JPH05193934A - Production of oxide superconductor member - Google Patents

Production of oxide superconductor member

Info

Publication number
JPH05193934A
JPH05193934A JP2894792A JP2894792A JPH05193934A JP H05193934 A JPH05193934 A JP H05193934A JP 2894792 A JP2894792 A JP 2894792A JP 2894792 A JP2894792 A JP 2894792A JP H05193934 A JPH05193934 A JP H05193934A
Authority
JP
Japan
Prior art keywords
substrate
precursor
oxide superconductor
oxide superconducting
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2894792A
Other languages
Japanese (ja)
Inventor
Junichi Sato
淳一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2894792A priority Critical patent/JPH05193934A/en
Publication of JPH05193934A publication Critical patent/JPH05193934A/en
Pending legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To perfectly orient the C axis of the crystal of an oxide superconductor and to improve its critical current density in the process of heat-treating a precursor having the same composition as the oxide superconductor formed on a substrate by grading the temp. of heat treatment. CONSTITUTION:The temp. gradient of 0.1-100 deg.C/mum is imparted vertically to the thickness direction of the precursor in heat treatment. For example, when a target consists of Bi2Sr2Ca1Cu2Ox, etc., the precursor for the oxide superconductor having about 10mum thickness is formed on a silver polycrystal substrate 3 by a laser-beam abrasion device. The substrate 3 is heated to 895 deg.C and the surface of the precursor to 885 deg.C, and the substrate and precursor are slowly cooled respectively to 875 deg.C and 865 deg.C at the rate of 2 deg.C/hr, held at the temps. for 20hr and then cooled to room temp. to form an oxide superconductor 7 on the substrate 3. A temp. gradient of 1 deg.C/mum is imparted vertically to the thickness direction of the precursor in this way in the heat treatment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は酸化物超電導体部材の製
造方法に関し、特に、酸化物超電導導体の結晶構造を良
好にし、臨界電流密度(Jc)特性を向上させた酸化物
超電導体部材の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an oxide superconductor member, and more particularly to an oxide superconductor member having an improved oxide superconducting crystal structure and improved critical current density (Jc) characteristics. It relates to a manufacturing method.

【0002】[0002]

【従来の技術】厚膜法,及び薄膜法によって得られる酸
化物超電導体部材は、ベース材としての基板と、当該基
板上に中間層を介して設けられる酸化物超電導導体と、
当該酸化物超電導導体の表面に設けられる保護層より構
成されている。中間層,及び保護層は必要に応じて設け
られるもので、中間層は酸化物超電導導体と基板との元
素の拡散による超電導特性の劣化を防止すると共に、格
子定数や熱膨張係数を整合させる。また、保護層は重ね
てコイルを形成する際に相互を絶縁すると共に、補強や
酸化物超電導導体の安定化材の役割を果たす。
2. Description of the Related Art An oxide superconductor member obtained by a thick film method and a thin film method comprises a substrate as a base material, an oxide superconducting conductor provided on the substrate via an intermediate layer,
It is composed of a protective layer provided on the surface of the oxide superconducting conductor. The intermediate layer and the protective layer are provided as necessary. The intermediate layer prevents deterioration of superconducting properties due to element diffusion between the oxide superconducting conductor and the substrate, and matches the lattice constant and the thermal expansion coefficient. Further, the protective layer insulates each other when forming a coil by overlapping, and also plays a role of reinforcement and a stabilizing material of the oxide superconducting conductor.

【0003】基板,或いは中間層上に酸化物超電導導体
を合成する場合には、基板,或いは中間層の表面に酸化
物超電導導体と同一組成より成る前駆体を形成し、化学
組成の調整を行った後、400〜1100℃の後熱処理
を施し、結晶化と酸素濃度の調整を行って合成する方法
や、400〜1100℃に加熱された基板,或いは中間
層上に酸化物超電導導体を直接合成する方法(結晶化と
酸素濃度の調整を同時に行う方法:超電導材料研究会,
第6回シンポジウム予稿集 1988,3−1)が採用
されている。
When synthesizing an oxide superconducting conductor on a substrate or an intermediate layer, a precursor having the same composition as that of the oxide superconducting conductor is formed on the surface of the substrate or the intermediate layer to adjust the chemical composition. After that, a post-heat treatment of 400 to 1100 ° C is performed to synthesize by crystallization and adjustment of oxygen concentration, or a substrate heated to 400 to 1100 ° C or an oxide superconducting conductor is directly synthesized on the intermediate layer. Method (method of simultaneously adjusting crystallization and oxygen concentration: Superconducting Materials Research Group,
The 6th Symposium Proceedings 1988, 3-1) has been adopted.

【0004】上記方法によって基板,或いは中間層に酸
化物超電導導体を合成すると、基板,或いは中間層がセ
ラミックス単結晶(001)の場合はもとより、それ以
外の場合でも基板面に平行にC面が成長するという特徴
があり、結晶構造がC軸配向した酸化物超電導導体を容
易に得ることができる。
When the oxide superconducting conductor is synthesized on the substrate or the intermediate layer by the above method, not only when the substrate or the intermediate layer is a ceramic single crystal (001) but also in other cases, the C plane is parallel to the substrate surface. It has the characteristic of growing, and an oxide superconducting conductor having a C-axis oriented crystal structure can be easily obtained.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記方法によ
って得られた酸化物超電導体部材の結晶構造をX線解析
で評価したところ、基板上の酸化物超電導導体は全体的
にC軸配向しているが、(00l)以外の他の結晶面の
ピークの存在が認められたり、個々の結晶粒に注目した
場合、基板面に数度から数十度の傾きが生じており、完
全なC軸配向性が得られていない。このため、結晶粒同
志の接合性が悪化し、酸化物超電導体部材の臨界電流密
度値(Jc値)が低くなってしまう。
However, when the crystal structure of the oxide superconductor member obtained by the above method was evaluated by X-ray analysis, it was found that the oxide superconductor on the substrate was C-axis oriented as a whole. However, the presence of peaks on other crystal planes other than (00l) was observed, and when attention was paid to individual crystal grains, the substrate surface was tilted from several degrees to several tens of degrees, and the complete C-axis was observed. Orientation is not obtained. Therefore, the bondability between the crystal grains deteriorates, and the critical current density value (Jc value) of the oxide superconductor member becomes low.

【0006】従って、本発明の目的は酸化物超電導導体
の結晶構造として完全なC軸配向性が得られ、臨界電流
密度値を向上させることができる酸化物超電導体部材の
製造方法を提供することである。
Therefore, an object of the present invention is to provide a method for producing an oxide superconductor member which can obtain a perfect C-axis orientation as a crystal structure of an oxide superconductor and can improve the critical current density value. Is.

【0007】[0007]

【課題を解決するための手段】本発明は上記問題点に鑑
み、酸化物超電導導体の結晶構造として完全なC軸配向
性が得られ、臨界電流密度値を向上させるため、前駆体
の厚さ方向に対して垂直に0.1〜100℃/μmの温
度勾配をつけて熱処理を行うようにした酸化物超電導体
部材の製造方法を提供するものである。
In view of the above problems, the present invention provides a perfect C-axis orientation as a crystal structure of an oxide superconducting conductor and improves the critical current density value. It is intended to provide a method for producing an oxide superconductor member in which a heat treatment is performed with a temperature gradient of 0.1 to 100 ° C./μm perpendicular to the direction.

【0008】温度勾配が0.1℃/μm未満では、温度
勾配の効果がなく、結晶の核生成が前駆体の厚さ方向に
ランダムに生じてしまい、C軸配向性を悪化させ、ま
た、温度勾配が100℃/μmを超えると、基板と前駆
体との間の温度差が大きくなりすぎて適性な結晶成長が
期待できない。
When the temperature gradient is less than 0.1 ° C./μm, there is no effect of the temperature gradient, and nucleation of crystals occurs randomly in the thickness direction of the precursor, degrading the C-axis orientation, and If the temperature gradient exceeds 100 ° C./μm, the temperature difference between the substrate and the precursor becomes too large, and proper crystal growth cannot be expected.

【0009】[0009]

【作用】上記のように、前駆体の厚さ方向に対して垂直
に0.1〜100℃/μmの温度勾配を持たせて加熱処
理を行うと、基板と前駆体の間に熱勾配があるため、前
駆体の結晶成長が温度が高い基板面に沿って生じ、酸化
物超電導導体の結晶構造を単一C軸配向膜とし、結晶性
を良好にすることができる。このため、臨界電流密度
(Jc)値を向上させることができる。
As described above, when the heat treatment is performed with a temperature gradient of 0.1 to 100 ° C./μm perpendicular to the thickness direction of the precursor, the thermal gradient is generated between the substrate and the precursor. Therefore, the crystal growth of the precursor occurs along the surface of the substrate having a high temperature, and the crystal structure of the oxide superconducting conductor is a single C-axis oriented film, and the crystallinity can be improved. Therefore, the critical current density (Jc) value can be improved.

【0010】[0010]

【実施例】以下、本発明の酸化物超電導体部材の製造方
法を詳細に説明する。
EXAMPLES The method for producing an oxide superconductor member of the present invention will be described in detail below.

【0011】図1には、本実施例に係るレーザーアブレ
ーション装置の概略構成が示されている。このレーザー
アブレーション装置は、ガス導入口5,及び排気口6を
有する真空槽2と、真空槽2の内部に回転可能に配置さ
れたターゲット4と、ターゲット4の上部に取り付けら
れる基板3と、ターゲット4に向けて出射されるレーザ
ー1より構成されている。
FIG. 1 shows a schematic structure of a laser ablation apparatus according to this embodiment. This laser ablation device includes a vacuum chamber 2 having a gas inlet 5 and an exhaust port 6, a target 4 rotatably arranged inside the vacuum chamber 2, a substrate 3 mounted on the target 4, and a target. The laser 1 is emitted toward the laser beam 4.

【0012】真空槽2は、排気口6を介して所定の真空
度に調整され、かつ、ガス導入口5を介して所定量の酸
素が導入された構成を有している。
The vacuum chamber 2 has a structure in which a predetermined degree of vacuum is adjusted through the exhaust port 6 and a predetermined amount of oxygen is introduced through the gas introduction port 5.

【0013】ターゲット4は、例えば、Bi2 Sr2
1 Cu2 x 等の酸化物超電材料より成り、ここにA
rFエキシマレーザー等を照射することにより、上部に
取り付けられた基板3に酸化物超電導導体の前駆体を形
成する。
The target 4 is, for example, Bi 2 Sr 2 C.
a 1 Cu 2 O x or other oxide superconducting material, where A
By irradiating with an rF excimer laser or the like, a precursor of the oxide superconducting conductor is formed on the substrate 3 attached to the upper part.

【0014】以下、上記レーザーアブレーション装置を
利用した酸化物超電導体部材の製造方法を説明する。
A method of manufacturing an oxide superconductor member using the above laser ablation device will be described below.

【0015】[0015]

【実施例1】まず、真空槽2の内部に幅5mm,長さ1
0mm,厚さ0.2mmの銀多結晶基板3を取り付け、
更に、真空槽2の内部を5×10-5Torrの真空度ま
で減圧すると共に、ガス導入口5から0.2Torrの
酸素を導入する。そして、パルスエネルギー1.5J/
cm2 ,繰り返し周波数40HzのArFエキシマレー
ザー1を、回転状態にあるBi2 Sr2 Ca1 Cu2
x ターゲット4に1時間照射して、銀多結晶基板3上に
約10μmの酸化物超電導導体の前駆体を形成する。
Example 1 First, inside the vacuum chamber 2, a width of 5 mm and a length of 1
A silver polycrystalline substrate 3 having a thickness of 0 mm and a thickness of 0.2 mm is attached,
Further, the inside of the vacuum chamber 2 is depressurized to a vacuum degree of 5 × 10 −5 Torr, and 0.2 Torr of oxygen is introduced from the gas inlet 5. And pulse energy 1.5 J /
The ArF excimer laser 1 having a frequency of 2 cm and a repetition frequency of 40 Hz is rotated by Bi 2 Sr 2 Ca 1 Cu 2 O.
The x target 4 is irradiated for 1 hour to form a precursor of an oxide superconducting conductor having a thickness of about 10 μm on the silver polycrystalline substrate 3.

【0016】そして、銀多結晶基板3を895℃で、ま
た、前駆体の表面側を885℃でそれぞれ加熱し、そこ
から2℃/hの冷却速度でそれぞれ875℃,865℃
まで徐冷した後、20時間保持させて室温まで降温さ
せ、銀多結晶基板3の上に酸化物超電導導体を形成す
る。すなわち、前駆体の厚さ方向に対して垂直に1℃/
μmの温度勾配をつけて熱処理を行って酸化物超電導導
体を形成し、酸化物超電導体部材を得る。
Then, the silver polycrystal substrate 3 is heated at 895 ° C. and the surface side of the precursor is heated at 885 ° C., respectively, and at a cooling rate of 2 ° C./h, 875 ° C. and 865 ° C.
After gradually cooling down to 20 ° C., the temperature is lowered to room temperature to form an oxide superconducting conductor on the silver polycrystalline substrate 3. That is, 1 ° C./perpendicular to the thickness direction of the precursor
A heat treatment is performed with a temperature gradient of μm to form an oxide superconducting conductor, and an oxide superconducting member is obtained.

【0017】次に、このように製造された酸化物超電導
体部材のX線解析を行った。その結果、酸化物超電導導
体の結晶構造は低Tc相(2212相)の単一C軸配向
膜となっており、膜厚が約10μmと厚いにもかかわら
ず、その半値巾は0.2°と非常に結晶性が良好なもの
であった。また、酸化物超電導体部材を走査型電子顕微
鏡で観察したところ、図2に示すように、基板3上の酸
化物超電導導体7に板状の配向組織が確認でき、ミクロ
的に観察してもその配向組織は基板3面に対して2度以
内の傾きであった。この理由は基板と前駆体の間に熱勾
配があるため、低Tc相の結晶成長が温度が高い基板面
に沿って生じるためである。更に、超電導特性を調べる
ために直流四端子法で印加磁場0T,4.2Kにおける
臨界電流密度を測定した。その結果、臨界電流密度が3
×105 A/cm2 と優れた超電導特性を示した。
Next, an X-ray analysis of the oxide superconductor member manufactured as described above was performed. As a result, the crystal structure of the oxide superconducting conductor was a low Tc phase (2212 phase) single C-axis oriented film, and although the film thickness was as thick as about 10 μm, its half-value width was 0.2 °. And the crystallinity was very good. Moreover, when the oxide superconductor member was observed with a scanning electron microscope, as shown in FIG. 2, a plate-like texture was confirmed in the oxide superconductor 7 on the substrate 3, and even when observed microscopically. The orientation structure was tilted within 2 degrees with respect to the surface of the substrate 3. The reason for this is that there is a thermal gradient between the substrate and the precursor, so that low-Tc phase crystal growth occurs along the substrate surface where the temperature is high. Furthermore, in order to investigate the superconducting characteristics, the critical current density was measured by a DC four-terminal method in an applied magnetic field of 0T and 4.2K. As a result, the critical current density is 3
It showed excellent superconducting properties of × 10 5 A / cm 2 .

【0018】[0018]

【比較例1】実施例1と同様な方法で、基板3の上に酸
化物超電導導体の前駆体を形成し、全体を895℃の温
度で加熱し、そこから2℃/時間の冷却速度で875℃
まで徐冷し、20時間保持して室温まで降温させて酸化
物超電導体部材を得た。
Comparative Example 1 In the same manner as in Example 1, a precursor of an oxide superconducting conductor was formed on the substrate 3, the whole was heated at a temperature of 895 ° C., and then a cooling rate of 2 ° C./hour was applied. 875 ° C
Was slowly cooled to room temperature, and the temperature was lowered to room temperature for 20 hours to obtain an oxide superconductor member.

【0019】次に、このように製造された酸化物超電導
体部材のX線解析を行ったところ、酸化物超電導導体の
結晶構造は低Tc相(2212相)のC軸配向膜である
が、その半値巾は0.35°で結晶性が悪かった。ま
た、走査型電子顕微鏡で観察したところ、図3に示すよ
うに、酸化物超電導導体7に板状の配向組織が認められ
たが、ミクロ的に観察すると基板面に対して数度から3
0度程度傾いていた。この理由は、基板3と前駆体とが
同一温度で加熱されるため、低Tc相の結晶の核生成が
前駆体のいたるところで生じ、その後、成長が生じるた
めである。更に、超電導特性を調べるために直流四端子
法で印加磁場0T,4.2Kにおける臨界電流密度を測
定した。その結果、臨界電流密度はは8000A/cm
2 であり、超電導特性として好ましいものではなかっ
た。
Next, an X-ray analysis of the oxide superconductor member produced in this way was carried out. As a result, the crystal structure of the oxide superconductor was a low Tc phase (2212 phase) C-axis oriented film. Its half-width was 0.35 ° and the crystallinity was poor. Further, as a result of observation with a scanning electron microscope, as shown in FIG. 3, a plate-like orientation structure was observed in the oxide superconducting conductor 7, but when observed microscopically, it was several degrees to 3 degrees relative to the substrate surface.
It was tilted about 0 degrees. The reason is that since the substrate 3 and the precursor are heated at the same temperature, nucleation of low Tc phase crystals occurs everywhere in the precursor, and thereafter growth occurs. Furthermore, in order to investigate the superconducting characteristics, the critical current density was measured by a DC four-terminal method in an applied magnetic field of 0T and 4.2K. As a result, the critical current density is 8000 A / cm
It was 2 , which was not preferable for superconducting properties.

【0020】[0020]

【実施例2】真空槽2の内部に幅10mm,長さ100
0mm,厚さ0.5mmのハステロイ基板3を取り付
け、更に、真空槽2の内部を5×10-5Torrの真空
度まで減圧すると共に、ガス導入口から0.2Torr
の酸素を導入する。そして、パルスエネルギー1.5J
/cm2 ,繰り返し周波数10HzのArFエキシマレ
ーザー1を、回転状態にあるTl2 Ba2 Ca1 Cu3
x ターゲット4に1時間照射して、ハステロイ基板3
上に約2μmの酸化物超電導導体の前駆体を形成する。
[Embodiment 2] Inside the vacuum chamber 2, a width of 10 mm and a length of 100
A Hastelloy substrate 3 having a thickness of 0 mm and a thickness of 0.5 mm is attached, and further, the inside of the vacuum chamber 2 is depressurized to a vacuum degree of 5 × 10 −5 Torr and 0.2 Torr from a gas inlet.
Introduce oxygen. And pulse energy 1.5J
ArF excimer laser 1 having a repetition rate of 10 Hz / cm 2 and a repetition frequency of 10 Hz is rotated by Tl 2 Ba 2 Ca 1 Cu 3
Irradiate the O x target 4 for 1 hour to obtain the Hastelloy substrate 3
A precursor of an oxide superconducting conductor having a thickness of about 2 μm is formed thereon.

【0021】そして、Tl2 3 雰囲気中においてハス
テロイ基板3を860℃で、また、前駆体の表面側を8
40℃でそれぞれ加熱した後、20時間保持させて室温
まで降温させ、ハステロイ基板3の上に酸化物超電導導
体を形成する。すなわち、前駆体の厚さ方向に対して垂
直に10℃/μmの温度勾配を設けて熱処理を行って酸
化物超電導導体を形成し、酸化物超電導体部材を得る。
Then, the Hastelloy substrate 3 was heated at 860 ° C. in a Tl 2 O 3 atmosphere, and the surface side of the precursor was kept at 8 ° C.
After each heating at 40 ° C., the temperature is kept for 20 hours and the temperature is lowered to room temperature to form an oxide superconducting conductor on the Hastelloy substrate 3. That is, the oxide superconducting conductor is formed by providing a temperature gradient of 10 ° C./μm perpendicular to the thickness direction of the precursor and performing a heat treatment to obtain an oxide superconducting member.

【0022】次に、このように製造された酸化物超電導
体部材のX線解析を行ったところ、酸化物超電導導体の
結晶構造は高Tc相(2223相)の単一C軸配向膜に
なっており、その半値巾は0.2°と結晶性が良好であ
った。また、超電導特性を調べるために直流四端子法で
印加磁場0T,4.2Kにおける臨界電流密度を測定し
た。その結果、臨界電流密度が1×105 A/cm2
優れた超電導特性を示した。
Next, an X-ray analysis of the oxide superconductor member produced in this way was carried out. As a result, the crystal structure of the oxide superconductor became a single C-axis oriented film of high Tc phase (2223 phase). The full width at half maximum was 0.2 ° and the crystallinity was good. In addition, in order to investigate the superconducting characteristics, the critical current density was measured by a DC four-terminal method in an applied magnetic field of 0T and 4.2K. As a result, the critical current density was 1 × 10 5 A / cm 2 , showing excellent superconducting properties.

【0023】[0023]

【比較例2】実施例2と同様な方法で、ハステロイ基板
3の上に酸化物超電導導体の前駆体を形成し、全体を8
50℃の温度で加熱し、20時間保持して室温まで降温
させた。
COMPARATIVE EXAMPLE 2 In the same manner as in Example 2, a precursor of an oxide superconducting conductor was formed on the Hastelloy substrate 3, and the whole was formed into 8 parts.
It heated at the temperature of 50 degreeC, hold | maintained for 20 hours, and cooled to room temperature.

【0024】以上のように製造された酸化物超電導体部
材のX線解析を行ったところ、酸化物超電導導体の結晶
構造は高Tc相(2223相)のC軸配向膜であるが、
その半値巾は0.3°と結晶性が悪かった。また、印加
磁場0T,4.2Kにおける臨界電流密度は3000A
/cm2 で、超電導特性として好ましいものではなかっ
た。
An X-ray analysis of the oxide superconducting member manufactured as described above revealed that the oxide superconducting conductor had a crystal structure of a high Tc phase (2223 phase) C-axis oriented film.
Its half-width was 0.3 ° and the crystallinity was poor. The critical current density at an applied magnetic field of 0T and 4.2K is 3000A.
/ Cm 2 , which was not preferable for superconducting properties.

【0025】尚、上記実施例ではBi系低Tc相(22
12相),及びTl系高Tc相(2223相)の形成に
ついて説明したが、他のPbドープ有又は無のBi系高
Tc相(2223相)や、Tl2層系の2201相,2
212相,2234相等,或いはTl1層系の1201
相,1212相,1223相,1234相等に適用して
も良く、また、Y−Ba−Cu−O系でも良い。また、
基板の材質は、Ag,ハステロイの他にAu,Pt,P
d,Cu,或いはこれらの合金や、インコネル等の耐熱
合金,SUS等の鉄系合金,或いは安定化ジニコニア
(YSZ),MgO,SrTiO3 ,LaAlO3 ,L
aGdO3 等のセラミックス,及びSi等の半導体を適
用することができる。
In the above embodiment, the Bi-based low Tc phase (22
12 phase) and the formation of a Tl-based high Tc phase (2223 phase), other Bi-based high Tc phase (2223 phase) with or without Pb doping, 2201 phase of Tl2 layer system, 2
212 phase, 2234 phase, etc., or Tl1 layer system 1201
Phase, 1212 phase, 1223 phase, 1234 phase, etc., and may be Y—Ba—Cu—O system. Also,
Substrate materials are Au, Pt, P in addition to Ag and Hastelloy.
d, Cu, or alloys thereof, heat-resistant alloys such as Inconel, iron-based alloys such as SUS, or stabilized diniconia (YSZ), MgO, SrTiO 3 , LaAlO 3 , L
Ceramics such as aGdO 3 and semiconductors such as Si can be applied.

【0026】また、上記実施例では基板上に前駆体を形
成し、その後、温度勾配をつけた熱処理を行っている
が、予め基板を加熱しておいて前駆体を形成する際に温
度勾配をつけるようにしても同様な効果を得ることがで
きる。
Further, in the above embodiment, the precursor is formed on the substrate and then the heat treatment with the temperature gradient is performed. However, when the substrate is heated in advance and the precursor is formed, the temperature gradient is changed. Even if it is turned on, the same effect can be obtained.

【0027】更に、前駆体はArFエキシマレーザーの
他に、KrF,XeCl等のエキシマレーザーや、YA
Gレーザーで作成しても良く、また、レーザーアブレー
ション法を用いずに、組成、結晶構造,酸素含有量を適
性化して真空蒸着法,スパッタ法,化学的気相法等の気
相法,及びドクターブレード法,ディップコート法,塗
布熱解法,或いはその組み合わせで作成しても良い。
Further, the precursor is an ArF excimer laser, an excimer laser such as KrF or XeCl, or YA.
It may be prepared by a G laser, or a vapor phase method such as a vacuum vapor deposition method, a sputtering method or a chemical vapor phase method by optimizing the composition, crystal structure and oxygen content without using a laser ablation method, and It may be prepared by a doctor blade method, a dip coating method, a coating thermal solution method, or a combination thereof.

【0028】[0028]

【発明の効果】以上説明したように、本発明の酸化物超
電導体部材の製造方法によると、前駆体の厚さ方向に対
して垂直に0.1〜100℃/μmの温度勾配をつけて
熱処理を行うようにしたため、酸化物超電導導体の結晶
構造として完全なC軸配向性が得られ、臨界電流密度値
を大幅に向上させることができる。
As described above, according to the method for producing an oxide superconductor member of the present invention, a temperature gradient of 0.1 to 100 ° C./μm is applied perpendicularly to the thickness direction of the precursor. Since the heat treatment is performed, perfect C-axis orientation is obtained as the crystal structure of the oxide superconducting conductor, and the critical current density value can be significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に利用したレーザーアブレーシ
ョン装置を示す説明図。
FIG. 1 is an explanatory view showing a laser ablation device used in an embodiment of the present invention.

【図2】本実施例によって得られた酸化物超電導体部材
を示す断面模式図。
FIG. 2 is a schematic sectional view showing an oxide superconductor member obtained in this example.

【図3】比較例によって得られた酸化物超電導体部材を
示す断面模式図。
FIG. 3 is a schematic sectional view showing an oxide superconductor member obtained by a comparative example.

【符号の説明】[Explanation of symbols]

1 レーザー 2 真空
槽 3 基板 4 ター
ゲット 5 ガス導入口 6 排気
口 7 酸化物超電導導体
1 Laser 2 Vacuum Tank 3 Substrate 4 Target 5 Gas Inlet 6 Exhaust 7 Oxide Superconducting Conductor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基板の上部に酸化物超電導導体と同一組
成の前駆体を形成し、これらに熱処理を施して前記基板
の上部に酸化物超電導導体を形成する酸化物超電導体部
材の製造方法において、 前記熱処理は、前記前駆体の厚さ方向に対して垂直に
0.1〜100℃/μmの温度勾配をつけて行うことを
特徴とする酸化物超電導体部材の製造方法。
1. A method for producing an oxide superconducting member, comprising: forming a precursor having the same composition as that of an oxide superconducting conductor on a substrate; and subjecting the precursor to heat treatment to form an oxide superconducting conductor on the substrate. The method for producing an oxide superconductor member, wherein the heat treatment is performed with a temperature gradient of 0.1 to 100 ° C./μm perpendicular to the thickness direction of the precursor.
JP2894792A 1992-01-20 1992-01-20 Production of oxide superconductor member Pending JPH05193934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2894792A JPH05193934A (en) 1992-01-20 1992-01-20 Production of oxide superconductor member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2894792A JPH05193934A (en) 1992-01-20 1992-01-20 Production of oxide superconductor member

Publications (1)

Publication Number Publication Date
JPH05193934A true JPH05193934A (en) 1993-08-03

Family

ID=12262606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2894792A Pending JPH05193934A (en) 1992-01-20 1992-01-20 Production of oxide superconductor member

Country Status (1)

Country Link
JP (1) JPH05193934A (en)

Similar Documents

Publication Publication Date Title
Norton Synthesis and properties of epitaxial electronic oxide thin-film materials
US6214772B1 (en) Process for preparing polycrystalline thin film, process for preparing oxide superconductor, and apparatus therefor
JP2660248B2 (en) Film formation method using light
JP2757284B2 (en) Method for producing metal oxide superconducting material layer by laser evaporation
JP3623001B2 (en) Method for forming single crystalline thin film
US8299363B2 (en) Polycrystalline thin film, method for producing the same and oxide superconductor
KR100545547B1 (en) Method of producing polycrystalline thin film and method of producing an oxide superconducting element
US5453306A (en) Process for depositing oxide film on metallic substrate by heat plasma flash evaporation method
US6074768A (en) Process for forming the oxide superconductor thin film and laminate of the oxide superconductor thin films
EP0308869A2 (en) Process of producing single crystalline LnA2Cu3O7-x thin films having three-layered perovskite structure
JP4131771B2 (en) Polycrystalline thin film, manufacturing method thereof and oxide superconducting conductor
JPH05193934A (en) Production of oxide superconductor member
JPH01309956A (en) Production of oxide superconductor
JP4619697B2 (en) Oxide superconducting conductor and manufacturing method thereof
JP4593300B2 (en) Manufacturing method and manufacturing apparatus for oxide superconducting wire
JP4519540B2 (en) Method for manufacturing oxide superconductor and oxide superconductor
JP2005113220A (en) Polycrystal thin film, its production method, and oxide superconductor
JP2004362784A (en) Oxide superconductor and its manufacturing method
KR970009739B1 (en) Method of manufacture for superconductor thin film
JP2004362785A (en) Oxide superconductor and its manufacturing method
JP3522402B2 (en) Method and apparatus for producing oxide superconducting conductor
JPH04193703A (en) Production of superconducting thin film
JP2919956B2 (en) Superconducting member manufacturing method
JP2011137199A (en) METHOD FOR DEPOSITING THREE-TIMES SYMMETRY MgO FILM AND FOUR-TIMES SYMMETRY MgO FILM, AND OXIDE SUPERCONDUCTING CONDUCTOR
JP3188912B2 (en) Method for producing oxide superconducting thin film