML:;沸騰n−ヘキサン可溶分,VCR及び配合物のムーニー粘度をJIS K6300に準じて100℃にて測定した値である。
T−cp:;沸騰n−ヘキサン可溶分やBRの25℃における5重量%トルエン溶液の粘度を測定してセンチポイズ(cp)で示した値である。
分子量分布:;沸騰n−ヘキサン可溶分のテトラヒドロフラン溶液にてゲル浸透クロマトグラフィー(GPC,トーソー社,HLC−802A)により40℃,標準ポリスチレンを使用した検量線より,重量平均分子量(Mw ),数平均分子量(Mn )及び分子量分布(Mw /Mn )を求めた。
η sp /c:;沸騰n−ヘキサン不溶分の分子量の大きさの目安として0.20g/dlのテトラリン溶液から135℃で還元粘度を測定した。
ダイスウェル比:;加工性測定装置(モンサント社,MPT)を用いて配合物の押出し加工性の目安として100℃,100sec-1の剪断速度で押出し時の配合物の径とダイオリフィス径(但し,L/D=1.5mm/1.5mm)の比を測定し,ダイスウェル比を求めた。また,比較例1を100としてダイスウェル指数を算出した。これらの数値が小さい程加工性が良好なことを示す。
加硫条件:;キュラストメーター(日本合成ゴム社,JSRキュラストメーター2F)を使用して配合物の加硫曲線を測定し,その結果から,150℃で40分,プレス加硫した。
硬さ・引張・引裂試験:;加硫物はJIS K6250,K6251,及びK6252に準じて室温で測定してそれぞれ硬さ,100%引張応力(kg/cm2 ),引張強さ(kg/cm2 ),伸び(%),引裂強さ(kg/cm)で示した。
屈曲亀裂成長性:;JIS K6260に準じてストローク56mm,初期亀裂2mmで亀裂が15mmまで成長した時点の屈曲回数で示した。
電子顕微鏡写真:;VCRを2mm角のサンプルに切りだし,一塩化硫黄/二硫化炭素=1:1溶液中に72時間浸漬して,VCRのシス部分の二重結合を選択的に加硫し,アセトンで十分洗浄した後に3日間風乾した加硫物をミクロトームで超薄切片を切りだして四塩化オスミウム蒸気でVCRのビニル部分の二重結合を染色し,透過型電子顕微鏡(日立製,H−7100)で観察して得られた5,000倍写真からVCRのSPBD結晶の形態として短繊維の長軸の長さを目視で測定して0.2μm刻みで分布図を作成した。又,平均繊維長軸長さを求めた。
【0024】
〔実施例1〕
所定の水分を溶解した1,3−ブタジエンを32重量%濃度でシス−2−ブテンを主成分として含有するC4 留分(68重量%)混合媒体(水分;2.09ミリモル/L)を毎時12.5リットル(二硫化炭素20mg/Lを含有する)を20℃に保持された容量2リットルの攪拌機付きステンレス製熟成槽に供給すると共にジエチルアルミニウムクロライド(10重量%のn−ヘキサン溶液,3.13mmol/L)を供給し,この反応槽溶液におけるジエチルアルミニウムクロライド/水モル比を1.5に調製する。得られた熟成液を40℃に保持された容量5リットルの攪拌機付きステンレス製シス重合槽に供給する。このシス重合槽にはコバルトオクトエート(コバルトオクトエート0.0117mmol/L,n−ヘキサン溶液)と分子量調節剤1,2−ブタジエン(1,2−ブタジエン8.2mmol/L;1.535mol/Lのn−ヘキサン溶液)が供給される。得られたシス重合液を内容5リットルのリボン型攪拌機付きステンレス製1,2重合槽に供給し,35℃で10時間連続重合した。この1,2重合槽にはトリエチルアルミニウム(10重量%のn−ヘキサン溶液,4.09mmol/L)を連続的に供給した。得られた重合液を攪拌機付混合槽に供給し,これに2,6−ジ−t−ブチル−p−クレゾールをゴムに対して1PHR加え,更にメタノールを少量加え重合を停止した後,未反応1,3−ブタジエン及びC4 留分を蒸発除去し,常温で真空乾燥してVCR8.3kgを得た。このVCRのML=57,H.I=11.1%,H.Iの融点=204.1℃,H.Iのηsp/c=1.84,沸騰n−ヘキサン可溶分のML=30,沸騰n−ヘキサン可溶分のT−cp=62,沸騰n−ヘキサン可溶分のシス−1,4構造=98.5%,Mw =465,000,Mn =188,000,Mw /Mn =2.47であった。透過型電子顕微鏡観察写真から得られた短繊維結晶の長軸長さの分布は繊維長さの98%以上が0.6μm未満であり,且つ繊維長さの70%以上が0.2μm未満でった。
【0025】
〔実施例2〕
実施例1と同様にしてシス重合して1,2重合した。1,2重合槽にはコバルトオクトエート0.1252mmol/Lとした以外は実施例1と同様に運転して3時間連続重合して,処理してVCR2.3kgを得た。このVCRのH.Iは17.1%,H.Iの融点は203.0℃,H.Iのηsp/c=1.59であった。このVCRにBR(ML=29,T−cp=58,Mw =459,000,Mn =185,000,Mw /Mn =2.47)をドライブレンドしてVCRをH.I=12%に調整した。このVCRのML=56,H.I=12.0%,H.Iの融点=203.0℃,H.Iのηsp/c=1.59,沸騰n−ヘキサン可溶分のT−cp=55であった。
【0026】
〔比較例1〕
不活性媒体にベンゼン−C4 留分混合溶媒(ベンゼン30重量%とシス−2−ブテンを主成分とするC4 留分39重量%)とした場合のVCR(宇部興産社製,UBEPOL−VCR412,ML=43,H.I=11.1%)であり,H.Iの融点=201.4℃,H.Iのηsp/ c =1.87であった。沸騰n−ヘキサン可溶分のML=32,沸騰n−ヘキサン可溶分のシス−1,4構造は97.5%,Mw は483,000,Mn は198,000,Mw /Mn =2.43であった。透過型電子顕微鏡観察写真から得られた短繊維結晶の長軸長さの分布は繊維長さの98%以上が1.0μm未満であり,且つ繊維長さの70%以上が0.4μm未満であった。
【0027】
〔比較例2〕
比較例1と同様の混合溶媒を用いて得られたBR(宇部興産社製,UBEPOL−BR150)であり,ML=43,シス−1,4構造=97.7%,T−cp=75,Mw =563,000,Mn =206,000,Mw /Mn =2.73であった。
【0028】
前記の実施例1及び2と比較例1及び2を表1の配合表に従って,一次配合した配合物に硫黄及び加硫促進剤以外の配合剤を混合して配合物の物性をそれぞれ測定して表2及び表3に示した。
【0029】
前記の実施例1及び2と比較例1及び2を表1の配合表に従ってバンバリーミキサーにて一次配合した配合物に硫黄,加硫促進剤をオープンロールで二次配合して150℃でプレス加硫した。目的物性に応じて物性測定用試料を作成して,加硫物性をそれぞれ測定して表4に示した。電子顕微鏡観察写真からVCR中に分散したSPBDの短繊維結晶長軸の長さの分布を図1に示した。また,実施例1及び比較例1の平均繊維長軸長さは0.13μm及び0.30μmであり,明らかに極微細分散であり,分布も異なっていた。
【0030】
【表1】

Figure 0003855480
【0031】
【表2】
Figure 0003855480
【0032】
【表3】
Figure 0003855480
【0033】
【表4】
Figure 0003855480
【0034】
【発明の効果】
本発明のビニル・シスポリブタジエン(VCR)はシンジオタクチック−1,2−ポリブタジエン(SPBD)結晶が極微細な構造でシス−1,4−ポリブタジエン(BR)マトリックス中に均一に分散して,更に極微細に分散した短繊維結晶がBR成分を結晶間で拘束することで,高硬度,高引張応力の補強効果を発現する。配合物のダイスウェル比が小さく押出加工性能が優れると共に加硫物は高硬度,高引張応力,優れた耐屈曲亀裂成長性であるので自動車タイヤの各部材の薄肉化やカーボンブラックなどの充填剤の低減などに寄与でき,低燃費タイヤ用途に適している。
【図面の簡単な説明】
【図1】図1は本発明の実施例1及び比較例1のVCRのSPBDの繊維の形状を示す電子顕微鏡写真を観察して得られた短繊維結晶の長軸長さの分布図である。[0001]
BACKGROUND OF THE INVENTION
The present invention is CFourMethod for producing vinyl cis-butadiene rubber (hereinafter abbreviated as VCR) comprising cis-1,4 polymerization and syndiotactic-1,2 polymerization in an inert organic solvent mainly comprising a fraction and VCR composition It is about. More specifically, the present invention relates to a further improvement of a VCR in which the formability, tensile stress, tensile strength, flex crack growth resistance and the like of butadiene rubber (hereinafter abbreviated as BR), which is cis-1,4 polybutadiene, are improved.
[0002]
[Prior art]
Conventional VCR production methods include aromatic hydrocarbons such as benzene, toluene and xylene, aliphatic hydrocarbons such as n-hexane and n-heptane, alicyclic hydrocarbons such as cyclohexane and cyclopentane, and halogenated groups thereof. It has been carried out in inert organic solvents such as hydrocarbons such as chlorobenzene and methylene chloride. When these solvents were used, the viscosity of the polymerization solution was high, and there were problems with stirring, heat transfer, transfer, etc., and excessive energy was required to recover the solvent. In addition, the solvent is extremely toxic to the environment due to its carcinogenic effect due to its toxicity.
[0003]
As a method for producing the VCR, water, a soluble cobalt compound and a general formula AlRn X in the above inert organic solvent are used.3-n(Where R is an alkyl group having 1 to 6 carbon atoms, phenyl group or cycloalkyl group, X is a halogen element, and n is a number from 1.5 to 2). 1,3-butadiene is used to produce BR by cis-1,4 polymerization, and then the soluble cobalt compound is generally added to the polymerization system with or without the addition of 1,3-butadiene and / or the solvent. Formula AlRThree(Wherein R is an alkyl group having 1 to 6 carbon atoms, a phenyl group or a cycloalkyl group), and a syndiotactic-1, 2 polymerization catalyst obtained from an organoaluminum compound represented by carbon disulfide and 1, Methods for synthesizing 3-butadiene with syndiotactic-1,2 (hereinafter abbreviated as 1,2 polymerization) (Japanese Patent Publication Nos. 49-17666 and 49-17667) are known.
[0004]
JP-B-62-171, JP-B-63-36324, JP-B-2-37927, JP-B-2-38081, and JP-B-3-63566 disclose carbon disulfide as a method for producing VCR. 1,3-butadiene is polymerized in the presence or absence of cis-1,4 polymerization to produce VCR, or after VCR is produced, 1,3-butadiene and carbon disulfide are separated and recovered to obtain carbon disulfide And a method of circulating 1,3-butadiene substantially free of benzene and the above-mentioned inert organic solvent. Further, Japanese Patent Publication No. 4-48815 discloses a VCR which has a small die swell ratio of the compound and is excellent in tensile stress and bending crack growth resistance in which the vulcanized product is suitable as a side wall of a tire.
[0005]
[Problems to be solved by the invention]
However, these VCR production methods include aromatic hydrocarbons such as benzene, toluene and xylene, aliphatic hydrocarbons such as n-hexane and n-heptane, alicyclic hydrocarbons such as cyclohexane and cyclopentane, and the like. Since it is carried out in an inert organic solvent such as halogenated hydrocarbons such as chlorobenzene and methylene chloride, the viscosity of the polymerization solution is high and there are problems with stirring, heat transfer, transfer, etc., and excessive energy is required for solvent recovery. And has disadvantages such as environmental sanitation for the human body. Further, it is necessary to further improve the properties of the compound and vulcanized material. The present invention has been made to solve such problems, and in an inert medium having a boiling point at room temperature, 1,3-butadiene is continuously produced using water-organoaluminum chloride-soluble cobalt compound as a catalyst component. After cis-1,4 polymerization, 1,3-butadiene is continuously polymerized in 1,2 to produce 3-30% by weight of boiling n-hexane insoluble matter (hereinafter abbreviated as HI) and boiling n-hexane. It is an object of the present invention to provide a novel method for producing a VCR having a soluble content of 97 to 70% by weight and a VCR composition.
[0006]
[Means for solving problems]
  According to the present invention, (A) 1,3-butadiene and C4(B) The resulting 1,3-butadiene and an inert organic solvent are mixed with an inert organic solvent mainly composed of a fraction.The water concentration of the mixture is 0.1 to 1.0 mol per mol of organoaluminum chloride in the solvent.And then the general formula AlR which is a component of (C) a cis-1,4 polymerization catalystnX3-n(Wherein R is an alkyl group having 1 to 6 carbon atoms, phenyl group or cycloalkyl group, X is a halogen element, and n is a number from 1.5 to 2) A soluble cobalt compound, which is another component of cis-1,4 polymerization catalyst, was added to the mixture to polymerize 1,3-butadiene in cis-1,4, and (D) in the resulting polymerization reaction mixture Soluble cobalt compound and general formula AlR3(Wherein R is an alkyl group having 1 to 6 carbon atoms, a phenyl group or a cycloalkyl group) and a syndiotactic-1, 2 polymerization catalyst obtained from carbon disulfide and an organoaluminum compound represented by 1,3-butadiene is syndiotactic-1,2 polymerized (hereinafter abbreviated as 1,2 polymerization) to provide a novel vinyl cis-butadiene rubber (hereinafter abbreviated as VCR). And C4The inert organic solvent whose main component is a fraction is selected from n-butane, cis-2-butene, trans-2-butene and butene-1. And it consists of the following (a) and (b): (a) boiling n-hexane insoluble matter is 3 to 30% by weight; (1) boiling n-hexane insoluble matter (hereinafter abbreviated as HI) Is syndiotactic-1,2-polybutadiene (hereinafter abbreviated as SPBD), (2) the dispersion form of SPBD is short fiber crystals, and (3) the distribution of the long axis length of the short fiber crystals is the fiber length. 98% is less than 0.6 μm, 70% or more is less than 0.2 μm, and (b) 97 to 70% by weight of boiling n-hexane solubles; (1) boiling n-hexane solubles The microstructure of
VCR compositions comprising 90% or more of cis-1,4-polybutadiene are provided.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
First, one embodiment of a method for producing a VCR and a VCR composition of the present invention will be described. 1,3-butadiene and C having 4 carbon atomsFourThe inert medium based on fractions is preferably 1,3-butadiene and CFourIt mixes so that the ratio of 1, 3- butadiene with respect to the total amount with the inert medium which has a fraction as a main component may be 10 weight% or more, especially 10 to 60 weight%. If it is 60% by weight or more, it is difficult to control the VCR production method, and if it is 10% by weight or less, the efficiency of the VCR production method is lowered.
[0008]
C with 4 carbon atomsFourFraction (CFourAs an inert organic solvent whose main component is abbreviated fraction), the produced BR can be dissolved or not stirred, transported, heat transferred, attached to the polymerization reaction tank, and the activity of the catalyst. As long as it is an inert medium that does not adversely affect the medium, the present invention is not particularly limited.FourAn inert organic solvent whose main component is a fraction is used. Preferably, it contains 50% by weight or more of cis-2-butene and trans-2-butene. In addition to cis-2-butene and trans-2-butene, C, such as butene-1, n-butane, etc.FourHydrocarbons mainly composed of fractions are used. Carbon number is C1~ CThreeIf a fraction is used, the production of a VCR under low temperature and high pressure is required, and the productivity is lowered and the cost is increased, which is not economical. In addition, when an inert solvent such as benzene, toluene, xylene, or chlorobenzene is used, the dispersion state of the short fiber crystals of SPBD in BR is not formed as in the present invention, so that excellent die swell characteristics, high tensile stress, tensile It is not preferable because it does not exhibit strength and high flex crack growth performance. However, benzene, toluene, xylene, chlorobenzene and the like can be used as a catalyst preparation solvent, for example.
[0009]
Next, 1,3-butadiene and the CFourThe concentration of water in the mixed medium obtained by mixing with an inert organic solvent containing a fraction as a main component is adjusted. The water content is preferably in the range of 0.1 to 1.0 mol, particularly preferably 0.2 to 1.0 mol, per mol of organoaluminum chloride in the medium. Outside this range, the catalytic activity is decreased, the cis-1,4 structure content is decreased, the molecular weight is abnormally decreased or increased, and the generation of gel during polymerization cannot be suppressed. This is not preferable because gel adheres to the polymerization tank and the continuous polymerization time cannot be extended. A known method can be applied as a method of adjusting the moisture concentration. A method of adding and dispersing through a porous filter medium (Japanese Patent Laid-Open No. 4-85304) is also effective.
[0010]
1,3-butadiene and CFourOrganoaluminum chloride is added to the solution obtained by adjusting the concentration of water in the inert medium solution containing the fraction as a main component. General formula AlRn X3-nSpecific examples of the organoaluminum chloride represented by the formula include diethylaluminum monochloride, diethylaluminum monobromide, diisobutylaluminum monochloride, dicyclohexylaluminum monochloride, diphenylaluminum monochloride, diethylaluminum sesquichloride, and the like. . As a specific example of the amount of the organoaluminum chloride used, 0.1 mmol or more, particularly 0.5 to 50 mmol is preferable per 1 mol of the total amount of 1,3-butadiene.
[0011]
Subsequently, a soluble cobalt compound is added to the mixed medium to which the organoaluminum chloride is added, and cis-1,4 polymerization is performed. Soluble cobalt compounds include CFourCobalt such as cobalt (II) acetylacetonate, cobalt (III) acetylacetonate, which is soluble in an inert medium or liquid 1,3-butadiene which is mainly composed of fractions or which can be uniformly dispersed Β-diketone complex, cobalt β-keto acid ester complex such as cobalt acetoacetic acid ethyl ester complex, cobalt salt of organic carboxylic acid having 6 or more carbon atoms such as cobalt octoate, cobalt naphthenate, cobalt benzoate, cobalt chloride Examples thereof include a cobalt halide complex such as a pyridine complex and a cobalt chloride ethyl alcohol complex. The amount of the soluble cobalt compound used is preferably 0.001 mmol or more, more preferably 0.005 mmol or more, per mol of 1,3-butadiene. The molar ratio (Al / Co) of the organoaluminum chloride to the soluble cobalt compound is 10 or more, and particularly preferably 50 or more. In addition to the soluble cobalt compound, an organic carboxylate of nickel, an organic complex salt of nickel, or an organic lithium compound can be used.
[0012]
The temperature for cis-1,4 polymerization is from 0 ° C to 100 ° C, preferably 10-100 ° C, more preferably 20-100 ° C, and 1,3-butadiene is cis-1,4 polymerized. . The polymerization time (average residence time) is preferably in the range of 10 minutes to 2 hours. The cis-1,4 polymerization is preferably performed so that the polymer concentration after the cis-1,4 polymerization is 5 to 26% by weight. The polymerization tank is performed by connecting one tank or two or more tanks. The polymerization is carried out by stirring and mixing the solution in a polymerization tank (polymerizer). As a polymerization tank used for the polymerization, a polymerization tank equipped with a high-viscosity liquid stirring apparatus, for example, an apparatus described in JP-B-40-2645 can be used.
[0013]
Known molecular weight regulators in the cis-1,4 polymerization of the present invention, for example, non-conjugated dienes such as cyclooctadiene, allene, methylallene (1,2-butadiene), or α such as ethylene, propylene, butene-1 -Olefins can be used. In order to further suppress the formation of gel during polymerization, a known gelation inhibitor can be used. When the cis-1,4-structure content is generally 90% or more, particularly 95% or more, Mooney viscosity (ML1 + 4, 100 ° C., hereinafter abbreviated as ML) 10 to 130, preferably 15 to 80, and does not substantially contain a gel content.
[0014]
1,3-butadiene may or may not be added to the cis-1,4 polymerization reaction mixture obtained as described above. And the general formula AlRThreeThe organoaluminum compound and carbon disulfide represented by the formula (1) can be added, and if necessary, the above-mentioned soluble cobalt compound can be added to polymerize 1,3-butadiene 1,2 to obtain a boiling point n-hexane soluble content of 97 to 70% by weight. A VCR consisting of 3 to 30% by weight of I is produced. General formula AlRThreePreferable examples of the organic aluminum compound represented by the formula include trimethylaluminum, triethylaluminum, triisobutylaluminum, tri-n-hexylaluminum, and triphenylaluminum. The organoaluminum compound is at least 0.1 mmol, especially 0.5 to 50 mmol, per mole of 1,3-butadiene. The carbon disulfide is not particularly limited, but is preferably one that does not contain moisture. The concentration of carbon disulfide is 20 mmol / L or less, particularly preferably 0.01 to 10 mmol / L. A known phenyl isothiocyanate or xanthate compound may be used as an alternative to carbon disulfide.
[0015]
1,2-butadiene is subjected to 1,2-polymerization in a temperature range of a temperature exceeding 0 ° C. to 100 ° C., preferably 10 to 100 ° C., more preferably 20 to 100 ° C. 1 to 50 parts by weight, preferably 1 to 20 parts by weight of 1,3-butadiene per 100 parts by weight of the cis polymerization solution is added to the polymerization system for the 1,2 polymerization. The yield of 1,2-polybutadiene can be increased. The polymerization time (average residence time) is preferably in the range of 10 minutes to 2 hours. The 1,2 polymerization is preferably performed so that the polymer concentration after the 1,2 polymerization is 9 to 29% by weight. The polymerization tank is performed by connecting one tank or two or more tanks. The polymerization is carried out by stirring and mixing the polymerization solution in a polymerization tank (polymerizer). As a polymerization tank used for 1,2 polymerization, a higher viscosity is obtained during the 1,2 polymerization, and the polymer easily adheres, so that a polymerization tank equipped with a high-viscosity liquid stirring device, for example, an apparatus described in Japanese Patent Publication No. 40-2645 Can be used.
[0016]
After the polymerization reaction reaches a predetermined polymerization rate, a known anti-aging agent can be added according to a conventional method. Representative of the antioxidants are phenolic 2,6-di-t-butyl-p-cresol (BHT), phosphorus trinonylphenyl phosphite (TNP), sulfur dilauryl-3,3′-thio. Examples include dipropionate (TPL). It may be used alone or in combination of two or more, and the addition of the antioxidant is 0.001 to 5 parts by weight with respect to 100 parts by weight of the VCR. Next, a polymerization terminator is added to the polymerization system and stopped. For example, after the polymerization reaction is completed, the polymerization solution is supplied to a polymerization stop tank, and a large amount of a polar solvent such as methanol or ethanol or water or a polar solvent such as water, inorganic acid such as hydrochloric acid or sulfuric acid, acetic acid, benzoic acid, etc. This is a method known per se, such as a method of introducing an organic acid or hydrogen chloride gas into the polymerization solution. Then, the VCR produced according to the usual method is separated, washed and dried.
[0017]
The VCR thus obtained had a boiling n-hexane soluble content of 97 to 70% by weight and H.264. I is 3 to 30% by weight, and the boiling n-hexane soluble component is cis-1,4-polybutadiene having a microstructure of 90% or more. It is SPBD whose melting point of I is 180-215 ° C. ML is 20 to 150, preferably 25 to 100. The SPBD dispersed in the VCR is uniformly dispersed as fine crystals in the BR matrix, and has a structure in which the distance between crystals is shortened by the ultrafine short fiber crystals of SPBD and the BR is constrained therebetween. The distribution of the major axis length of the crystal is 98% or more of the fiber length is less than 0.6 μm, and 70% or more of the fiber length is less than 0.2 μm. On the other hand, in the conventional VCR, the distribution of the long axis length of the short fiber crystal is 98% or more of the fiber length is less than 1.0 μm, and 70% or more of the fiber length is less than 0.4 μm. . Clearly the distribution was different.
[0018]
The VCR thus obtained was separated from the remaining unreacted 1,3-butadiene, inert medium and carbon disulfide-containing mixture by distillation as 1,3-butadiene, an inert medium. On the other hand, carbon disulfide is separated and removed by adsorption separation treatment of carbon disulfide or separation treatment of carbon disulfide adduct, and 1,3-butadiene and an inert medium substantially free of carbon disulfide are recovered. To do. Further, carbon disulfide is substantially contained by recovering three components from the mixture by distillation and separating and removing carbon disulfide from the distillation by the adsorption separation or carbon disulfide deposit separation treatment. Unrecovered 1,3-butadiene and inert media can also be recovered. The carbon disulfide recovered as described above and the inert medium are used by mixing freshly replenished 1,3-butadiene.
[0019]
When continuously operated by the method according to the present invention, the operability of catalyst components is excellent, and a VCR can be produced continuously for a long time with high catalyst efficiency and industrially advantageously. In particular, it can be continuously produced industrially advantageously at a high conversion without adhering to the inner wall of the polymerization tank, the stirring blade, and other parts where the stirring is slow.
[0020]
The VCR obtained by the present invention is blended alone or blended with other synthetic rubber or natural rubber, and if necessary, is oil-extended with process oil, and then a filler such as carbon black, a vulcanizing agent, and a vulcanization accelerator. It is useful for tires by vulcanizing by adding other usual compounding agents, and it is useful for treads, cywalls, stiffeners, bead fillers, inner liners, carcass, etc., and other mechanical products such as hoses, belts, etc. Used in rubber applications where properties and wear resistance are required. It can also be used as a plastic modifier.
[0021]
The composition obtained by adding the above-mentioned compounding agent to the VCR obtained according to the present invention and kneading is a die swell compared to a VCR obtained by a conventional method using a solvent such as benzene, toluene, hexane, cyclohexane, chlorobenzene and the like. The ratio (ratio of the compound diameter at the time of extrusion and the die orifice diameter) is small and the extrusion processability is excellent. The relationship between the die swell ratio (Dsn) according to the present invention and the die swell ratio (Dso) according to the conventional method is as follows: the ratio of Dsn / Dso and H.sub.D in the VCR composition (formulation). The relationship of I = w (% by weight) is represented by the following formula. That is,
Dsn / Dso ≦ −0.02w + 1
However, VCR composition = T (parts by weight), VCR blending amount = v (parts by weight) and H.V. The relationship of I = w (% by weight) is w = (vHI) / T. H.VCR composition. As I increases, the die swell ratio decreases and extrusion processability is improved. That is, the difference in die swell ratio between the VCR composition of the present invention and the conventional VCR composition is the H.V. The larger I increases, the better the extrudability.
[0022]
Moreover, when the VCR composition (formulation) obtained by the present invention is vulcanized, hardness and tensile stress are improved. In particular, the improvement in the 100% tensile stress is remarkable, and the reinforcing effect is greatly improved as compared with the VCR obtained by the conventional method. The 100% tensile stress (Mn100) according to the present invention and the 100% by the conventional method are 100%. Tensile stress (Mo100) ratio and H. The relationship of I = w (% by weight) is represented by the following formula. That is, Mn100 / Mo100 ≧ 0.03w + 1
However, w = (vHI) / T is as described above. H. of the formulation. As I increases, the 100% tensile stress of the vulcanizate increases. That is, the difference in 100% tensile stress between the VCR of the present invention and the conventional VCR is the H.V. As I increases, it increases, indicating that the reinforcing effect increases.
[0023]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, these do not limit the objective of this invention. The physical properties of the VCR rubber, the properties of the blend and the physical properties of the vulcanizate were measured as follows.
Boiling n-hexane insoluble matter,H. I:; 2 g of VCR was extracted by boiling with 200 ml of n-hexane for 4 hours using a Soxhlet extractor.
Melting point of boiling n-hexane insoluble matter:; The boiling n-hexane extraction residue was determined by the peak temperature of the endothermic curve by a differential scanning calorimeter (DSC).
Microstructure of boiling n-hexane soluble matter: Measured by infrared absorption spectroscopy.
Mooney viscosity, ML1 + 4,100 ° C., ML :; Boiling n-hexane soluble content, VCR and Mooney viscosity of the blend are values measured at 100 ° C. according to JIS K6300.
T-cp:; The viscosity is a value expressed in centipoise (cp) by measuring the viscosity of a 5% by weight toluene solution of boiling n-hexane and BR at 25 ° C.
Molecular weight distribution:; Weight average molecular weight (Mw), number average from a calibration curve using standard polystyrene by gel permeation chromatography (GPC, Tosoh Corporation, HLC-802A) in tetrahydrofuran solution with boiling n-hexane soluble content Molecular weight (Mn) and molecular weight distribution (Mw / Mn) were determined.
η sp / C:; As a measure of the molecular weight of the boiling n-hexane insoluble matter, the reduced viscosity was measured at 135 ° C. from a 0.20 g / dl tetralin solution.
Die swell ratio:; Using a processability measuring apparatus (Monsanto, MPT) as a standard of extrusion processability of the compound, 100 ° C., 100 sec.-1The ratio of the compound diameter at the time of extrusion and the die orifice diameter (however, L / D = 1.5 mm / 1.5 mm) was measured at a shear rate of 2 to determine the die swell ratio. Further, the die swell index was calculated with Comparative Example 1 as 100. A smaller value indicates better workability.
Vulcanization conditions:; Curing meter (Nippon Synthetic Rubber Co., Ltd., JSR Curast Meter 2F) was used to measure the vulcanization curve of the blend. From the result, press vulcanization was performed at 150 ° C. for 40 minutes.
Hardness / Tension / Tear test:; The vulcanizates were measured at room temperature according to JIS K6250, K6251, and K6252, respectively, and hardness, 100% tensile stress (kg / cm2), Tensile strength (kg / cm2), Elongation (%), and tear strength (kg / cm).
Flex crack growth:: The number of bendings when the crack grew to 15 mm with a stroke of 56 mm and an initial crack of 2 mm according to JIS K6260.
Electron micrograph:; VCR was cut into 2 mm square samples and immersed in a solution of sulfur monochloride / carbon disulfide = 1: 1 for 72 hours to selectively vulcanize the double bond in the cis part of the VCR, and with acetone. After washing thoroughly, the vulcanizate that had been air-dried for 3 days was cut out with a microtome, and an ultrathin section was cut out, and the double bond of the vinyl part of the VCR was stained with osmium tetrachloride vapor. Transmission electron microscope (Hitachi, H-7100) The length of the long axis of the short fiber was visually measured as a form of VBD SPBD crystal from the 5,000 times photograph obtained by observing the above, and a distribution map was created in increments of 0.2 μm. Also, the average fiber long axis length was determined.
[0024]
[Example 1]
C containing 1,3-butadiene dissolved in predetermined moisture at a concentration of 32% by weight and containing cis-2-butene as a main componentFourStainless steel with a stirrer having a capacity of 2 liters, in which a fraction (68 wt%) mixed medium (water content: 2.09 mmol / L) was held at 12.5 liters per hour (containing 20 mg / L of carbon disulfide) at 20 ° C. While being fed to the aging tank, diethylaluminum chloride (10 wt% n-hexane solution, 3.13 mmol / L) is fed, and the diethylaluminum chloride / water molar ratio in this reactor solution is adjusted to 1.5. The obtained ripening liquid is supplied to a stainless cis polymerization tank with a stirrer having a capacity of 5 liters maintained at 40 ° C. In this cis polymerization tank, cobalt octoate (cobalt octoate 0.0117 mmol / L, n-hexane solution) and molecular weight regulator 1,2-butadiene (1,2-butadiene 8.2 mmol / L; 1.535 mol / L) N-hexane solution). The obtained cis polymerization liquid was supplied to a stainless steel 1,2 polymerization tank with a ribbon stirrer having a content of 5 liters and continuously polymerized at 35 ° C. for 10 hours. Triethylaluminum (10 wt% n-hexane solution, 4.09 mmol / L) was continuously supplied to the 1,2 polymerization tanks. The obtained polymerization solution was supplied to a mixing tank equipped with a stirrer, and 1 PHR of 2,6-di-t-butyl-p-cresol was added to the rubber, and a small amount of methanol was added to stop the polymerization. 1,3-butadiene and CFourThe fraction was removed by evaporation and vacuum dried at room temperature to obtain 8.3 kg of VCR. ML of this VCR = 57, H.V. I = 11.1%, H.I. Melting point of I = 204.1 ° C., H.I. Η of Isp/C=1.84, ML of boiling n-hexane soluble matter = 30, T-cp = 62 of boiling n-hexane soluble matter, cis-1,4 structure of boiling n-hexane soluble matter = 98. 5%, Mw = 465,000, Mn = 188,000, Mw / Mn = 2.47. The distribution of the long axis length of the short fiber crystal obtained from the transmission electron microscope observation photograph is that 98% or more of the fiber length is less than 0.6 μm, and 70% or more of the fiber length is less than 0.2 μm. It was.
[0025]
[Example 2]
In the same manner as in Example 1, cis polymerization was carried out to give 1 or 2 polymerizations. Except for cobalt octoate 0.1252 mmol / L in the 1 and 2 polymerization tanks, operation was carried out in the same manner as in Example 1 for continuous polymerization for 3 hours, followed by treatment to obtain 2.3 kg of VCR. H. of this VCR. I is 17.1%, H.I. The melting point of I is 203.0 ° C. Η of Isp/C=1.59. BR (ML = 29, T-cp = 58, Mw = 459,000, Mn = 185,000, Mw / Mn = 2.47) was dry-blended with this VCR, and the VCR was H.264. I was adjusted to 12%. ML of this VCR = 56, H.V. I = 12.0%, H.I. Melting point of I = 203.0 ° C., H.I. Η of Isp/C=1.59, T-cp = 55 of boiling n-hexane soluble matter.
[0026]
[Comparative Example 1]
VCR (made by Ube Industries, UBEPOL-VCR412, ML) when the inert medium is a benzene-C4 fraction mixed solvent (30% by weight of benzene and 39% by weight of C4 fraction mainly composed of cis-2-butene) = 43, HI = 11.1%). Melting point of I = 201.4 ° C., H.I. Η of Isp /c = 1.87. ML of the soluble part of boiling n-hexane = 32, cis-1,4 structure of boiling n-hexane soluble part is 97.5%, Mw is 483,000, Mn is 198,000, Mw / Mn = 2. 43. The distribution of the major axis length of the short fiber crystal obtained from the transmission electron microscope observation photograph is that 98% or more of the fiber length is less than 1.0 μm, and 70% or more of the fiber length is less than 0.4 μm. there were.
[0027]
[Comparative Example 2]
It is BR (Ube Industries, UBEPOL-BR150) obtained using the same mixed solvent as Comparative Example 1, ML = 43, cis-1,4 structure = 97.7%, T-cp = 75, Mw = 563,000, Mn = 206,000, Mw / Mn = 2.73.
[0028]
According to the blending table of Table 1, the above Examples 1 and 2 and Comparative Examples 1 and 2 were mixed with a blending agent other than sulfur and a vulcanization accelerator, and the physical properties of the blends were measured. The results are shown in Table 2 and Table 3.
[0029]
Sulfur and a vulcanization accelerator were secondarily blended with an open roll into the blends obtained by first blending the above Examples 1 and 2 and Comparative Examples 1 and 2 with a Banbury mixer according to the blending table in Table 1, and press-pressed at 150 ° C. Sulfurated. Samples for measuring physical properties were prepared according to the target physical properties, and vulcanized physical properties were measured and shown in Table 4. FIG. 1 shows the distribution of the length of the short axis of the short fiber crystal of SPBD dispersed in the VCR from an electron microscopic observation photograph. In addition, the average fiber long axis lengths of Example 1 and Comparative Example 1 were 0.13 μm and 0.30 μm, which were clearly extremely finely dispersed and had different distributions.
[0030]
[Table 1]
Figure 0003855480
[0031]
[Table 2]
Figure 0003855480
[0032]
[Table 3]
Figure 0003855480
[0033]
[Table 4]
Figure 0003855480
[0034]
【The invention's effect】
The vinyl cis polybutadiene (VCR) of the present invention has syndiotactic-1,2-polybutadiene (SPBD) crystals dispersed in a cis-1,4-polybutadiene (BR) matrix with a very fine structure, The ultrafinely dispersed short fiber crystals constrain the BR component between the crystals, thereby exhibiting a reinforcing effect of high hardness and high tensile stress. The die swell ratio of the compound is small, the extrusion performance is excellent, and the vulcanizate has high hardness, high tensile stress, and excellent flex crack growth resistance. It is suitable for low fuel consumption tire applications.
[Brief description of the drawings]
FIG. 1 is a distribution diagram of major axis lengths of short fiber crystals obtained by observing an electron micrograph showing the shape of VBD SPBD fibers of Example 1 and Comparative Example 1 of the present invention. .

Claims (3)

1,3−ブタジエンをシス−1,4重合し,次いでシンジオタクチック−1,2重合する方法において,(A)1,3−ブタジエンとC留分を主成分とする不活性有機溶媒を混合し,(B)得られた1,3−ブタジエンとC留分を主成分とする不活性有機溶媒からなる混合物の水分の濃度が、前記溶媒中の有機アルミニウムクロライド1モル当たり0.1〜1.0モルになるよう調節し,次いで,(C)シス−1,4重合触媒の一成分である一般式AlR - (但しRは炭素数1〜6のアルキル基,フェニル基又はシクロアルキル基であり,Xはハロゲン元素であり,nは1.5〜2の数字)で表されるハロゲン含有の有機アルミニウム化合物とシス−1,4重合触媒の他の一成分である可溶性コバルト化合物とを前記混合物に添加して1,3−ブタジエンをシス−1,4重合する,そして,(D)得られた重合反応混合物中に可溶性コバルト化合物と一般式AlR(但しRは炭素数1〜6のアルキル基,フェニル基又はシクロアルキル基である)で表される有機アルミニウム化合物と二硫化炭素とから得られるシンジオタクチック−1,2重合触媒を存在させて,1,3−ブタジエンをシンジオタクチック−1,2重合することを特徴とする新規なビニル・シス−ブタジエンゴムの製造方法。1,3-butadiene cis-1,4 polymerization, and then the syndiotactic 1,2 method of polymerizing an inert organic solvent mainly composed of C 4 fraction and a (A) 1,3-butadiene mixing, (B) the concentration of water in the obtained 1,3-butadiene and C 4 fraction mixture consisting of an inert organic solvent composed mainly of the organic aluminum of the solvent chloride per mole 0.1 adjusted to 1.0 mol so as then, (C) is a component of the cis-1,4 polymerization catalysts formula AlR n X 3 - n (wherein R is an alkyl group having 1 to 6 carbon atoms, phenyl A halogen-containing organoaluminum compound represented by X or a cycloalkyl group, X is a halogen element, and n is a number from 1.5 to 2, and another component of a cis-1,4 polymerization catalyst. A soluble cobalt compound and the mixture Cis-1,4 polymerizing 1,3-butadiene was added, and, (D) resulting soluble cobalt compound and the general formula AlR 3 (provided that R in the polymerization reaction mixture is an alkyl group having 1 to 6 carbon atoms , Phenyl group or cycloalkyl group) in the presence of a syndiotactic-1,2 polymerization catalyst obtained from carbon disulfide and syndiotactic-1 , Bipolymerization, a novel method for producing vinyl cis-butadiene rubber. 留分を主成分とする不活性有機溶媒がn−ブタン,シス−2−ブテン,トランス−2−ブテン,及びブテン−1から選択される請求項1記載のビニル・シス−ブタジエンゴムの製造方法。C 4 inert organic solvent composed mainly of fraction n- butane, cis-2-butene, trans-2-butene, and claim 1, wherein the vinyl-cis selected from butene-1 - butadiene rubber Production method. 以下の(a)〜(b)の特徴を有するビニル・シス−ブタジエンゴム組成物。
(a)沸騰n−ヘキサン不溶分3〜30重量%;
ただし、(1)沸騰n−ヘキサン不溶分がシンジオタクチック−1,2−ポリブタジエンであり,(2)シンジオタクチック−1,2−ポリブタジエンが短繊維結晶であり,
(3)短繊維結晶の長軸長さの分布が繊維長さの98%以上が0.6μm未満であり,70%以上が0.2μm未満である,
(b)沸騰n−ヘキサン可溶分97〜70重量%;
ただし、(1)沸騰n−ヘキサン可溶分のミクロ構造が90%以上のシス−1,4−ポリブタジエン
A vinyl cis-butadiene rubber composition having the following characteristics (a) to (b):
(A) 3-30% by weight of boiling n-hexane insoluble matter;
However, (1) boiling n-hexane insoluble matter is syndiotactic-1,2-polybutadiene, (2) syndiotactic-1,2-polybutadiene is short fiber crystal,
(3) The distribution of the long axis length of the short fiber crystal is such that 98% or more of the fiber length is less than 0.6 μm, and 70% or more is less than 0.2 μm.
(B) 97-70% by weight of boiling n-hexane soluble content;
However, (1) cis-1,4-polybutadiene having a microstructure of 90% or more of boiling n-hexane solubles
JP21801398A 1998-07-31 1998-07-31 Novel vinyl cis-butadiene rubber production method and vinyl cis-butadiene rubber composition Expired - Lifetime JP3855480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21801398A JP3855480B2 (en) 1998-07-31 1998-07-31 Novel vinyl cis-butadiene rubber production method and vinyl cis-butadiene rubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21801398A JP3855480B2 (en) 1998-07-31 1998-07-31 Novel vinyl cis-butadiene rubber production method and vinyl cis-butadiene rubber composition

Publications (2)

Publication Number Publication Date
JP2000044633A JP2000044633A (en) 2000-02-15
JP3855480B2 true JP3855480B2 (en) 2006-12-13

Family

ID=16713266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21801398A Expired - Lifetime JP3855480B2 (en) 1998-07-31 1998-07-31 Novel vinyl cis-butadiene rubber production method and vinyl cis-butadiene rubber composition

Country Status (1)

Country Link
JP (1) JP3855480B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7700691B2 (en) 2003-12-12 2010-04-20 Ube Industries, Ltd. Vinyl-cis-polybutadiene rubber and butadiene rubber composition using the same
TWI386419B (en) 2004-12-20 2013-02-21 Ube Industries Process for producing polybutadiene rubber and rubber composition
JP4072698B2 (en) * 2004-12-21 2008-04-09 宇部興産株式会社 Rubber composition
JP2007126648A (en) * 2005-10-05 2007-05-24 Ube Ind Ltd Vibration-proof rubber composition
JP4867268B2 (en) * 2005-10-05 2012-02-01 宇部興産株式会社 Anti-vibration rubber composition
JP2007126649A (en) * 2005-10-05 2007-05-24 Ube Ind Ltd Vibration-proof rubber composition
DE602007012344D1 (en) 2006-05-22 2011-03-17 Ube Industries PROCESS FOR PREPARING POLYBUTADIENE
JP2008138080A (en) * 2006-12-01 2008-06-19 Yokohama Rubber Co Ltd:The Pneumatic tire
JP4924026B2 (en) * 2006-12-27 2012-04-25 宇部興産株式会社 Method for producing vinyl cis-polybutadiene rubber and vinyl cis-polybutadiene rubber
JP2007314809A (en) * 2007-08-29 2007-12-06 Ube Ind Ltd Silica-blended rubber composition for tire
JP5287436B2 (en) * 2009-03-31 2013-09-11 宇部興産株式会社 Method for producing reinforced polybutadiene rubber
JP5447708B2 (en) * 2012-03-30 2014-03-19 宇部興産株式会社 Method for producing vinyl cis-polybutadiene
EP2975067B1 (en) 2013-03-13 2017-10-04 UBE Industries, Ltd. Catalyst for use in polymerization of conjugated diene, conjugated diene polymer and modified conjugated diene polymer each produced using said catalyst, methods respectively for producing said polymers, rubber composition for tires, and rubber composition for rubber belts
TWI681982B (en) 2014-07-09 2020-01-11 日商宇部興產股份有限公司 Conjugated diene polymerization catalyst, conjugated diene polymer, modified conjugated diene polymer and polybutadiene, and compositions containing same
JP2018044146A (en) * 2016-09-09 2018-03-22 宇部興産株式会社 Vinyl-cis-polybutadiene rubber
JPWO2021221029A1 (en) 2020-04-27 2021-11-04

Also Published As

Publication number Publication date
JP2000044633A (en) 2000-02-15

Similar Documents

Publication Publication Date Title
JP4924026B2 (en) Method for producing vinyl cis-polybutadiene rubber and vinyl cis-polybutadiene rubber
EP1829924B1 (en) Rubber composition
JP3855480B2 (en) Novel vinyl cis-butadiene rubber production method and vinyl cis-butadiene rubber composition
WO2005056663A1 (en) Vinyl-cis-polybutadiene rubber and butadiene rubber composition using same
JP5928084B2 (en) Method for producing vinyl cis-polybutadiene rubber and vinyl cis-polybutadiene rubber
JP4208037B2 (en) Rubber composition for belt and rubber belt
JP2007126649A (en) Vibration-proof rubber composition
JP2011184570A (en) Method for producing vinyl-cis-polybutadiene rubber, and vinyl-cis-polybutadiene rubber
JP2017132955A (en) Vinyl-cis-polybutadiene rubber and method for producing the same
JP4867268B2 (en) Anti-vibration rubber composition
JP2005247899A (en) Rubber composition
JP2006249299A (en) Vinyl-cis-polybutadiene rubber
JP5287436B2 (en) Method for producing reinforced polybutadiene rubber
JP4433910B2 (en) High hardness compounded rubber composition
JP4353013B2 (en) Rubber composition for tire cord coating
JP2017132959A (en) Rubber composition and tire
JP4151620B2 (en) Rubber composition for passenger car tires
JP4952168B2 (en) Method for producing vinyl cis-polybutadiene composition
JP6754575B2 (en) Rubber composition and tires
JP4151629B2 (en) Rubber composition for sidewall
JP4151621B2 (en) Rubber composition for large vehicle tires
JP7031003B2 (en) Rubber composition and tires
JP5678764B2 (en) Method for producing vinyl cis-polybutadiene rubber and vinyl cis-polybutadiene rubber
JP7027564B2 (en) Vinyl cis-polybutadiene rubber and its manufacturing method
JP2010235867A (en) Method of producing reinforced polybutadiene rubber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060904

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term